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Abstract

Objective: Photoplethysmography (PPG) waveform analysis is being increasingly investigated 

for continuous, non-invasive, and cuff-less blood pressure (BP) measurement. However, the 

efficacy of this approach and the useful features and models remain largely unclear. The objectives 
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were to develop easy-to-understand models relating PPG waveform features to BP changes (after a 

cuff calibration) and to determine their value in BP measurement accuracy.

Methods: The study data comprised finger, toe, and ear PPG waveforms, an ECG waveform, and 

reference manual cuff BP measurements from 32 human subjects (25% hypertensive) before and 

after slow breathing, mental arithmetic, cold pressor, and nitroglycerin administration. Stepwise 

linear regression was employed to create parsimonious models for predicting the intervention-

induced BP changes from popular PPG waveform features, pulse arrival time (PAT, time delay 

between ECG R-wave and PPG foot), and subject demographics. Leave-one-subject-out cross 

validation was applied to compare the BP change prediction root-mean-squared-errors (RMSEs) of 

the resulting models to reference models in which PPG waveform features were excluded.

Results: Finger b-time (PPG foot to minimum second derivative time interval) and ear “STT” 

(PPG amplitude divided by maximum derivative), when combined with PAT, reduced the systolic 

BP change prediction RMSE of reference models by 6–7% (p <0.022). Ear STT together with 

pulse width reduced the diastolic BP change prediction RMSE of the reference model by 13% 

(p=0.003).

Conclusion: The two PPG fast upstroke time intervals can offer some added value in cuff-less 

BP trending. Significance: This study offers important information towards achieving non-invasive 

and passive BP monitoring without a cuff.
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I. Introduction

PHOTOPLETHYSMOGRAPHY (PPG) is a simple yet effective technique for measuring 

pulsatile blood volume changes in small arteries. Since blood volume is related to blood 

pressure (BP), PPG waveform analysis is believed to be a potential approach for achieving 

continuous, non-invasive, and cuff-less BP measurement (typically in between periodic cuff 

measurements). PPG waveform analysis is more convenient than the pulse transit time (PTT) 

approach [1], which nominally requires two sensors for measurement. Alternatively, it can 

be combined with PTT, which is often detected via a PPG waveform, to seamlessly improve 

its accuracy.

However, unlike PTT, PPG waveform analysis for BP measurement may have little 

theoretical basis. The Kelvin-Voigt model of viscoelasticity, which is profound in small 

arteries [1], provides a simple relationship between the oscillatory components of BP and 

PPG waveforms at the same site in the frequency-domain (ΔP(ω) and ΔV (ω)) as follows:

ΔV (ω) = 1
jwη + E ΔP(ω) (1)

where E and η are the elastic modulus and coefficient of viscosity of the arterial wall [2]. 

The transfer function here is a lowpass filter with gain of 1/E and cutoff frequency of E/η. 

Natarajan et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hence, the PPG waveform is a lowpass filtered version of the BP waveform. In this way, 

the PPG waveform is embedded with BP information. However, the lowpass filter changes 

with BP variations and smooth muscle contraction, which is modulated by the brain on the 

time scale of seconds and can occur independently of BP changes [1]. So, for example, the 

PPG peak-to-peak amplitude can vary with BP or viscoelastic parameters. For this reason, 

as shown in Fig. 1, this PPG amplitude has little value in predicting BP changes during 

different physiologic interventions [3].

Nevertheless, PPG waveform analysis for cuff-less BP monitoring is being increasingly 

investigated [4]–[10] due to its unparalleled convenience and the current era of data-driven, 

machine learning. However, the accuracy of this approach, especially in terms of added 

value over demographic and other basic information or PTT, remains largely unknown. As 

a concrete example of the importance of such added value, suppose a BP prediction model 

with PPG waveform features and PTT as input yields a low BP error (say 5 mmHg) using 

unseen data. One may conclude that this model and the PPG waveform features therein are 

effective. However, suppose a “reference model” with only PTT as input yields a similar BP 

error (say 5.1 mmHg) on the same data. Now, it is clear that the PPG waveform features do 

not provide added value over PTT and are thus actually not useful at all. Hence, it is crucial 

to understand if a PPG waveform feature model provides added value (i.e., significantly 

greater BP prediction accuracy) relative to reference models that exclude PPG waveform 

features as input. Furthermore, the useful features and models relating the features to BP 

continue to be mostly unclear. Knowledge of useful features is particularly important given 

that a rigorous theory may be lacking. Finally, many of the studies have not invoked diverse 

interventions to change BP [4], [5], [8], which is crucial for assessing the more viable 

“cuff-calibrated, cuff-less” approach, or have used surgery or intensive care data [6], [9], 

which include challenging BP changes but may not be germane to interesting hypertension 

detection or control applications.

We investigated PPG waveform analysis in terms of tracking BP changes induced by a 

battery of diverse BP interventions in normotensive and hypertensive human volunteers. We 

specifically aimed to create readily interpretable models relating PPG waveform features 

to BP changes and to determine if they provided added value in BP measurement. The 

models that we reveal, with accompanying results herein, suggest that PPG fast upstroke 

time intervals can offer some added value in cuff-less measurement of BP changes.

II. Methods

We analyzed physiologic data that we previously collected from human subjects. Our 

overall approach was to apply stepwise linear regression to create models for predicting 

intervention-induced BP changes from popular PPG waveform features, PTT, and 

demographics and use leave-one-out cross validation to compare the BP change prediction 

errors of the resulting models to reference models in which PPG waveform features were 

excluded as input.
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A. Human Physiologic Data

We described the human physiologic data for study in detail previously [3] and provide 

a summary here. We performed the procedures under IRB approval (Michigan State 

University LEGACY14–694F and University of Rochester Medical Center RSRB#56366, 

2015-) and with written, informed consent from the subjects. We recorded finger, toe, 

and ear PPG waveforms, an electrocardiography (ECG) waveform, and manual cuff 

BP before and after slow breathing (SB); mental arithmetic (MA); a cold pressor test 

(CP); and, in subjects with sufficiently high BP levels (about 60% in total), sublingual 

nitroglycerin (NTG) administration. As shown in Fig. 2, these interventions increased or 

decreased systolic and diastolic BP (SP and DP) to varying extents via distinct physiologic 

mechanisms. As also indicated in the figure, we obtained cuff BP immediately prior to 

each intervention for baseline (BL) and three recovery (R1–3) measurements and usually 

obtained cuff BP twice during each intervention for up to eight intervention measurements. 

We thus had up to 12 sets of four waveforms and cuff BP measurements during up to eight 

distinct conditions per subject. We viewed the waveform segments within ±30 sec of each 

cuff BP measurement and selected a > 7 sec sub-segment for which all four waveforms 

were relatively free of artifact. If there were no such sub-segment, we excluded the entire 

measurement set from further analysis. If there were two sets of waveform sub-segments 

with minimal artifact for a condition, we excluded the set with the smaller BP change. We 

excluded entire subject records with less than five measurement sets in subjects without 

NTG and less than six measurement sets or six measurement sets without three or more 

interventions in subjects with NTG. As explained previously [3], this strict data exclusion 

criteria ensures a meaningful, apples-to-apples comparison of the BP prediction models. A 

total of 214 sets of the four clean waveform segments and reference cuff BP values from 32 

subjects (see characteristics in Results) remained for analysis. We previously analyzed these 

data to compare conventional PTTs as markers of BP and found that the best correlation by a 

significant extent was between toe pulse arrival time (PAT), which is the time delay between 

the ECG R-wave and toe PPG trough or foot, and SP (subject average r = −0.63±0.05) [3].

B. Data Analysis

We further analyzed the data to determine if incorporating PPG waveform features could 

improve the tracking of the intervention-induced BP changes. Our strategy for this data-

driven investigation was to employ methods intended for when the number of subjects is not 

high.

1) Pre-Processing: We first applied bandpass filters with cutoff frequencies of 0.5 and 

6 Hz to the finger and toe PPG waveforms and 0.5 and 9 Hz to the ear PPG waveform. We 

selected these cutoff frequencies as follows. First, for each of the three PPG waveform, we 

plotted features of the waveforms after application of filters of various cutoff frequencies 

versus the same features of the waveforms after only light filtering. We then further 

considered only those cutoff frequencies that yielded datapoints largely on the identity 

line. We finally selected the cutoff frequencies that yielded feature histograms with fewest 

outliers. In this way, the chosen cutoff frequencies represented a good trade-off between 

removing noise and retaining features.
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We detected the peaks of the PPG waveform via ECG-gating and then the waveform feet 

using the intersecting tangent method [1]. We subtracted the amplitude at the leading foot 

of each PPG waveform beat from the entire beat. We next selected consistent beats from 

each > 7 sec waveform segment as follows. For each beat in a segment, we computed the 

beat interval, peak amplitude and timing, and lagging foot amplitude. We then computed 

the median of each of these four features over all the beats followed by the normalized-

root-mean-squared-difference between the features of each of the beats and their median 

values. We finally selected the five beats with the smallest normalized-root-mean-squared-

differences.

2) Feature Extraction: We limited the candidate PPG waveform features to popular or 

promising ones. Fig. 3 shows the 31 candidate features that we considered. The amplitudes, 

timings, and areas of the PPG waveform and its first and second derivatives are perhaps the 

most widely studied [15], while “slope transit time (STT)” has been shown to be inversely 

correlated with BP during respiratory maneuvers [16]. We also detected finger, toe, and ear 

PAT as the time delay between the ECG R-wave and the PPG waveform foot as another 

waveform feature that would also require an ECG measurement. We extracted all of these 

features from each of the five beats of a segment and then took the mean of the three middle 

values for each feature. Some features (e.g., tc, td, te, tf, AmpDN, and AmpDP) were not 

always detectable. If a feature were not detected, we set its value to that of the previous 

segment in the subject for which the feature was detected. This process was always possible 

in the dataset.

3) Model Development: We sought to develop linear regression models to predict the 

BP changes relative to the first or “baseline” cuff BP measurement of each subject. We 

thus subtracted the baseline cuff BP/waveform feature value from the remaining cuff BP/

waveform feature values of each subject. We also normalized each waveform feature change 

with the baseline feature value (unless it was near zero). In addition, we allowed age, gender, 

height, weight, and the baseline cuff BP values as possible person features, which are static 

per subject. The models for mapping waveform features (w) or person features (p) to BP 

(XP with X = S for systolic and X = D for diastolic) via linear parameters (α) thus took on 

the following form:

XP i, j − XP1, j = ∑
k = 1

m
αk

wk
i, j − wk

1, j

wk
1, j or pk

j + ei, j (2)

where the superscripts i and j denote the ith value of the jth subject (e.g., a superscript of 

1,j indicates the baseline value of the jth subject); the subscript k signifies the kth feature; m 
indicates the number of features (model order); and e is the model residual error. For gender, 

we used two features to effectively define one model intercept for males and another model 

intercept for females.

We selected the features and estimated the model parameters and order using forward 

stepwise regression with an “elbow” method. We added one feature at a time to the model, 

starting with zero features and ending with six features, and selected the new feature 
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at each iteration as the one that minimized the mean square of the residual error. We 

conservatively chose six as the maximal model order, as 20–30 data points are typically 

needed to estimate one parameter and about 180 data points (see first and third paragraphs 

below) were available to estimate the BP change prediction model. In post hoc analysis, 

the results proved to be insensitive to small changes to the maximal model order. We then 

fitted two lines to the monotonically decreasing curve relating mean squared residual error 

to the model order and selected the order, and thus the final model, via the intersection of 

the two lines. We found that this empirical method to identify the curve elbow yielded more 

parsimonious models than other methods such as lasso and ridge regression.

We employed the above steps in a leave-one-out cross validation framework. We specifically 

estimated 32 models using data from all combinations of 31 of the subjects and left the 

remaining subject data for testing each model. In this way, we leveraged as much data 

as possible for training while also allowing testing on all subjects without using the same 

data for training and testing. We created separate models for the finger, toe, and ear PPG 

waveforms to predict the different changes in SP and DP and thus arrived at six PPG 

waveform feature models.

For comparison, we also created three reference models. The first model is to use the 

baseline cuff BP value as the predictor of the ensuing BP (i.e., no BP changes) in the subject 

(“baseline BP reference model”). The second model is to predict the BP changes from 

only the person features using the stepwise regression, elbow, and leave-one-out methods 

(“demographic reference model”). The third model is to predict the BP changes from only 

1/PAT, which correlated slightly better than PAT to BP here, for each PPG waveform using 

regression and leave-one-out methods (“PAT reference model”).

4) Model Evaluation: There were a total of M=182 BP changes between each condition 

and baseline of each of the N=32 subjects (i.e., 214 total measurements – 32 baseline 

measurements). We evaluated the 182 BP change predictions of each model against 

the reference cuff measurements from the 32 leave-one-out test subjects using standard 

correlation and Bland-Altman analyses. We computed the Bland-Altman bias and precision 

errors (μ and σ) via the basic sample mean and SD of the errors, as mixed effects modeling 

to account for the repeated measures per subject [17] hardly impacted the σ. To conveniently 

quantify the overall error, we used the root-mean-squared-error RMSE = (μ2 + σ2

We used the RMSE metric to perform statistical comparisons of two models (i.e., PPG 

waveform feature model versus a reference model). We applied non-parametric cluster 

bootstrapping to calculate confidence intervals and make the comparisons [18]. We took 

10,000 random samples of the 32 subjects with replacement of the subjects (i.e., each time 

a subject is drawn from the cohort and then documented, it is returned to the cohort before 

the next subject is drawn). The number of subjects in each sample was 32, and we included 

all BP change errors from a subject per sample. For each sample, we computed the RMSE 

as described above for each model and the difference between the RMSEs of the two models 

for comparison (model 1 – model 2). We calculated both 95% CIs of each RMSE and X% 

CIs of each RMSE difference from the corresponding distribution of 10,000 values via a 

standard percentile bootstrap. If the upper CI for the RMSE difference were less than zero, 
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then model 1 would be considered superior to model 2. Since we made six comparisons, 

we applied a Holm’s correction [19] such that a two-sided p < 0.05/(6 + 1 − k), where k 
is the comparison with the kth lowest p-value (i.e., X = 99.17 for k = 1), was considered 

statistically significant.

III. Results

A total of 214 PPG-BP measurement sets with minimal artifact from 32 subjects (50% 

female; 52 (17) (mean (SD)) years of age; 166 (10) cm in height; 89 (34) kg in weight; 25% 

with treated hypertension; 31% with smoking history; and 9% with LDL cholesterol >=190 

mg/dL) formed the study data. The baseline SP and DP (mean±SE) were 121±3 and 79±2 

mmHg (N=32), respectively.

Table I shows the results of the PPG waveform feature models versus reference models 

in leave-one-subject-out prediction of the intervention-induced BP changes relative to 

the subject baseline values (M=182, i.e., 214 total measurements – 32 subject baseline 

measurements). This table also presents those models that proved to be useful. Each of the 

useful models was stable across the 32 leave-one-out training sets in the sense that 97–100% 

of the 32 models yielded the same features, and the models displayed in the table are 

representative ones resulting from training on all 32 subject datasets.

The baseline BP reference model, which simply employs the baseline cuff BP of each 

subject to predict the ensuing BP, yielded RMSEs of 10.9 mmHg for SP and 6.5 mmHg for 

DP. While these error levels are near or within the regulatory limits of 5 and 8 mmHg bias 

and precision errors [20], the BP change prediction models must yield lower errors to offer 

any value. The demographic reference model, which includes subject age, gender, height, 

weight, and the baseline cuff SP and DP as candidate features, provided no such value. The 

PAT reference models, which include the time delay as the sole feature, were helpful in 

predicting changes in SP but not DP. As shown previously [3], toe PAT was clearly the best 

in tracking the SP changes.

Three of the six PPG waveform feature models afforded added value over the reference 

models. The finger and ear PPG waveform feature models for predicting SP changes 

included 1/PAT as the primary feature and the b-time (time to the minimum second 

derivative of the PPG waveform) or STT (amplitude divided by the maximum derivative 

of the PPG waveform) as a secondary feature, all with positive regression parameters. These 

models yielded RMSEs of 9.5 mmHg (p < 0.022 versus baseline BP and finger and ear 

PAT reference models). The ear PPG waveform feature model for predicting DP changes 

included STT as the primary feature with positive regression parameter and PW (pulse 

width) as a secondary feature with negative regression parameter. This model produced an 

RMSE of 5.7 mmHg (p = 0.003 versus baseline BP reference model). Note that the toe PPG 

waveform feature model for predicting SP changes included only 1/PAT as input. However, 

this model yielded an RMSE of 9.1 mmHg (p = 0.004 versus baseline BP reference model). 

Fig. 4 presents in full detail the four PPG waveform feature models that showed added value 

in predicting BP changes.
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Fig. 5 shows correlation and Bland-Altman plots of the BP change predictions of the four 

useful PPG waveform feature models versus the reference cuff BP measurements (M=182). 

These results allow visualization of the key numerical results in Table I and indicate that the 

correlation coefficients between the predicted and reference BP changes were 0.39–0.49.

In sum, the b-time and STT, which are time intervals of the fast upstroke, of ear and finger 

but not toe PPG waveforms were the only useful features in tracking changes in BP. For 

SP, these PPG fast upstroke time intervals were helpful in conjunction with PAT but not as 

standalone features. For DP, STT of the ear PPG waveform was useful by itself. The PPG 

fast upstroke time intervals were positively rather than negatively related to the BP changes. 

They reduced the BP change RMSEs of the reference models by 6–13%.

IV. Discussion

PPG waveform analysis is being increasingly investigated for continuous, non-invasive, and 

cuff-less BP monitoring [4]–[10]. However, this data-driven approach is not well understood 

in terms of both efficacy and useful features and models. In this study, we sought to develop 

easy-to-understand models relating PPG waveform features to BP changes (after a single 

cuff calibration) and to determine conclusively whether they provide added value or not 

in BP measurement accuracy compared to reference models that exclude PPG waveform 

features as input.

We analyzed finger, toe, and ear PPG waveforms along with ECG waveforms and reference 

manual cuff BP measurements from 32 normotensive and hypertensive volunteers during 

a battery of challenging interventions that changed SP and DP differently (see Figs. 1 and 

2). These data thus allowed us to create six PPG waveform feature models for predicting 

intervention-induced BP changes corresponding to the three PPG waveforms and two BP 

levels.

We chose analysis tools to create models that are readily interpretable and effective when the 

subject number is not high. More specifically, we limited the candidate features to popular 

or promising PPG waveform features (see Fig. 3) plus subject demographic information and 

PAT (time delay between ECG R-wave and PPG foot); applied stepwise linear regression 

for forward selection of the features and estimation of the model parameters; used a 

parsimonious elbow method for determining the number of features; and employed leave-

one-subject-out cross validation to leverage the data as much as possible for independent 

training and testing. We also verified our approach in terms of robustness to user-selected 

variables and overfitting relative to other tools.

We assessed the BP changes relative to the subject baseline BP predicted by the PPG 

waveform feature models against the reference cuff BP measurements using standard Bland-

Altman and correlation analysis. Crucially, to ascertain added value, we compared the BP 

change RMSEs of these models to reference models without PPG waveform features as 

input (e.g., demographic or PAT models). We performed these comparisons statistically via 

cluster bootstrapping while reducing the significance level for multiple comparisons.
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Four PPG waveform feature models showed added value in predicting BP changes (see Fig. 

4). These models were stable across the 32 leave-one-out training datasets. Note that the 

toe PPG waveform feature model included only PAT as input. The other three models each 

included a PPG waveform feature and reduced the RMSE of the reference models by about 

10% (see Table I). The correlations between the predicted BP changes of the four models 

and the reference measurements were about 0.4–0.5 (see Fig. 5).

Hence, almost all of the 31 candidate features for study were of no value in tracking the BP 

changes despite their popularity [15]. In fact, a number of these features were often not well 

detected or detectable at all (e.g., tc, td, te, tf, AmpDN, and AmpDP), which surely reduced 

their utility. This limitation of the considered features has been noted before [15], [21]. Only 

the b-time (tb) and STT, which were generally well defined and reflect the fast upstroke time 

interval of the PPG waveform, showed value in BP measurement.

However, the PPG fast upstroke time intervals were positively related to the BP changes. 

This finding opposes conventional thinking that an increase in cardiac contractility or 

preload (via, e.g., exercise) would increase BP while reducing the PPG upstroke interval to 

create a negative relationship. STT was also introduced as a single-site measurement of PTT 

and shown to be positively related to PTT and thus inversely related to BP [16]. The positive 

relationship that we found may be due to small artery viscoelasticity. As we previously 

found [22], when BP increases, the cutoff frequency of the viscoelastic lowpass filter may 

decrease such that the PPG upstroke time interval increases (see Eq. (1) in Introduction). 

This viscoelastic mechanism could be most important over a range of BP interventions, 

especially for fast upstroke time intervals in which the lowpass filtering effect would be 

more pronounced. Note that, even if the PPG fast upstroke time interval decreases during 

exercise, the models in Fig. 4 may still correctly predict BP increases via the other feature in 

these models.

In fact, a PPG fast upstroke time interval was only of added value in predicting changes 

in SP when combined with PAT. Fig. 6 shows the subject average trends of the reference 

SP and DP changes and of each feature, scaled by its associated model parameter, in 

each of the four models over the interventions. The so-calibrated finger and ear 1/PAT 

trends appear to track the SP trend well except for the nitroglycerin (NTG) intervention, 

and the calibrated PPG fast upstroke time interval seems to be of most value for this 

intervention without significantly compromising the other interventions. The steep decline in 

the PPG fast upstroke time interval after NTG may be due to the reduction in SP as well as 

smooth muscle relaxation, which could both conceivably increase the viscoelastic lowpass 

filter cutoff frequency. However, PPG waveform features alone did add value in predicting 

changes in DP. The calibrated PW (pulse width) appears to help STT in tracking of the DP 

trend during a few interventions including mental arithmetic (MA) and NTG, which both 

increased the heart rate. For SP or DP, Fig. 6 along with Fig. 4 indicate that STT, which 

again stands for “slope transit time”, is not negatively related to BP in general and may thus 

benefit from a name change.

However, the PPG fast upstroke time interval is not always of added value and the precise 

definition matters. Fig. 7 illustrates typical toe, ear, and finger PPG waveform beats over a 
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segment and their first and second derivatives. The toe PPG waveform tended to be noisier 

than the other two PPG waveforms, so the fast upstroke time intervals were more variable 

and thus not selected for the toe PPG waveform feature model. The ear PPG waveform 

tended to have a wider peak region such that the b-time was more variable than STT, and 

the latter feature was selected for the ear PPG waveform feature model. Both the b-time 

and STT were relatively consistent for the finger PPG waveform, but the b-time happened 

to provide more value. Hence, PPG waveform analysis for tracking BP changes depends 

importantly on the measurement site. While back-of-the-wrist PPG waveforms are popular 

due to their convenience in watch form factors [5], these waveforms are notoriously poor in 

quality. It is thus difficult to imagine that they could have yielded more or as useful features 

for tracking BP changes in this study.

It is worth reiterating that static person features such as age and gender were also considered 

but did not appear in the final models (see Fig. 4). While BP depends on age and gender 

[23], we studied the more realistic prediction of BP changes after a cuff calibration rather 

than prediction of absolute BP. Hence, demographic information may have been less 

important here.

In this laboratory investigation, the PPG sensor contact pressure (the external pressure 

applied by the sensor on the skin) was likely maintained throughout the BP changes. 

However, in practice, PPG sensor contact pressure can vary with, for example, replacement 

of a fingertip on a smartphone PPG sensor for on-demand measurement or putting a 

smartwatch with PPG sensor on the wrist each day for continuous measurement. We 

previously showed that the maximum change in finger PAT over a physiologic range of 

finger PPG sensor contact pressures (30–80 mmHg) was 22±2 ms despite no change in BP 

in 17 healthy subjects [22]. We applied the finger PPG waveform feature model developed 

in this study (see Fig. 4) to the data collected in our previous study [22] to gain some 

quantitative understanding of the impact of PPG sensor contact pressure variations on 

PPG waveform analysis for BP measurement. We found that the maximum change in SP 

predicted by the finger PPG waveform feature model over the physiologic contact pressure 

range was 12.0±1.7 mmHg. For comparison, the maximum predicted SP change of the 

finger PAT reference model built in this study (see Table I) was 7.2±0.7 mmHg. Hence, 

as expected, PPG waveform analysis is significantly more impacted by PPG sensor contact 

pressure variations than PAT (67% here). Since the regulatory bias and precision error 

limits are again 5 and 8 mmHg [20], these additional findings underscore the importance of 

controlling for PPG sensor contact pressure when applying PPG waveform analysis for BP 

tracking in practice.

A strength of this study is the use of challenging interventions to change BP in subjects 

relevant to hypertension applications. At the same time, these interventions, especially NTG, 

are not simple to employ and limited the number of subjects for study. As a result, we had to 

confine our analysis tools and could not explore more exhaustive candidate feature sets and 

nonlinear models. Including more features and nonlinear combinations of features would 

result in overfitting here and thus false alarms in the selected features. While we also could 

not investigate calibration-free prediction of BP from PPG waveforms, this approach is far 

less viable based on first principles. Another limitation of this study is that we did not record 
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the mean component of the PPG waveforms. Normalizing the oscillatory component by the 

mean component could improve the value of features involving the PPG amplitude (but not 

PPG time intervals) by mitigating the variability in environmental conditions (which were 

largely controlled in this study) or skin pigmentation. However, such normalization would 

likely not have helped improve the PPG peak-to-peak amplitude in tracking the BP changes 

here (see Fig. 1). A third limitation is that the pre-filtering of the PPG waveforms could have 

adversely impacted the utility of the derivative-based features studied herein. However, such 

filtering was necessary, as differentiation amplifies noise, and our filter selection process 

was good enough to yield a couple of useful features from the first and second derivatives.

V. Conclusion

We have explicitly presented easy-to-understand models to relate PPG waveform features to 

intervention-induced BP changes in human subjects and have clearly shown that they can 

afford some added value in BP measurement accuracy over reference models that exclude 

PPG waveform features as input. Future investigations should test the generalizability of 

these PPG waveform feature models, especially the PPG fast upstroke intervals therein, as 

well as create extensive and relevant training datasets to more fully explore the value of PPG 

waveform analysis in cuff-less BP measurement.
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Fig. 1. 
The peak-to-peak amplitude of the photoplethysmography (PPG) waveform does not track 

intervention-induced blood pressure (BP) changes [3]. SB is slow breathing; MA, mental 

arithmetic; CP, cold pressor; and NTG, nitroglycerin. Bars are mean±SE.
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Fig. 2. 
A battery of challenging interventions was employed to change BP differently via distinct 

physiologic mechanisms according to the indicated timeline [11]–[14]. SP and DP are 

systolic and diastolic BP.
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Fig. 3. 
A total of 31 popular or promising PPG waveform features [15], [16] were considered 

as candidates for predicting the intervention-induced BP changes. Subject demographic 

information and pulse arrival time (PAT, the time delay between the R-wave of the ECG 

waveform and the leading foot of the PPG waveform) were also possible features.
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Fig. 4. 
The PPG waveform feature models that provided added value in predicting BP changes. 

The b-time and STT, which are PPG fast upstroke time intervals (see Fig. 3 for definitions), 

reduced the BP change root-mean-squared-error (RMSE) relative to reference models not 

including PPG waveform features as input by about 10% (see Table I). The superscript i is 

the ith measurement; i=1, baseline measurement for cuff calibration.
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Fig. 5. 
Correlation and Bland-Altman plots of BP changes predicted by the PPG waveform feature 

models that offered added value (see Table I) versus the reference cuff BP measurements. M 

= 182 measurements from N = 32 subjects. The dashed line in the correlation plots is the 

best-fit line; r, correlation coefficient; μ and σ bias and precision errors.
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Fig. 6. 
Subject average trends of reference cuff BP changes and predicted BP changes with the 

models shown in Fig. 5 over the interventions shown in Fig. 2. Each feature in each model 

is also shown after scaling by its model parameter to yield the component of BP in units of 

mmHg predicted by that feature. These trends help explain how the PPG fast upstroke time 

intervals add value to BP measurement accuracy. Values are mean±SE.
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Fig. 7. 
Example of toe, ear, and finger PPG waveform beats from an intervention indicating the 

typical extent of variability of the fast upstroke time intervals. This example helps explain 

why measurement site and precise definition of the fast upstroke time interval made a 

difference.
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