Skip to main content
. 2022 Jan 13;22(2):617. doi: 10.3390/s22020617

Table 2.

Considered benchmark functions for the performance analysis.

Cat. Func. Description Range
Unimodal F1 F(x)=i=1nxi2 [−100, 100]
F2 F(x)=i=0nxi+[r]i=0nxi [−10, 10]
F3 F(x)=i=1dj=1ixj2 [−100, 100]
F4 F(x)=i=1n1100xi2xi+12+1xi2 [−30, 30]
F5 F(x)=i=1nxi+0.52 [−100, 100]
F6 F(x)=i=0nixi4+random(0,1) [−128, 128]
Multimodal F7 F(x)=i=1nxisinxi [−500, 500]
F8 F(x)=20exp0.21ni=1nxi2exp1ni=1ncos2πxi+20+e [−32, 32]
F9 F(x)=πn10sinπy1+i=1n1yi12[1+10sin2πyi+1+i=1nuxi,10,100,4,whereyi=1+xi+14,uxi,a,k,mKxiamxi>a0axiaKxiamaxi [−50, 50]
F10 F(x)=0.1sin23πx1+i=1nxi121+sin23πxi+1+xn121+sin22πxn+i=1nuxi,5,100,4 [−50, 50]
F11 F(x)=1500+j=1251j+i=12xiaij1 [−65,65]
F12 F(x)=i=111aix1bi2+bix2bi2+bix3+x42 [−5, 5]
F13 F(x)=4x122.1x14+13x16+x1x24x22+4x24 [−5, 5]
F14 F(x)=x25.14π2x12+5πx162+10118πcosx1+10 [−5, 5]
F15 F(x)=i=1d/4x4i3+10x4i22+5x4i1x4i2+x4i22x4i14+10x4i3x4i4 [−4, 5]
F16 F(x)=i=14ciexpi=13aijxjpij2 [−1, 2]
F17 F(x)=i=14ciexpi=16aijxjpij2 [0, 1]
F18 F(x)=i=15XaiXaiT+ci1 [0, 1]
Hybrid F19 F(x)=x2+47sinx2+x12+47x1sinx1x2+47 [−512, 512]
F20 F(x)=sinx1cosx2exp1x12+x22π [−10, 10]
Hybrid F21 F(x)=i=15icos(i+1)x1+i×i=15icos(i+1)x2+i [−5.12, 5.12]
F22 F(x)=sinx1+x2+x1x221.5x1+2.5x2+1 [−1.5, 4]
F23 F(x)=42.1x12+x143x12+x1x2+4+4x22x22 [−3, 3]
F24 F(x)=cosx1cosx2expx1π2x2π2 [−100, 100]
F25 F(x)=ax2bx12+cx1r2+s(1t)cosx1+s [−5, 10]
F26 F(x)=1+x1+x2+121914x1+3x1214x2+6x1x2+3x22×30+2x13x221832x1+12x12+48x236x1x2+27x22 [−2, 2]
F27 F(x)=12i=1dxi416xi2+5xi [−5, 5]
F28 F(x)=sin2πw1+i=1d1wi121+10sin2πwi+1+wd121+sin22πwd,wherewi=1+xi14,foralli=1,,d [−10, 10]
F29 F(x)=100x12x22+x112+x312+90x32x42+10.1x212+x412+19.8x21x41 [−10, 10]
F30 F(x)=i=14αiexpj=13AijxjPij2,whereα=(1.0,1.2,3.0,3.2)T,A=3.010300.110353.010300.11035,P=10436891170267346994387747010918732554738157438828. [0, 1]
F31 F(x)=i=1mj=14xjCji2+βi1,wherem=10,β=110(1,2,2,4,4,6,3,7,5,5)T,C=4.01.08.06.03.02.05.08.06.07.04.01.08.06.07.09.03.01.02.03.64.01.08.06.03.02.05.08.06.07.04.01.08.06.07.09.03.01.02.03.6. [0, 10]
F32                      F(x)=i=14αiexpj=16AijxjPij2,whereα=(1.0,1.2,3.0,3.2)T,A=103173.501.780.0510170.181433.51.7101781780.05100.114,P=1041312169655691248283588623294135830737361004999123481451352228833047665040478828873257431091381. [0, 1]
F33 F(x)=i=1dsinxisin2mixi2π [0, π]