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Schizophrenia is a complex and heterogeneous syndrome. 
Whether quantitative imaging biomarkers can identify 
discrete subgroups of patients as might be used to foster 
personalized medicine approaches for patient care remains 
unclear. Cross-sectional structural MR images of 163 
never-treated first-episode schizophrenia patients (FES) 
and 133 chronically ill patients with midcourse schizo-
phrenia from the Bipolar and Schizophrenia Network for 
Intermediate Phenotypes (B-SNIP) consortium and a total 
of 403 healthy controls were recruited. Morphometric 
measures (cortical thickness, surface area, and subcortical 
structures) were extracted for each subject and then the op-
timized subtyping results were obtained with nonsupervised 
cluster analysis. Three subgroups of patients defined by 
distinct patterns of regional cortical and subcortical mor-
phometric features were identified in FES. A similar three 
subgroup pattern was identified in the independent dataset 
of patients from the multi-site B-SNIP consortium. 
Similarities of classification patterns across these two 
patient cohorts suggest that the 3-group typology is rela-
tively stable over the course of illness. Cognitive functions 
were worse in subgroup 1 with midcourse schizophrenia 
than those in subgroup 3. These findings provide novel in-
sight into distinct subgroups of patients with schizophrenia 
based on structural brain features. Findings of different 
cognitive functions among the subgroups support clinical 
differences in the MRI-defined illness subtypes. Regardless 
of clinical presentation and stage of illness, anatomic MR 
subgrouping biomarkers can separate neurobiologically 

distinct subgroups of schizophrenia patients, which rep-
resent an important and meaningful step forward in 
differentiating subtypes of patients for studies of illness 
neurobiology and potentially for clinical trials.

Key words:   Schizophrenia/heterogeneity/subgroup/struc
tural MRI/brain alterations/neuroimaging

Introduction

Schizophrenia syndrome is a clinically heterogeneous and 
genetically complex illness, as reflected in a large number 
of independent risk genes for the condition1–4 and ex-
tensive variability in clinical presentation, treatment 
outcomes, and neurobiological features.5–12 This heteroge-
neity suggests that this syndrome may in fact represent a 
combination of disease entities with an overlap in clinical 
presentation.13,14 In recent years, a number of studies have 
investigated this notion using a range of approaches.5,15

Studies of brain anatomy with magnetic resonance im-
aging (MRI) in schizophrenia have typically utilized case-
control designs to identify group-level brain alterations in 
patient cohorts.5–11,16–21 This has led to the identification 
of regional gray matter alterations, such as decreased cor-
tical thickness or area in frontal and temporal lobes, as 
well as widely distributed white matter alterations. While 
these group-level findings are of interest, the severity 
and specific features of neuroanatomical alterations 
vary widely across patients. It remains unclear whether 
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neuroanatomic variability is driven by varying degrees of 
illness severity or by qualitatively distinct schizophrenia 
subtypes.5,22,23

Clinical biomarker strategies using noninvasive MRI 
have the potential to identify neurobiologically dis-
tinct subtypes within complex syndromes such as schiz-
ophrenia,5,24–27 which has the potential to advance 
diagnostic and therapeutic practice from a full reliance 
on behavioral features. Previous studies have shown a dis-
crete heterogeneity of gray matter deficits,22,28,29 though 
additional issues need to be addressed. For example, 
antipsychotic drug treatment and illness course, which 
both can affect brain structure and function30–33 to influ-
ence subgroup identification. Investigating heterogeneity 
of brain alterations in both first-episode schizophrenia 
(FES) prior to any treatment and in chronically ill indi-
viduals can address these issues.34,35

Many different clustering algorithms are used to clas-
sify patients into subgroups on the basis of their simi-
larity in symptoms, cognitions, or imaging features,4,36,37 
but no consensus has been reached even on the definition 
of cluster. A density peak-based clustering (DPC) algo-
rithm38 was recently proposed, which assumes that the 
cluster centers should satisfy the following two criteria: 
1) higher density than their neighbors and 2) long distance 
with other high local density data.38 Typical clustering al-
gorithms, such as, K-means and K-medoids, always as-
sign an observation to the nearest center, and can be less 
robust in detecting nonspherical clusters. Compared with 
these typical clustering algorithms, the DPC algorithm is 
based on the distance between data points, and thus is 
better able to detect nonspherical clusters and to auto-
matically find the correct number of clusters,38 without 
initialization and multiple iterations. Moreover, it is a 
parameter-free method.

In the current study, we examined cortical (surface 
area, cortical thickness) and subcortical (volume) mor-
phology, in acutely ill patients with never-treated FES and 
clinically stable chronic patients with midcourse schizo-
phrenia each with a matched healthy control group. Gray 
matter was chosen as the subgrouping feature because it 
comprises neuronal cell bodies, neuropil, glial cells, and 
synapses, and is well documented to be altered in schiz-
ophrenia. The novel clustering algorithm-DPC was used 
to intuitively classify schizophrenia patients into sub-
groups with distinct neuroanatomical features.38 The pri-
mary aim of this study was to identify the number and 
features of discrete subgroups in a sample of FES pa-
tients. We then determined whether a similar pattern of 
neuroanatomically-defined patient subgroups could be 
found in an independent sample of clinically stable pa-
tients with midcourse schizophrenia. Additionally, we 
tested for differences in clinical features in identified sub-
groups. We hypothesized that: 1) 2 or 3 subgroups of pa-
tients would be found in FES, and the similar clustering 
solution would be also found in the midcourse patients; 

2) the different subgroup of patients would demonstrate 
different clinic or imaging features.

Methods

Participants and Clinical Measures

The FES sample was comprised of 163 never-treated 
and acutely ill patients (mean age: 23.37 ± 7.45y, female: 
89) and 173 healthy controls (mean age: 24.08 ± 6.39y, fe-
male: 83) from West China Hospital of Sichuan University 
in Chengdu, China (table 1). The second sample included 
133 clinically stable patients with midcourse schizo-
phrenia (mean age: 33.77 ± 11.99y, female: 50) and 230 
healthy controls (mean age: 33.63  ± 10.42y, female: 
120)  from the Bipolar and Schizophrenia Network for 
Intermediate Phenotypes (B-SNIP) consortium col-
lected via a multisite collaboration in the USA (table 1).6 
The study was approved by each local research ethics 

Table 1.  Demographic and clinical characteristics of never-
treated first-episode schizophrenia patients, midcourse 
schizophrenia patients from the B-SNIP consortium study and the 
separate healthy controls for the two patient groups

Characteristic Mean ± SD Mean ± SD P

 

Antipsychotic-
Naïve FES 
(N = 163)

HC1  
(N = 173)  

Gender(M/F) N (74/89) N (90/83) .22
Age (years) 23.37 ± 7.45 24.08 ± 6.39 .35
Education (years) 12.09 ± 3.09 12.80 ± 3.74 .06
Illness duration 
(months)

12.21 ± 20.08 – –

GAF scores 30.10 ± 11.13 – –
PANSS scores
  Total 95.58 ± 19.33 – –
  Negative 24.71 ± 6.36 – –
  Positive 18.73 ± 7.97 – –
  General 45.89 ± 9.82 – –

Midcourse SCZ  
(N = 133)

HC2  
(N = 230)

Gender (M/F) N (83/50) N (110/120) <.01
Age (years) 33.77 ± 11.99 33.63 ± 10.42 .91
Education (years) 13.04 ± 2.34 14.98 ± 2.45 <.01
Illness duration 
(years)

11.72 ± 10.82 – –

GAF scores 49.27 ± 12.19 – –
PANSS scores
  Total 69.54 ± 17.40 – –
  Negative 17.00 ± 6.03 – –
  Positive 17.96 ± 5.39 – –
  General 34.62 ± 8.74 – –

FES, first-episode schizophrenia; HC1, healthy controls from FES 
study; Midcourse SCZ, treated patients with midcourse schizo-
phrenia from the B-SNIP consortium study; HC2, healthy con-
trols from the B-SNIP consortium study; SD, standard deviation; 
GAF, Global Assessment of Functioning; PANSS, Positive and 
Negative Syndrome Scale
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committee and written informed consent was obtained 
from all participants prior to study participation.

Diagnoses of schizophrenia were determined using the 
Structured Interview for the DSM-IV (SCID-P). Patients’ 
overall function and symptom severity were assessed 
using the Global Assessment of Functioning (GAF) 
and Positive and Negative Syndrome Scale (PANSS). 
Additionally, the Brief  Assessment of Cognition in 
Schizophrenia (BACS)39 was administered to the patients 
with midcourse schizophrenia in order to evaluate cog-
nitive functioning. For FES patients, psychiatric evalu-
ations and imaging studies were performed prior to the 
administration of any lifetime antipsychotic treatment.

Imaging Data Acquisition and Data Preprocessing

All FES patients and healthy controls in the sample 
from China underwent structural MRI scanning using 
a 3.0T MR scanner (for scan parameters, see details 
in Supplementary table  1) at West China Hospital of 
Sichuan University, Chengdu, China. For each subject, 
high-resolution T1-weighted structural images were ac-
quired using a spoiled gradient recall sequence.

For midcourse schizophrenia patients and healthy con-
trols from the B-SNIP dataset, all participants underwent 
MRI scanning on 3.0T scanners across five sites (see de-
tails in Supplementary table 1); all subjects at each site were 
scanned on the same magnet for the duration of the study. 
T1-weighted Magnetization Prepared Rapid Gradient 
Echo (MPRAGE) or Inversion Recovery-Prepared Spoiled 
Gradient-Echo (IR-SPGR) sequences, as appropriate for 
scanner brands, were administered following the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI1) protocol (http://
adni.loni.usc.edu/methods/documents/mri-protocols/). The 
sequence parameters are detailed in Supplementary table 1.

MRI images were independently inspected by an ex-
perienced neuroradiologist to check for distortions and 
artifacts affecting image quality and to exclude patients 
with visible cerebral abnormalities of neuroradiological 
significance.

Structural image processing was carried out to re-
construct the brain’s cortical surfaces and included 
the following steps: (1) spatial noise removal using the 
classical nonlocal means of  filtering, which averaged 
vertices weighted by the similarity of  their neighbor-
hoods, to deal with magnetic resonance images with 
spatially varying noise levels (e.g., Gaussian distrib-
uted noise); (2) cortical surface reconstruction; (3) 
tissue segmentation of  cerebrospinal fluid (CSF), 
white matter (WM), and gray matter (GM); (4) trian-
gular mesh tessellation over the GM-WM boundary 
and mesh deformation; (5) correction of  topological 
defects on the surface; (6) individual surface mesh in-
flation into a sphere; (7) estimation of  the deformation 
between the resulting spherical mesh and a common 
spherical coordinate system.

Surface-Based Features and Subcortical Feature 
Generation

For subject-wise neuroanatomical profiling, we com-
puted 3 features previously reported as abnormal 
in schizophrenia40 using the FreeSurfer 6.0 software 
package. Individual surface maps were projected onto 
the fsaverage cortical surface grid. “Cortical thickness” 
was defined as the distance of  corresponding vertices 
between the gray-white and pial boundary. “Cortical 
surface area” was defined as the area of  triangles sur-
rounding a vertex along the white matter interface. 
Subcortical volumes were obtained from seven regions: 
thalamus, caudate, putamen, pallidum, hippocampus, 
amygdala, and nucleus accumbens. Cortical thickness 
and cortical surface area measures were extracted for 
34 gray matter regions in each hemisphere (68 ROIs 
from the Desikan-Killiany atlas, neuroanatomic fea-
tures presented in Supplementary table  2). In this 
case, 150 (68*2+7*2) neuroanatomical features were 
obtained for each participant.

Subtype Analysis

Neuroanatomical subtyping analysis was performed in 
each of  the two patient samples independently. First, 
a 150 x N matrix (N  =  number of  patients) was gen-
erated. Then the effects of  age, gender and education 
level were regressed out after generating the matrix. We 
next identified relevant, nonredundant neuroanatomic 
features for clustering individuals, reasoning that a low-
dimensional representation would yield more valid/
replicable findings. Principal component analysis was 
employed to obtain eigenvalues and corresponding 
principal components. The component with the lar-
gest variance accounted for was used for the next step 
that involved calculating the dissimilarity (or distance) 
between any pair of  patients using “pdist.m” with 
Mahalanobis distance in Matlab. This resulted in a N 
x N dissimilarity matrix, in which each cell provided a 
measure of  dissimilarity. A higher value denoted lower 
similarity of  anatomical patterns between patients. 
This dissimilarity matrix was then used for the subse-
quent cluster analysis. A density peak-based clustering 
(DPC) algorithm38 was employed to classify schizo-
phrenia patients into subgroups with distinct neuroana-
tomical features. This DPC algorithm assumes that the 
cluster centers should satisfy the following two criteria: 
1) higher density than their neighbors and 2) long dis-
tance with other high local density data (see figure 4 in 
ref  39).38

Specifically, given a data point i (e.g., one patient), the 
local density ρi  was defined as:

ρi =
∑

j

χ(dij − dc)

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
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Where, χ (dij − dc) =

®
1 if (dij − dc) < 0
0 if (dij − dc) = 0 , and the dc 

is a constant. The ρi  was estimated using a Gaussian 
kernel. The algorithm is robustly independent of  the dc 
for a large dataset because it is sensitive only to the rel-
ative magnitude of  local density ρi  in different points.

The δi was defined as:

δi = min(dij)
j:ρj>ρi

After computing ρi and δi for all data, those data were con-
sidered as cluster centers if they had high ρi value and δi 
values, followed by assigning the remaining data to the same 
cluster as its nearest neighbor of higher density. Unlike a 
traditional cluster algorithm such as the K-means approach 
with a predefined number of clusters, this algorithm can de-
termine the number of clusters intuitively with cluster centers 
characterized by high density (ρi) and large distance (δi).

To explore illness-related heterogeneity, neuroanatom-
ical schizophrenia subtyping analysis using DPC was 
first applied to the cohort of never-treated FES patients 
(n = 163). Then, to explore whether the illness heteroge-
neity also existed in later course of illness in schizophrenia, 
the same DPC subtyping analysis was performed in 
midcourse schizophrenia patients (B-SNIP study, n = 133).

To explore whether the clustering solutions for FES 
and midcourse schizophrenia samples were similar, we 
combined the two datasets, and performed the subtyping 
analysis once more on the pooled sample.

Distance within (density) or/and between clusters was 
estimated to assess the similarity of subgroups between 
FES dataset and the combined dataset. Additionally, 
correlation analysis was also performed to explore the 
morphometric alteration pattern similarity between FES 
subgroups and midcourse patient subgroups.

Group Comparison Analysis

Pairwise group comparison analyses of cerebral struc-
tural measures were conducted between each subgroup 
of patients and healthy controls covarying for age, gender 
and site (for B-SNIP sample). For surface area and 
volume analyses, total intracranial volume was an addi-
tional covariate. Comparison of subgroups was corrected 
for multiple hypothesis testing using the FDR procedure 
for all 150 features. Comparison of subgroups was cor-
rected for multiple hypothesis testing using the FDR pro-
cedure for all 150 features (FDR rate was set as q = .05).

Results

Neuroanatomical Delineation of Schizophrenia 
Subtypes

Three clusters or subgroups for FES were determined by 
the result that no more than three clusters satisfied both 

criteria of high density and large distance criterion. As we 
can see from the figure below, there are three colored data 
points that were selected and determined as three clusters 
(cut-off) value based on the rules mentioned above (see 
figure 1). A similar three subgroup solution pattern was 
identified in the independent dataset of midcourse schiz-
ophrenia patients from the multi-site B-SNIP consortium 
(see figure  2). After analyzing the FES and midcourse 
schizophrenia samples separately, we performed a third 
cluster analysis on the pooled samples. This third anal-
ysis also yielded a three subgroup solution (see figure 2). 
Importantly, allocation of patients to groups 1–3 in the 
pooled data solution was almost identical to the allo-
cation of patients to groups (1–3) when the two patient 
samples were considered separately (figure 2). Only 5 of 
296 patients across the two samples were not allocated 
to the same groups in the pooled sample analysis as they 
were in the original single-sample cluster analyses. In 
subgroup 1, no patient was reclassified in either patient 
sample. Healthy comparison subjects could not be classi-
fied into subtypes using this same algorithm, suggesting 
a relatively homogeneous pattern of brain anatomic fea-
tures within the control samples. The distance within 
and between clusters in FES dataset was similar to that 
in the combined dataset and the longer-term ill sample 
(Supplementary table 4).

Patterns of Structural Brain Alterations in 
Schizophrenia Subgroups Relative to Healthy Controls

We explored the brain alteration patterns in each FES 
and midcourse schizophrenia patients separately. FES pa-
tients in subgroup 1 showed decreased surface area, thick-
ness, and volume, mainly in cortical-thalamic-cortical 
circuitry and increased thickness in left rostral anterior 
cingulate gyrus (figure 3, Supplementary table 2), while 
FES patients in subgroup 2 and subgroup 3 showed no 
significant cortical or subcortical alteration.

In midcourse schizophrenia patients from the B-SNIP 
study, relative to healthy controls, patients in subgroup 1 
showed widespread gray matter deficits in all lobes, and in 
insular cortex and bilateral hippocampus, while showing 
increased gray matter volume in bilateral pallidum 
(figure  3, Supplementary table  3). Patients in subgroup 
2 showed decreased gray matter volume in left hippo-
campus (figure 3, Supplementary table 3). Patients in sub-
group 3 showed no significant brain alteration (figure 3, 
Supplementary table 3).

Brain Structural Similarities and Differences Between 
FES and Midcourse Schizophrenia Samples

Next, comparison of cerebral alterations of FES and 
midcourse schizophrenia patients was performed. For 
subgroup 1, patients from the two datasets shared sim-
ilar cortical surface area deficits in bilateral superior 
frontal, bilateral rostral middle frontal, bilateral middle 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
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Fig. 1.  Schematic diagram of subtyping schizophrenia patients using density peak-based clustering analysis. Step 1: We first obtained 
the cortical and subcortical structure measures from high-resolution 3D T1-weighted images. Step 2: Surface area, cortical thickness, 
and subcortical volume measurements from each subject are concatenated into one eigenvector. Then, the correlation of the feature 
vectors between the two subjects is calculated to represent the similarity between subjects. The process was repeated until the similarity 
between any two subjects is obtained, and the dissimilarity matrix of the subjects can be obtained (n is the number of participants). 
Step 3: Subtype analysis: A density peak-based clustering (DPC) algorithm was employed to intuitively classify schizophrenia patients 
into subgroups with distinct neuroanatomical features. This DPC algorithm assumes that the cluster centers should satisfy the following 
two criteria: 1) higher density than their neighbors and 2) long distance with other high local density data. Decision graph for the 
pooled patients showing the 3 clusters solution. (Left panel) The x-axis denotes the local density ρi  and the y-axis denotes the minimal 
distance δi for all patients. (Right panel) The value of γi = ρiδiin decreasing order for all patients. As we can see, there are three clusters 
or subgroups for this study. Step 4: The re-ordered dissimilarity (Mahalanobis distance) matrix for pooled patients according to three 
cluster labels. Note the three identified subgroups in dark blue shown aligned along the principal diagonal. Step 5: Group comparison 
analyses between each subgroup of patients and healthy controls.

Fig. 2.  Clustering results. (left upper panel) Clustering results illustrated by dissimilarity matrices for treatment naïve first episode 
schizophrenia patients (FES), midcourse schizophrenia patients from Bipolar and Schizophrenia Network for Intermediate Phenotypes 
(B-SNIP) study and the combined sample. (left lower panel) Force-directed graph of patients with schizophrenia created using Gephi 
software (https://gephi.org/). The nodes colored differently denote the patients with schizophrenia belonging to different subgroups. 
Subtyping analysis revealed 3 subgroups of patients in FES, midcourse schizophrenia patients and the pooled analyses of these two 
samples of schizophrenia patients. (right upper panel) Clustering results showing the number and percentage of patients sorted into 
each of the three clusters in FES patients, midcourse schizophrenia patients and the combined samples. (right lower panel) Individuals 
in subgroups 1–3 in both patient samples were sorted into the same respective subgroup (1–3) in the pooled group solution with the 
exception of only 5 of 296 patients shifting between subgroups 2 and 3 relative to their grouping in the single patient group analyses.

https://gephi.org/
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temporal, left rostral anterior cingulate, left fusiform, and 
left precuneus cortex. Further, patients with midcourse 
schizophrenia showed more widespread cortical/subcor-
tical alterations than FES patients, especially decreased 
thickness throughout the whole brain and increased bilat-
eral pallidum volume (see Supplementary Materials and 
Supplementary tables 2–3). Pearson correlation analysis 
demonstrated that these two subgroup 1 morphometric 
alteration patterns were highly consistent (Pearson’s 
r = .83, P < .001, Supplementary figure 1). For subgroup 
2, patients with midcourse schizophrenia showed more 
volume deficits in left hippocampus than FES patients. 
For subgroup 3, they both showed no significant neuro-
anatomical alteration. Thus, while the basic structure of 
subgroup classification was retained in later-course pa-
tients, differences between the two patient samples indi-
cate that certain aspects of neuroanatomy that may be 
influenced by illness progression or antipsychotic treat-
ment as suggested previously.31–33,35,41

Clinical Features in the Three Subgroups

Detailed demographic and clinical features of  three 
subgroups were presented in Supplementary table  5. 
Subgroup 2 of  FES showed a higher ratio of  female 
patients relative to other subgroups. Subgroup 3 of 

midcourse schizophrenia demonstrated higher level 
of  education years than other subgroups. Exploratory 
analyses in the B-SNIP sample revealed that BACS 
scores differed among the three subgroups (F = 4.32, 
P = .02), with patients from subgroup 1 showing lower 
Composite-Z scores than subgroup 3 (P < .05, Tukey’s 
post hoc test, figure 4). Analysis of  subtest scores re-
vealed significant differences between subgroups 1 and 
3 on digit sequencing and verbal fluency tests (P < .05, 
Tukey’s post hoc test). There were no significant dif-
ferences in PANSS scores between the three identified 
subgroups in either the FES or the midcourse schizo-
phrenia patients.

There were no significant differences in daily 
chlorpromazine-equivalent antipsychotic medica-
tion dosage among the three subgroups of  midcourse 
patients.

Relationships Between the Three Subgroup Solution 
and the Three Biotype Solution for the Midcourse 
Schizophrenia Patients

The B-SNIP consortium previously identified a 3 group 
(Biotype) differentiation of psychotic disorder patients 
using cognitive and ERP data.5 We calculated the overlap 
in classification of our 3-group solution using MRI data 

Fig. 3.  Cortical/subcortical structural alterations in the three subgroups of FES and midcourse schizophrenia patients compared with 
healthy controls (red color: increased cortical measure in patients; blue color: decreased cortical measure in patients; asterisk * represents 
a significant group difference with FDR correction).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
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and the 3 Biotype solution of the B-SNIP program using 
Dice coefficients (Supplementary tables 6–7). Then, per-
mutation testing (10 000 times) was performed to test 
whether the Dice coefficients were different from those 
when patients were randomly distributed into three sets. 
Results show that patients of subgroup 1 characterized 

by widespread dystrophic structural brain changes over-
lapped with Biotype 1, which is characterized by pro-
nounced cognitive and electrophysiological alterations (P 
< .01, Supplementary table 8).

Discussion

Using structural MRI in a large sample of acutely ill 
never-treated FES patients and a second group of clin-
ically stable, midcourse patients, we demonstrated that 
patients can be classified into three subgroups defined 
by distinct patterns of cortical and subcortical anatomic 
features. This clustering of patients using MRI data was 
remarkably consistent across the two patient samples, 
suggesting that our reported patient classification was ro-
bust to variations in ethnicity, stage of illness, and treat-
ment status. These findings and the analyses of B-SNIP 
biotype classification are consistent with discrete patterns 
of heterogeneity of schizophrenia, suggesting distinct 
neurobiological bases for illness manifestations despite 
overall similarity in symptom expression. Clinical/behav-
ioral features have been shown over many years to have 
limited utility in stratifying schizophrenia patients for the 
purpose of clinical trials and personalized treatment. The 
present findings represent an important step towards the 
stratification of patients on the basis of neurobiological 
rather than behavioral features as a strategy for advancing 
psychiatric patient care.42

The distinct patterns of gray matter alterations in the 
three patient subgroups reveals the particular brain fea-
tures that were leveraged to distinguish the patient sub-
groups. Midcourse schizophrenia patients in subgroup 
3 with a pattern of no obvious brain alteration showed 
better cognitive function than subgroup 1 of patients 
who demonstrated widespread reductions in cortical 
and subcortical measurements. These findings suggest a 
behavioral relevance to the MR subgroups, and by in-
ference a relevance for general functional ability. MRI 
and postmortem studies of schizophrenia at the group 
level have consistently shown decreases in these cortical 
and subcortical parameters,23,43 so it is novel to demon-
strate that a substantial subgroup of patients have no 
obvious alteration in brain anatomy. The remaining pa-
tients, especially in subgroup 1, showed more widespread 
neuroanatomic abnormalities relative to healthy controls.

Patients in subgroup 1 showed widespread decreases 
of cortical surface area and thickness and subcortical 
volume. Such alterations may result from pathologically 
extended pruning processes41 or sublethal apoptotic ac-
tivity.44 Our finding of this subgroup is not novel, but now 
with the improved MR acquisitions and development of 
statistical tools for classification and subtyping, we could 
quantify the size of the subgroup and its separateness 
from other patients meeting DSM criteria for schizo-
phrenia as a global syndrome. In contrast to the general 
pattern of dystrophic changes, increased regional cortical 

Fig. 4.  Cognitive performance among three subgroups of 
patients with midcourse schizophrenia. Score of zero = mean of 
performance of healthy individuals as determined by the healthy 
group used to norm the test; BACS composite Z-scores (or 
subtests on digit sequencing/verbal fluency) (Y axis) presented 
as standard deviation (SD) for each patient in midcourse 
schizophrenia from mean performance of test norm value, using 
SD for calculations. (asterisk * represents a significant group 
difference at P < .05).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab110#supplementary-data
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thickness was seen in left rostral anterior cingulate in sub-
group 1 of FES patients but not in midcourse patients. 
That change could result from the early course of ill-
ness pathology, such as preapoptotic osmotic changes,45 
or hypertrophy of synaptic connections.46 In subgroup 
1 patients with midcourse schizophrenia, all lobes 
showed decreased alterations, especially for the thick-
ness in frontal and temporal lobes. The greater and more 
widespread pattern of deficits in the midcourse patients 
(figure 3 and Supplementary tables 2–3) could result from 
a widening expression of atrophic changes related to ill-
ness course. Specifically, patients with midcourse schizo-
phrenia were more likely to show widely reduced cortical 
thickness than patients with FES, reflected in the fact that 
8% more patients and 8% fewer patients were classified 
into subgroups 1 and 2 in midcourse than FES patients. 
This pattern may result from brain changes previously re-
ported to be associated with illness duration or antipsy-
chotic treatment.32,35,43,47–50

Patients in subgroup 2 with FES showed no signif-
icant cortical or subcortical alteration, while patients 
with midcourse schizophrenia exhibited more decrease 
gray matter volume in left hippocampus than FES. This 
pattern may result from ill duration and antipsychotic 
treatment. The moderate morphological alteration in 
midcourse schizophrenia was consistent with moderate 
cognitive deficits among the three subgroups, which sup-
port the morphological basis for cognition.

The consistency of the classification achieved via ma-
chine learning across our two patient samples not only 
provides evidence for the validity of the pattern of patient 
subgrouping, but shows that despite differences in eth-
nicity, antipsychotic treatment, and illness duration, the 
core structure of neuroanatomic features differentiating 
our three subgroups was consistent. To the best of our 
knowledge, this is the first study using neuroimaging data 
(combined cortical and subcortical gray matter features) 
and a data-driven analytic method to identify reliable 
biologically-defined subtypes of the schizophrenia syn-
drome across never-treated FES and midcourse schizo-
phrenia patients.

It is noteworthy that subgroup 1 patients in midcourse 
schizophrenia with widespread gray matter deficits 
showed greater cognitive deficits, especially in working 
memory and verbal fluency, while those who displayed no 
obvious brain alteration showed less impaired cognition. 
While showing a relation of brain atrophy to cognitive 
impairment is not surprising, it does demonstrate clinical 
relevance of the patient subgrouping and supports the 
validity of the anatomic subtyping-based classification. 
The overlap with the B-SNIP biotypes based on ERP and 
cognitive measures provides parallel validation.

There are certain limitations to our study that merit 
comment. First, given the cross-sectional design, our 
study cannot trace possible natural dynamic alterations 
of heterogeneity patterns over the course of illness. But by 

including both patients with FES prior to any treatment 
and treated patients with midcourse schizophrenia, our re-
sults suggest that the observed patterns appear to be sim-
ilar in early and midlife adults. Second, we only recruited 
schizophrenia patients and healthy subjects, so future 
studies will be needed to establish the similarity of clus-
tering patterns across the broader spectrum of psychotic 
disorders. Third, while our study is large and demonstrates 
informative clustering patterns across four discrete patient 
and control cohorts, and the relevance of drug treatment 
effects for MRI-based patient classification approaches, 
the clinical significance of our findings for prognosis and 
treatment planning remains to be established. Forth, cog-
nition information is not available for the FES patients, 
which results in the lack of direct comparison of cognition 
between early stage and midcourse of illness.

The question of whether there are neurobiologically 
discrete subgroups of schizophrenia patients is a crucial 
one for personalized medicine, for drug discovery, and for 
discovery of illness etiology. Delineated forms of illness 
within the schizophrenia syndrome, identified in clinical 
research and then mechanistically understood, could 
dramatically change drug development and the treat-
ment landscape of schizophrenia patient care. Failure to 
establish and effectively utilize such heterogeneity based 
on biomarkers independent of diagnostic behavioral fea-
tures may be an important factor in the failure to develop 
novel effective treatments for the disorder in recent dec-
ades despite the many advances in clinical neuroscience, 
as different subgroups of patients may require different 
therapeutic strategies.23,37,51–55 Here, analyzing structural 
neuroimaging data with a novel machine learning algo-
rithm,38 we demonstrate the existence of three reliable neu-
robiological subtypes irrespective of treatment and stage 
of illness. This finding represents a significant step for-
ward toward developing biologically informed classifica-
tion based on target organ abnormalities to complement 
behavioral analysis currently guiding psychiatric diag-
nostic practice. Findings such as ours may also help speed 
progress in gene and drug discovery, providing a frame-
work for personalized medicine to improve outcomes for 
patients suffering from serious mental illness.56–61
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