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ABSTRACT
The well-established Shine-Dalgarno model suggests that translation initiation in bacteria is regulated 
via base-pairing between ribosomal RNA (rRNA) and mRNA. We used novel computational analyses and 
modelling of 823 bacterial genomes coupled with experiments to demonstrate that rRNA-mRNA inter
actions are diverse and regulate all translation steps from pre-initiation to termination. Previous research 
has reported the significant influence of rRNA-mRNA interactions, mainly in the initiation phase of 
translation. The results reported in this paper suggest that, in addition to the rRNA-mRNA interactions 
near the start codon that trigger initiation in bacteria, rRNA-mRNA interactions affect all sub-stages of 
the translation process (pre-initiation, initiation, elongation, termination). As these interactions dictate 
translation efficiency, they serve as an evolutionary driving force for shaping transcripts in bacteria while 
considering trade-offs between the effects of different interactions across different transcript regions on 
translation efficacy and efficiency. We observed selection for strong interactions in regions where such 
interactions are likely to enhance initiation, regulate early elongation, and ensure translation termination 
fidelity. We discovered selection against strong interactions and for intermediate interactions in coding 
regions and presented evidence that these patterns maximize elongation efficiency while also enhan
cing initiation. These finding are relevant to all biomedical disciplines due to the centrality of the 
translation process and the effect of rRNA-mRNA interactions on transcript evolution.
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Introduction

The Shine-Dalgarno (SD) sequence or ribosome binding site 
(RBS) region, which is located approximately 8–10 nucleo
tides upstream of the start codon in prokaryotic mRNA [1] 
[2], is known to be involved in prokaryotic translation initia
tion via base-pairing to a complementary sequence in the 16S 
rRNA component of the small ribosomal subunit – theanti- 
Shine-Dalgarno (aSD) sequence [1,2–4].

Recent studies have suggested that sequences (motifs) 
within the coding region that interact with the aSD, similarly 
to the SD, can slow down or pause translation elongation in 
several bacteria species [5,6,7]. Thus, it was suggested that 
such sequences in the coding region decrease the overall 
translation rate and can generally be considered deleterious. 
Other studies have suggested that selection against internal 
SD-like sequences that promote rRNA-mRNA interactions 
can act against codons that tend to compose such motifs [8,9].

Here, based on a comprehensive analysis of 823 prokaryo
tic genomes investigating all possible positions across all tran
scripts (i.e. 2,896,245 transcripts), we provide a high- 
resolution model of rRNA-mRNA interactions during trans
lation, which suggests that the current knowledge about the 
function of rRNA-mRNA interactions is just the ‘tip of the 
iceberg’: in most of the analysed bacteria, rRNA-mRNA inter
actions seem to be involved in all stages and sub-stages of 
translation and not just in the initiation phase as was known 

to date (Figure S1). Protein abundance is known to be affected 
by various gene expression steps such as transcription, trans
lation, mRNA degradation, and protein degradation. In this 
study we focus on the translation step which is known to 
consume most of the energy in the cell [10,11] and suggest 
that all its sub-steps are affected by rRNA-mRNA interac
tions. Thus, rRNA-mRNA interactions affect how evolution 
shapes the nucleotide composition along the entire transcript 
to optimize translation.

Results

To understand the interactions between the 16S rRNA and 
mRNAs across the bacterial kingdom, we developed a high- 
resolution computational model to predict rRNA-mRNA 
interactions’ strength, where low hybridization free energy 
indicates a stronger interaction (Material and Methods sec
tion). We used our model to analyse the entire transcriptome 
of 823 bacterial species, investigating all possible positions 
across all transcripts (i.e. 2,896,245 transcripts). To detect 
evolutionary selection patterns, we performed various statis
tical tests to compare the distribution of rRNA-mRNA inter
action strength in each position along the transcriptome of 
each genome to the one expected by a null model. We 
reported positions with significant difference from the null 
model. We aimed to show that the probability of randomly 
getting a certain strength of interaction is very low, given the
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null model, and computed a p-value for this (significance 
level). The null model preserves the codon frequency, amino 
acid content, and GC content in each transcript (Material and 
Methods section). Therefore, the deviations towards extreme 
interactions that maintain all our statistical questions suggest 
that the transcripts are under selection. It is important to 
mention that our analysis is at a genome-scale level, which 
means that many genes contribute to each position’s signifi
cant level.

For each position along the transcriptome, we performed 
three statistical tests to answer the following questions:

1) Does the nucleotide (nt) sequences in that position tend 
to produce stronger rRNA-mRNA interactions than expected 
by the null model?

A positive answer to this question supports the conjecture 
that strong interactions in this position in the transcript tend 
to improve the translation.

2) Does the nt sequences in that position tend to produce 
weaker rRNA-mRNA interactions than expected by the null 
model?

A positive answer to this question supports the conjecture 
that weak interactions in the position in the transcript tend to 
improve the translation.

3) Does the nt sequences in that position tend to produce 
intermediate (moderate strength: neither very strong nor very 
weak) rRNA-mRNA interactions in comparison to what is 
expected by a null model? (see Figure 1(a) and Material and 
Methods section).

A positive answer to this question supports the conjecture 
that intermediate interactions in the position in the transcript 
tend to improve the translation.

Significant positions related to all the tests above were 
reported based on a p-value threshold of 0.05. Since we 
performed multiple statistical tests for each base-pair to deal 
with multiple hypothesis testing issues, we performed the 
same analysis on the null model genomes to estimate the 
false discovery rate (FDR) (Figure S2). We found it to be a 
few percentages in all the reported results. The different 
definitions of the statistical tests appear in Figure 1(a) and 
Figure 1(b).

We report the following observed general tendencies of 
sub-sequences within different transcript regions to produce 
different strength interactions with the 16S rRNA: Strong 
interactions at the beginning and end of a transcript, 
Intermediate and Weak interactions at the middle of the 
transcript.

Translation initiation and early translation elongation 
are regulated by selection for strong interactions at the 
5ʹend

First, we analysed the 5ʹUTRs of 551 bacteria with aSD (anti- 
Shine Dalgarno) sequence in the rRNA. It was suggested that 
translation initiation in prokaryotes is initiated by hybridiza
tion of the 16S rRNA to the mRNA [2]. The 16S rRNA binds 
to the 5ʹUTR near and upstream of the START codon [4], as 
depicted in Figure 1(d). Indeed, as can be seen in Figure 1(c) 
(brown box) in almost all of the analysed bacteria, there is a 
significant signal of selection for strong rRNA-mRNA 

interactions at positions −8 through −17 relative to the 
START codon, this result is in agreement with the Shine- 
Dalgarno model [1] [2].

The second signal of selection for strong rRNA-mRNA 
interactions appears in the last nucleotide of the 5ʹUTR and 
the first five nucleotides of the coding sequence (Figure 1(c), 
blue box). Since the elongating ribosome is positioned around 
11 nucleotides downstream of the position its rRNA interacts 
with the mRNA [12], these rRNA-mRNA interactions are 
likely related to slowing down the early elongation phase of 
the ribosome.

It has been suggested that at the beginning of the coding 
region, various features slow down the early stages of transla
tion elongation to improve organism fitness, e.g. via optimiz
ing the ribosomal allocation and chaperon recruitment 
(Figure 1(e))[13,14]. This second novel signal is likely a 
mechanism of such regulation. Both of the reported signals 
above occur in 89% of the analysed bacteria.

Comparing highly and lowly expressed genes in E. coli 
(Figure 1(f)) reveals that both signals are stronger in the 
highly expressed genes, which are under stronger selection 
to optimize translation. The difference between the Z-scores 
of highly and lowly expressed genes in the two reported signal 
regions was highly significant (nucleotides −8 through −17 in 
the 5ʹUTR: Wilcoxon rank-sum test p = 7.9∙10−5; last nucleo
tide of the 5ʹUTR and the first five nucleotides of the coding 
sequence: Wilcoxon rank-sum test p = 9.3∙10−4).

Selection against strong rRNA-mRNA interactions in the 
coding regions that prevent the slowing down of 
translation elongation

Ribo-seq analyses in E. coli have indicated that strong inter
actions between the 16S rRNA and the mRNA can lead to 
pauses during translation elongation and hindering transla
tion [5–7,15] (Figure 2(d)). Avoiding such strong rRNA- 
mRNA interactions in the coding region should allow the 
ribosome to flow efficiently during translation elongation. 
The deleterious effects of such strong rRNA-mRNA interac
tion sequences may also be due to their role in encouraging 
internal translation initiation, which would create truncated 
and frame-shifted protein products. Hockenberry et al. [9] 
found support for this claim by observing that the occurrence 
of AUG start codons occurrence is significantly depleted 
downstream of existing strong rRNA-mRNA interaction 
sequences in E. coli.

It is important to mention that various studies have 
inferred the typical distance between the position of the aSD- 
SD interaction and the ribosomal P-site during elongation 
found it to be around 8–12 nucleotides as in the initiation 
phase [1,3,4,16–18].

Our analysis reveals evidence of significant selection 
against strong rRNA-mRNA interactions in the coding region 
(Figure 2(a)). In 55% of the bacteria analysed, at least 50% of 
the positions in the first 400 nucleotides of the coding region 
exhibit a signal of significant selection against strong rRNA- 
mRNA interactions. Importantly, this selection was also 
observed away from positions upstream of a nearby AUG, 
suggesting that such selection is also related to elongation and
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not just to avoiding internal translation initiation (Figure S3). 
Our findings agree with Yang et al [15]., who showed deple
tion in internal-SD-like sequences in most species analysed 
(without a control for the positions that are close to an AUG). 
However, this study provides this insight at a much higher 
resolution: Yang et al. examined the occurrence of such 
sequences over the total genome, whereas we performed a 
per-position comparison in each genome.

We found evidence for selection against strong rRNA- 
mRNA interactions in the coding region throughout the bac
teria phyla analysed, except for in cyanobacteria and gram- 
positive bacteria, which seem to exhibit selection for strong 

rRNA-mRNA interactions (Figure 2(a)). It has been hypothe
sized that interactions between rRNA and mRNA are weaker 
in cyanobacteria as 16S ribosomal RNA is folded so that 
subsequences that usually interact with the mRNA are situ
ated within the RNA structure [19] [20]. Thus, in these 
organisms, it is to be expected that rRNA-mRNA interactions 
are less probable, resulting in lower selection pressure to 
eliminate sub-sequences that can interact with the rRNA in 
the coding region. A similar trend can be seen in the 3ʹUTR of 
genes (Figure 2(c)). From our additional analysis, we postulate 
that similar to cyanobacteria, gram-positive bacteria also have 
rRNA structures that result in less efficient rRNA-mRNA

Figure 1. Prediction of rRNA-mRNA interaction strength and selection for or against strong rRNA-mRNA interactions at the 5ʹUTR and at the beginning of 
the coding region. (a) The three statistical tests to detect evolutionary selection for different rRNA-mRNA interaction strengths (see Material and Methods section). 1. 
Enrichment of sub-sequences with weak rRNA-mRNA interactions (higher rRNA-mRNA interaction values, i.e. right tail of the distribution); 2. Enrichment of sub- 
sequences with intermediate rRNA-mRNA interactions (not weak and not strong rRNA-mRNA interaction values), and 3. Enrichment of sub-sequences with strong 
rRNA-mRNA interactions (lower rRNA-mRNA interaction values, i.e. the left tail of the distribution). We examined weak, intermediate, and strong rRNA-mRNA 
interaction strengths separately. In each case, we tested if their number or mean value was significantly higher than expected by the null mode rRNA-mRNA 
interaction values distribution. (b) Explanation of the statistical questions. The statistical questions we asked are not complementary to each other. (c) Results of the 
test for selection of strong interactions in the 5ʹUTR and first 20 nucleotides of the coding region. Each row represents a bacterium, rows are clustered based on 
phyla, and each column is a position in the transcripts of the analysed organisms. Red and green indicate a position with significant selection for and against strong 
rRNA-mRNA interaction compared to the null model, respectively. Black indicates a position with no significant selection (Material and Methods section). The second 
column from the right: a black pixel represents a bacterium. The number of positions with significant selection for strong interactions was significantly higher than 
the null model in the 5ʹUTR. Rightmost column: a blue pixel represents a bacterium for which the number of significant positions with selection for strong 
interactions was significantly higher than the null model in the last nucleotide of the 5ʹUTR and the first five nucleotides of the coding region. (d) An illustration of 
the way strong rRNA-mRNA interactions affect translation initiation: The rRNA-mRNA interactions upstream of the start codon initiate translation by aligning the 
small subunit of the ribosome to the canonical start codon. (e) An illustration of the suggested model: strong interactions at the first elongation steps slow down the 
ribosome movement. (f) Z-scores for rRNA-mRNA interaction strengths at the last 20 nucleotides of the 5ʹUTR and first 20 nucleotides of the coding regions in highly 
and lowly expressed E. coli genes. Lower/higher Z-scores indicate selection for/against strong rRNA-mRNA interactions, respectively, in comparison to what is 
expected by the null model. Highly and lowly expressed genes were selected according to protein abundance. Insets: two bar graphs of the Z-scores in highly and 
lowly expressed genes in the two regions of the reported signals.
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interactions (Figure S4). It is possible to assume that, since 
there are evidences that gram-positive bacteria have photo
synthetic ancestry as cyanobacteria [21].

It is known that highly expressed genes tend to be 
under stronger selection pressure for aspects related to 
codon usage bias [22–24] since a mutation that improves 
translation cost is expected to have higher effect on fitness 
when it occurs in highly expressed gene with abundant 
mRNA molecules that are translated by many ribosomes. 
Thus, we expect to see stronger selection against strong 
rRNA-mRNA interactions (that improve translation elon
gation rate) in the coding regions of highly expressed 
genes in comparison to lowly expressed genes. Indeed, 

this is the pattern that was observed (Wilcoxon rank- 
sum test p = 1.5∙10-30; Figure 2(b)). In addition, as can 
be seen in Figure 2(e), at the beginning of the coding 
region (5–25 nucleotides), there is a significantly increased 
selection against strong and intermediate rRNA–mRNA 
interactions (typical p-value 0.0097). The presence of sub- 
sequences that interact in a strong/intermediate manner 
near the beginning of the coding region is probably more 
deleterious (relative to weak interactions) as it might pro
mote initiation from erroneous positions with higher 
probability (see illustration in Figure 2(f)); indeed, similar 
signals related to eukaryotic and prokaryotic initiation 
were reported [8,25].

Figure 2. Selection for and against strong rRNA-mRNA interactions in the coding and 3ʹUTR regions. (a) The positions with selection for or against strong 
rRNA-mRNA interaction in the first 400 nt of coding regions. Each row represents a bacterium, the rows clustered by phyla, and each column is a position in the 
transcripts of the analysed organisms. Red/green indicates a position with significant selection for/against strong rRNA-mRNA interactions compared to the null 
model, respectively (Materials and Methods section). Black indicates positions with no significant selection. Rightmost column: black represents bacteria for which the 
number of positions with significant selection against strong interactions was significantly higher than the null model. (b) Z-score for rRNA-mRNA interaction 
strength at the first 400 nucleotides of the coding regions in highly and lowly expressed genes in E. coli. Lower/higher Z-scores mean stronger/weaker rRNA-mRNA 
interactions than the null model, respectively. The bold black/red lines represent a 40-nucleotide moving average in highly/lowly expressed genes, respectively. (c) 
Positions with selection for or against strong rRNA-mRNA interaction strength in the 3ʹ UTR. Each row represents a bacterium. The rows are clustered by phyla, and 
each column is a position in the bacteria’s transcript. Red/green indicates a position with significant selection for/against strong rRNA-mRNA interactions relative to 
the null model, respectively (Materials and Methods section). Black indicates position with no significant selection. Rightmost column: black represents bacteria for 
which the number of significant positions with selection against strong interactions is significantly higher than in the null model. (d) The effect of strong rRNA-mRNA 
interactions in the coding region on translation elongation: such interactions can slow down ribosome movement and retard translation. (e) Positions with significant 
strong and intermediate rRNA-mRNA interaction distribution in the first 100 nt of the coding region. Each row represents a bacterium, the rows are clustered by 
phyla, and each column is a transcript position. Red/green indicates a position with significant selection for/against strong and intermediate rRNA-mRNA interactions 
compared to the null model, respectively (Materials and Methods section). Black indicates position with no significant selection. Bars at the right of the plot show: for 
each bacterium, we calculated in a sliding window of 40 nucleotides the number of positions with selection against strong and intermediate interactions. The bars 
represent the average number of windows at the beginning of the coding region that had more selection against strong and intermediate interactions than the rest 
of the transcript, averaged by phylum. Lines extending from bars represent standard deviations (the signal’s periodicity is related to the genetic code). (f) An 
illustration of our model: strong and intermediate interactions at the first 25 nucleotides can be deleterious and can promote initiation from erroneous positions.
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Selection for strong rRNA-mRNA interactions at the end 
of the coding sequences to improve the fidelity of 
translation termination
For 82% of the analysed bacterial species, there is a selection 
for strong rRNA-mRNA interactions in 50% of the positions 
at the last 20 nucleotides of the coding region, (Figure 3(a)). It 
is likely that this constitutes a mechanism for slowing ribo
some movement when approaching the stop codon and serves 
to ensure efficient and accurate termination and prevent 
translation read-through [26] (Figure 3(f)). Researchers have 
suggested that this selection may have the function of assisting 
initiation of overlapping or nearby downstream genes in 
operons [8]; however, we universally observed this 

phenomenon, across all genes and bacteria, including the 
last genes in an operon which are not closely followed by 
other genes (Figure S5).

It has previously been found that when the rRNA binds to 
the mRNA, the ribosome is generally decoding a codon 
located approximately 11nt downstream of the binding site 
[5]. To validate this, we inferred the positions with selection 
for the strongest interactions. We identified those with mini
mum rRNA-mRNA interaction Z-scores within the last 20nt 
of the coding region in most analysed bacteria (Material and 
Methods section). We discovered that the strongest and most 
significant positions across all bacteria are indeed (−9) 
through (−12) relative to the STOP codon (Figure 3(b,c)).

Figure 3. Selection for/against strong rRNA-mRNA interactions at the end of the coding region. (a) Selection for or against strong rRNA-mRNA interaction in 
the last 400 nt of the coding regions. Each row represents a bacterium, rows are clustered by phyla, and each column is a position in the bacterial transcript. Red/ 
green indicates positions with significant selection for/against strong rRNA-mRNA interaction compared to the null model, respectively (Materials and Methods 
section). Black indicates positions with no significant selection. Rightmost column: black pixels represent bacteria where the number of significant positions with 
selection for strong interactions was significantly higher than the null model. (b) The number of bacteria with significant selection for strong rRNA-mRNA interactions 
in each of the last 20 nt of the coding region. (c) Distribution of the position with the lowest rRNA-mRNA interaction Z-score, indicating the strongest rRNA-mRNA 
interaction, in the last 20 nt of the coding region among the analysed bacteria. (d) Mean of the lowest Z-score for rRNA-mRNA interaction strength among the last 20 
nucleotides of the coding region for groups of genes classified according to gene expression levels. (e) Ribo-seq analysis: average Ribo-seq read count distribution at 
the beginning of the 3ʹUTR for genes with strong (grey bars) vs. weak (orange bars) rRNA-mRNA interactions at the end of the coding sequence (Material and 
Methods section). (f) An illustration of our model: strong interactions at the end of the coding region enhance the accurate recognition of the stop codon and aid in 
translation termination. (g) The experiment construct, an RFP gene connected to a GFP gene. We tested the effect of different rRNA-mRNA interaction strengths in 
the last 35 nt of the RFP gene by creating variants with different folding in the last 40 nt. (h) Bar graph of values proportional to GFP/RFP fluorescence levels in the 
nine variants (see Material and Methods section) grouped according to their local folding energies in the log phase.
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This supports our hypothesis that rRNA-mRNA interactions 
indeed function to halt the ribosome on the STOP codon and 
not to initiate the next open reading frame in the operon.

We examined the relationship between the strength of 
selection for strong interaction in the last 20nt of coding 
regions with different levels of gene expression and found it 
to be convex: such selection is stronger for genes with 
intermediate expression and weaker for both lowly- and 
highly expressed genes (Figure 3(d)). We consider that the 
weaker selection in lowly-expressed genes may be due to 
lower selection pressure on the gene in general [27]. 
Conversely, the weaker signal in highly-expressed genes 
may be due to stronger selection on translation elongation 
and termination rates: the ribosome density in these genes 
is higher [13], and if a ribosome is stalled to promote 
accurate termination, it may cause ribosome queuing at 
the 3ʹ-end, resulting in inefficient ribosomal allocation. 
Highly expressed genes may have other mechanisms for 
ensuring termination fidelity.

To test if strong rRNA-mRNA interactions prior to the 
stop codon improve termination fidelity, we analysed Ribo- 
seq data of E. coli [28] (Figure 3(e) and Material and 
Methods section). We expected that if such an interaction 
improves the fidelity of termination, mRNAs with a strong 
interaction will exhibit fewer read-through events. Thus we 
would observe fewer Ribo-seq read counts (RC) down
stream of the STOP codon. Indeed, we found that the 
average read count for the 20 nucleotides after the stop 
codon was lower following genes with strong rRNA-mRNA 
interactions in the last 20 nucleotides of the coding region, 
compared to genes with weaker interactions in this region 
(mean RC = 0.334 and 0.514, respectively; Wilcoxon rank- 
sum test p = 0.001).

To experimentally test our hypothesis of strong rRNA- 
mRNA interactions prior to the stop codon preventing 
stop-codon read-through, we used a construct mRNA 
with a gene coding for a red fluorescent protein (RFP) 
linked to a gene coding for a green fluorescent protein 
(GFP; Figure 3(g)). We positioned the GFP gene down
stream such that its expression acts as an indicator of 
read-through expression, and variants with higher GFP 
fluorescence are indicative of higher stop-codon read- 
through rates (Material and Methods section and Figure 
S6). We designed nine variants with different rRNA- 
mRNA interaction strengths, local mRNA folding at the 
last 40nt [29] of the RFP and measured their fluorescence. 
As hypothesized, we found that variants with stronger 
rRNA-mRNA interactions at the end of the RFP coding 
region tend to produce lower GFP levels (Figure 3(h)). We 
found that there is a high correlation between the relative 
read-through signal (the ratio between the GFP fluores
cence and the RFP fluorescence) and the predicted rRNA- 
mRNA interactions strength prior to the stop codon even 
when controlling for the local mRNA folding near the stop 
codon when considering the log-phase of the experiment 
(partial Spearman correlation: r = 0.8740 P = 0.0021). 
Additional analysis of the variants and the experiment 
kinetics can be seen in the Material and Methods section 
and Figure S6.

Selection for intermediate rRNA-mRNA interactions in the 
coding region and UTRs to improve the pre-initiation 
diffusion of the small subunit to the initiation site

The previous sections presented evidence for selection against 
strong interactions between the rRNA and mRNA in most of 
the coding region, but this doesn’t mean that all interactions 
throughout this region are deleterious: other forces may act in 
differing directions. Prior to binding with mRNA, free ribo
somal units travel by diffusion. Some interaction with the 
mRNA may assist in ‘guide’ the diffusing small subunit of 
the ribosome to remain near the transcript and ‘help’ them 
find the start codon, increasing their diffusion efficiency and 
consequently overall translation initiation efficiency (Figure 
4(f).1).

Initiation is often the rate-limiting stage of translation, and 
initation’s most limiting aspect appears to be the 3-dimen
sional diffusion of the small sub-unit to the SD region. One- 
dimensional diffusion (i.e. along the mRNA) may be faster. If 
mRNAs can ‘catch’ small ribosomal subunits and then direct 
them to their start codons, they may be favoured by evolution. 
The large amount of redundancy in the genetic code allows 
for mutations that may improve interactions between the 
rRNA and mRNA even in the coding region, without nega
tively affecting protein products; however, as we have seen, 
strong interactions in the coding region are problematic. 
Based on these considerations, we hypothesized that evolution 
shapes coding regions to include intermediate rRNA-mRNA 
interactions, which are not strong enough to halt elongation 
but can optimize pre-initiation diffusion.

To test this hypothesis, we created an unsupervised optimiza
tion model to identify sequences with intermediate rRNA- 
mRNA interaction by adaptively calculating rRNA-mRNA 
interaction-strength thresholds for each bacterium. The algo
rithm selects rRNA-mRNA interaction strength thresholds to 
delineate the maximum number of significant positions with 
rRNA-mRNA interactions between these thresholds (see more 
details in the Material and Methods section).

To verify that the thresholds are reasonable, we looked at 
the highest (per gene) rRNA-mRNA interaction strength dis
tribution in the 5ʹUTR in two regions: 1) The canonical 
rRNA-mRNA interaction region during initiation (i.e. nucleo
tides −8 through −17 upstream to the start codon). 2) The 
region in the 5ʹUTR, which is upstream to 1). We then 
defined each gene by two values: a. Minimum interaction 
strength (i.e. strongest interaction) from region 1) distribu
tion. b. Minimum interaction strength from region 2) distri
bution. For each bacterium, we created distribution plots 
based on values a. and b. over its genes. Figure 4(a) includes 
these two distributions for E. coli; as can be seen, the rRNA- 
mRNA intermediate interaction strength thresholds for this 
bacterium are in the two distributions’ overlapping regions. 
Furthermore, we calculated the area between the optimized 
intermediate thresholds under the distribution of all values of 
rRNA-mRNA interaction strength in the aforementioned 
regions (1) and (2) (Figure 4(d)). As expected, the area 
under distribution 1) is greater than the area under distribu
tion 2) in most bacteria (the ratio is larger than 1 in 91% of 
the bacteria). This confirms that the range of interaction
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strengths identified corresponds to intermediate interactions 
and not to a lack of interaction. It is important to mention 
that intermediate interactions at the beginning of the 5ʹUTR 
can result in translation initiation from the wrong location 
and can create damaged protein.

Our analyses revealed that in 52% of the analysed bac
teria, at least 50% of the positions are under significant 
selection for intermediate rRNA-mRNA interactions. 
According to the null model, this would be expected to be 
the case for only 0.18% (Figure 4(b)). A similar trend can be 

seen in the 3ʹUTR (Figure 4(c)). The level of selection for 
intermediate interactions in the coding region varies among 
the bacterial phylum. Thus, various phylum-specific charac
teristics may be affected as growth rate, competition, and 
many aspects of translation regulation (Material and 
Methods).

Similar results to the ones reported here were obtained 
when we used different approaches to define intermediate 
interactions; for example, we show that there is selection for 
lower standard deviation of rRNA-mRNA interactions in

Figure 4. Selection for/against intermediate rRNA-mRNA interactions in the coding and UTR regions. (a) Definition and threshold validation for intermediate- 
strength rRNA-mRNA interactions in E. coli. Two distributions are shown: 1. blue bars: maximum rRNA-mRNA interaction strength distribution of the interaction 
strength region related to region 1 (see main text). 2. Orange bars: maximum rRNA-mRNA interaction strength distribution in the weak interaction region (related to 
region 2) (see main text). Thresholds for defining intermediate interactions for this organism are also depicted. (b) Positions with selection for high/low number of 
intermediate rRNA-mRNA interactions in the first 400 nt of the coding regions. Rows represent individual bacteria and are clustered by phyla; each column is a 
transcript position. Red/green indicate positions with significant selection for/against intermediate rRNA-mRNA interaction relative to the null model, respectively 
(Material and Methods section). Black indicates positions with no significant selection. Rightmost column: black pixels represent bacteria where the number of 
positions with significant selection for intermediate interactions is significantly higher than the null model. (c) Positions with selection for high/low number of 
intermediate rRNA-mRNA interactions in the 3ʹ UTR. Rows represent bacteria clustered by phyla; each column is a transcript position. Red/green indicates positions 
with significant selection for/against intermediate rRNA-mRNA interactions relative to the null model, respectively (Materials and Methods section). Rightmost 
column: black pixels represent bacteria where the number of positions with significant selection for intermediate interaction is significantly higher than the null 
model. (d) Distribution of the area ratio. A ratio larger than 1 suggests that it is more probable that the inferred thresholds are related to (intermediate) rRNA-mRNA 
interactions and not to a lack of interaction. (e) The number of intermediate sequences and PA correlations in GFP synonymous variants. The GFP variants are divided 
into six groups according to their FE near the start codon. The FE thresholds were selected to have approximately equal numbers of GFP variants in each group. 
Groups with significant correlation are marked with *. Inset: correlation between PA and the number of intermediate interaction sequences for the strongest FE 
group. (f) Illustration of intermediate interaction effects on translation initiation. 1) Intermediate interactions in the coding sequence. 2) This aids initiation when 
strong mRNA folding in the region surrounding the START codon (i.e. when initiation is more rate-limiting). (g) An illustration of the biophysical model. its rRNA- 
mRNA interaction strength determines each site’s parameters. There is an attachment rate to the site, detachment rate from the site, movement forward to the site 
and from it, and movement backward from the site and to it. This model allows for the deduction of the initiation rate for insertion into the elongation model. (h) An 
illustration of the rRNA-mRNA interaction strength extended model. k sites determine the density of each site before it and k sites after it. (Materials and Methods 
and Figure S7).
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bacterial genomes (see more details in Figure S7.A and Figure 
S7.B).

Our null model preserves the protein itself, the codon bias, 
and the GC content. Therefore, the observed selection cannot 
be favouring specific codons or amino acids. In addition, our 
rRNA-mRNA interaction profiles consider all three reading 
frames; hence, the amino acids are not the key factor that 
influences this signal. Furthermore, the fact that we see a 
similar selection pattern in the UTRs (Figure 4(c)) suggests 
that this pattern cannot be attributed only to selection for 
certain codon pairs.

We hypothesize that selection for intermediate rRNA- 
mRNA interactions in the coding region of a gene should 
improve its translation initiation efficiency and thus its pro
tein levels. To demonstrate this, we calculated the partial 
Spearman correlations between the number of intermediate 
interaction sequences in the GFP variant and the heterologous 
protein abundance (PA), based on 146 synonymous GFP 
variants that were expressed from the same promoter [30]. 
The control variables were the codon adaptation index (CAI) 
[31]; a measure of codon usage bias, and mRNA folding 
energy (FE) near the start codon, known to affect translation 
initiation efficiency (the weaker the folding in the vicinity of 
the start codon the higher the fidelity and efficiency of trans
lation initiation) [32]. We defined an area of intermediate 
interactions according to the thresholds determined by our 
model in E. coli and calculated the correlation explained 
above. As expected, the correlation was positive and signifi
cant (r = 0.35; P = 0.2∙10−4), indicating that variants with 
more sub-sequences in the coding region that bind to the 
rRNA with an intermediate interaction strength tend to have 
higher PA. We found that this correlation is very high 
(r = 0.61; p = 0.003) specifically when the FE near the start 
codon is the strongest (Figure 4(e)). The intermediate 
sequences are expected to have a stronger effect on initiation 
when this process is less efficient (i.e. when it is more rate- 
limiting). Thus, according to our model, we expect to see a 
stronger correlation between protein levels and the number of 
intermediate sequences when the mRNA folding in the region 
surrounding the START codon is strong (Figure 4(f).2). 
When calculating the partial Spearman correlation between 
the number of sub-sequences that interact in a weak manner 
with the rRNA and the PA of the GFP variants, the correla
tion is negative and significant (r = −0.32; p = 8.5∙10−5). This 
further validates our conjecture that translation efficiency, in 
this case, is indeed related to interactions that are neither very 
strong nor very weak or absent. It also suggests that this effect 
on translation efficiency is related to the pre-initiation step 
and not the elongation step. Otherwise, we would expect a 
positive correlation with weak interaction (Figure S8).

We also analysed E. coli genes by their mRNA half-life [33] 
to assess how selection for intermediate interactions varies 
among them. We found that genes with shorter half-life 
tend to have more intermediate interactions (Wilcoxon test 
P =2:060 � 10� 6) (Material and Methods). It is possible that 
these genes undergo stronger selection to include intermedi
ate interactions since their corresponding mRNAs ‘have less 
time’ to initiate translation. Thus, the reported results 

discussed here suggest that the small ribosomal subunit diffu
sion is probably relatively fast.

It is known that mRNAs tend to localize in certain regions 
in the cell [34], meaning that if we can keep the ribosome 
close to a certain mRNA, we also keep it close to other 
mRNAs. If a certain mRNA ‘captures’ a ribosome, then 
undergoes degradation, this ribosome will likely remain 
close to other nearby mRNAs. It is also possible that due to 
compartmentalization and aggregation of many mRNA mole
cules, the interaction with the small sub-unit of one mRNA 
can be ‘helpful’ for a nearby mRNA.

Finally, we created a computational biophysical model that 
describes the small ribosomal sub-unit movement along the 
transcript. In this model, the movement is influenced by the 
intermediate interactions (Figure 4(g,h)). The model indicates 
that adding intermediate interaction along the transcript 
improves the initiation rate and termination rate even if the 
intermediate sequence is near the 3ʹ end of the gene. It also 
demonstrates the advantage of intermediate interactions over 
weak or strong ones in most of the transcript as intermediate 
interactions in the transcript optimize the translation rate. We 
conclude that intermediate rRNA-mRNA interactions along 
the transcript enhance small ribosomal sub-unit diffusion to 
the start codon with resultant improvements in the translation 
rate (Material and Methods and Figure S9).

Discussion

This study revolutionizes current understandings of how 
mRNA-rRNA interactions affect translation efficacy and effi
ciency throughout all stages of translation in many prokar
yotes. We provide multiple sources of evidence that in many 
bacterial phyla the 16S rRNA plays a role in regulating all 
stages of translation via its interaction with the mRNA. Such 
interactions are usually directly correlated with organism 
growth rates (File S1). Evidence for the effect of these inter
actions on translation does not appear in organisms without 
an aSD sequence in the rRNA [35] (Figure S10).

Previous work has identified pieces of this puzzle, such as 
the importance of the aSD-SD interactions for translation 
initiation [1] [2], and some initial evidence that these inter
actions may be deleterious in the coding regions [15] [36]. 
This study is novel in expanding our understanding of the 
effect of such interactions throughout the translation process – 
from pre-initiation small sub-unit diffusion through initia
tion, elongation, and termination. It presents new evidence 
of selection for intermediate interactions in the transcript and 
for strong aSD-SD interactions upstream the stop codons and 
downstream the start codon with numerous details about the 
distributions of the reported patterns in transcripts. This 
study also provides novel insights into how evolutionary 
forces reflect trade-offs and non-linear relationships between 
different interaction strengths in different parts of the mRNA 
transcript and the bacteria fitness and how these vary across 
levels of gene expression and phyla. In addition, we show how 
the reported patterns are correlated and/or affected by other 
features of the transcripts, such as the strength of the mRNA 
folding near the start codon, the mRNA stability, the aSD
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patterns in the rRNA, etc. The results are supported by 
various scientific approaches, including selection detection, 
molecular biology experiments, and biophysical modelling.

Our findings also shed light on the biophysics of translation 
in bacteria, the conformation of the small ribosomal subunit 
rRNA and its interaction with mRNA molecules during the 
various steps of the translation process. The interactions 
described herein can also be implemented in engineered tran
scripts for efficient expression in various bacterial species. 
Rigorous molecular evolution models should consider our find
ings that even within coding regions, the selection of nucleo
tides and codons that comprise mRNAs are shaped by rRNA- 
mRNA interactions and how these affect translation efficiency.

Our results demonstrate various complex trade-offs and 
non-monotonous relations between the optimal rRNA- 
mRNA interaction strength across transcripts. For example, 
increasing the rRNA-mRNA interaction strength inside cod
ing regions decreases elongation efficiency and increases the 
initiation efficiency. Thus, evolution in these regions tends to 
shape coding regions such that they include intermediate (not 
too strong, not too weak) levels of rRNA-mRNA interactions. 
Whereas at the 3ʹ end of the coding region, strong rRNA- 
mRNA interactions tend to improve termination fidelity, 
although they decrease translation rates and may increase 
ribosomal traffic jams. Thus, evolution at the 3ʹ end tends to 
shape the end of coding regions such that they include more 
rRNA-mRNA interactions when they do not decrease transla
tion efficiency (i.e. in genes that are less translationally effi
cient). Moreover, the secondary structure can compete with 
the efficiency of the rRNA-mRNA interaction [37] and mod
elling this phenomena is relatively challenging computation
ally and statistically. Thus, as a future research it will be 
interesting to study a combined model, which includes both 
aspects, and examine these non-monotonous relations in high 
resolution both from the molecular evolution, engineering, 
and biophysical points of view.

Materials and methods

The analysed data

In this subsection of the methods the analysed data is 
described.

The analyzed organisms
We analysed 551 bacteria genome from the following phyla or 
classes: Alphaproteobacteria, Betaproteobacteria, 
Cyanobacteria, Deltaproteobacteria, Gammaproteobacteria, 
Gram-positive bacteria, Purple bacteria, Spirochaetes bacteria. 
In addition, we analysed 76 bacteria genome across the tree of 
life that does not have a canonical aSD sequence in their 16S 
rRNA. Finally, we analysed 196 bacteria genome with known 
growth rates. The full lists of analysed organisms can be found 
in the supplementary Organisms table file. All of the bacterial 
genomes were downloaded from the NCBI database (https:// 
www.ncbi.nlm.nih.gov/) in October 2017. In addition to the 
coding regions, for each gene, we also analysed the 50nt 
upstream of the start codon and the 50nt downstream of the 

stop codon (approximating the end of the 5ʹUTR and the 
beginning of the 3ʹUTR, respectively).

Protein levels
E. coli endogenous protein abundance data was downloaded 
from PaxDB (http://pax-db.org/download), we used ‘E. coli – 
whole organism, EmPAI’ published in 2012.

rRNA-mRNA strength model

In this subsection of the methods, the prediction and defini
tion of rRNA-mRNA interactions are described.

The rRNA-mRNA strength prediction
The prediction of rRNA-mRNA interaction strength is based on 
the hybridization free energy between two sub-sequences: The 
first sequence is a sequence from the mRNA and the second 
sequence is the aSD from the rRNA. This energy was computed 
based on the Vienna package RNAcoFold [38], which computes 
a common secondary structure of two RNA molecules. Lower, 
more negative free energy is related to stronger hybridization.

We assumed that the interacting sub-sequence at the 16S 
rRNA 3ʹ end is UCCUCC (3ʹ to 5ʹ). However, when we 
remove this assumption (change the aSD sequence according 
to our optimization algorithm Supplementary Figure S9) and 
infer it in an unsupervised manner, the results remain similar. 
It is crucial to mention that the calculation and prediction of 
the rRNA-mRNA remains the same except the aSD sequence. 
Thus, we indeed used the canonical aSD sequence.

The rRNA-mRNA interaction strength profiles and selection 
strength
The rRNA-mRNA interaction strength profiles include the 
predicted rRNA-mRNA interaction strength for each position 
in each transcript (UTRs and coding regions) and each bac
terium. We analysed the average profile of each bacterium.

We calculated the interaction strength between all 6 nucleo
tide sequences along each transcript (UTR’s and coding 
sequences) with the 16S rRNA aSD. We performed a statistical 
test (empirical P-value) to decide if the potential rRNA-mRNA 
interaction in this position is significantly strong, intermediate, 
or weak for each possible genomic position along the tran
scripts. To determine whether a position (across the entire 
transcriptome) tends to include sub-sequences with a certain 
rRNA-mRNA interaction strength (strong, intermediate, or 
weak), we compared it to the properties of sub-sequences 
observed in a null model in the same position (see further 
details regarding the null model below). We also created 
Z-score maps of the strength of interactions (Figure S11).

Intermediate rRNA-mRNA interactions definition and 
analysis

In this subsection of the methods, definition and additional ana
lysis regarding Intermediate rRNA-mRNA interactions are 
described.
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The intermediate rRNA-mRNA interaction definition
To define intermediate interaction strength, we devised an 
unsupervised adaptive optimization model that infers the 
thresholds (upper and lower) of intermediate interaction 
strength. We assumed that coding regions tended to 
include intermediate interactions and chose the thresholds 
that maximize their number in comparison to the null 
model. Specifically, we implemented an algorithm that in 
each iteration changes the selected upper and lower thresh
olds mentioned above such that the number of significant 
positions in terms of the number of intermediate interac
tions in the real genome compared to the null model will 
be maximal.

The first iteration thresholds were selected as follows; 
we created a distribution histogram of interaction strength 
in the region with the strong canonical SD interaction in 
the 5ʹUTR of each bacterium (positions −8 through −17, 
Figure 1(b)). We calculated the area under the strong 
interaction distribution. We initially chose the ‘high’ 
(strongest interaction strength – more negative free 
energy) and ‘low’ (weakest interaction strength – less 
negative free energy) thresholds to be the interaction 
strength such that the area up to the chosen threshold 
interaction value was 5% of the total distribution area 
from each side of the curve.

To study the properties of the selected thresholds, we 
created the interaction strength histograms for two regions 
in the 5ʹUTR (Figure 4(a)): 1) The distribution of strong 
interaction strength, as mentioned above. 2) The distribu
tion of interaction strength in positions −40 to −50 at the 
5ʹUTR upstream of the START codon (where we do not 
expect to see strong rRNA-mRNA interaction, as this 
region doesn’t have a known role in translation initiation).

Next, we looked at the two inferred thresholds’ positions 
compared to these two histograms; as can be seen in Figure 4 
(a), they tend to appear in the region between the two histo
grams supporting the hypothesis that these are indeed inter
mediate interaction strength.

To further quantitatively validate the inferred thresholds, 
we calculated the area under the two histograms mentioned 
above induced by the two inferred thresholds. The ratio 
between these two areas (the first one divided by the 
second one) was computed: A ratio larger than one suggests 
that it is more probable that the inferred thresholds are 
related to (intermediate) interactions between the rRNA 
and mRNA than to lack of interactions; indeed, in most 
bacteria (503/551) the ratio was larger than one (Figure 
4(d)).

Intermediate signal
When looking at the intermediate selection signal, we can see 
that the signal can be observed in 52% of the analysed bac
teria; The groups of bacteria that exhibit that signal are 47% of 
the Betaproteobacteria, 49% of the Cyanobacteria, 94% of the 
Deltaproteobacteria, 43% of the Gammaproteobacteria, 83% 
of the Gram-positive bacteria, 28% of the Purple bacteria, 
100% of the Spirochaete bacteria, 26% of the 
Alphaproteobacteria and E.coli.

The relation between the number of intermediate 
rRNA-mRNA interactions in coding regions and 
heterologous protein levels
We aimed to show that intermediate sequences in a gene’s 
coding region directly improve its translation initiation 
efficiency and protein levels. Hence, we calculated the par
tial Spearman correlations between the number of inter
mediate interaction sequences in the GFP variant and the 
heterologous protein levels (PA), based on 146 synonymous 
GFP variants expressed from the same promoter and the 
same UTR [30].

The control variables were the CAI (Codon Adaptation 
Index – a measure of codon bias) and folding energy (FE) 
near the start codon. We defined an area of intermediate 
interactions according to the thresholds received by our 
model in E. coli, and we expanded it by 20% to allow max
imum intermediate interactions in this synthetic system 
(which is expected to differ from endogenous genes). The 
correlation was positive and significant (r = 0.35; P 
= 2∙10−5), suggesting that variants with more sub-sequences 
in the coding region that bind to the rRNA with an inter
mediate interaction strength tend to have higher PA.

mRNA half-life and intermediate interactions
To enhance our knowledge of the effect of intermediate interac
tions, we analysed mRNA half-life data [33]. We divided E. coli 
genes according to their mRNA half-life. For the top and bottom 
20%, we calculated the percentage of genes that have intermedi
ate interaction in each position in the coding region.

Statistical analysis

In this subsection of the methods, all of the statistical analysis 
that was used is described.

The null model

For each bacterial genome, we designed 100 null model 
mRNA randomizations. UTR regions were generated with 
nucleotide permutation, preserving the nucleotide distribu
tion, including the GC content of the original mRNA. 
Coding regions were generated by permuting synonymous 
codons while preserving codon frequencies, amino acid 
order and content, and GC content of the original mRNA.

Similar rRNA-mRNA interaction strength profiles as the 
ones described above were computed for the transcripts’ rando
mized versions to compute p-values related to possible selection 
for strong/intermediate/weak rRNA-mRNA interactions.

We computed an empirical p-value for every position in the 
transcriptome of a certain organism. To this end, the average 
rRNA-mRNA interaction strength in the position was compared 
to the average obtained in all of the randomized genomes. The 
p-value was computed based on the number of times the real 
genome average was higher or lower (depend on the hypothesis 
we checked) than the null model average. A significant position 
is a position with a p-value smaller than 0.05.

We also validated the robustness of our results to the 
number of randomization. For more details on the null mod
els’ validity, see Figure S2 and Figure S12.
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Z-score calculation in highly and lowly expressed genes

To validate the reported signals, we performed all of our 
analyses on highly and lowly expressed genes of E. coli. We 
chose the highly and lowly expressed genes according to their 
PA (20% highest and lowest PA values) and computed 
Z-scores as explained in the following sub-sections.

Highly vs. lowly: selection for strong rRNA-mRNA 
interactions at the 5’UTR end and at the beginning of the 
coding region
We calculated the Z score based on the rRNA-mRNA inter
action strength in all possible positions in the 5ʹUTR and 
coding region in the highly and lowly expressed genes.

Zi ¼
real value ið Þ � mean rand value ið Þ

std rand value ið Þ
(1) 

Zi – Z-score in position i.
real value ið Þ – rRNA-mRNA interaction strength in posi

tion i.
mean rand value ið Þ – Average rRNA-mRNA interaction 

strength in position i in all of the randomizations.
std rand valueði – Standard deviation of rRNA-mRNA 

interaction strength in position j in all of the randomizations.
From a statistical point of view, we defined each gene by two 
values according to the reported signal: 1) Minimum Z-score 
value in positions −8 through −17 in the 5ʹUTR. 2) Minimum 
Z-score value in positions 1 through 5 at the beginning of the 
coding region. The regions were selected according to the 
reported signal in Figure 1(b).

We performed two Wilcoxon rank-sum tests to estimate 
the p-values for the two reported signals in highly vs. lowly 
expressed genes.

Highly vs. lowly: selection against strong rRNA-mRNA 
interactions at the beginning of the coding sequence
We calculated the Z-score (as described above) based on the 
rRNA-mRNA interaction strength of each position in the first 
400nt of the coding region in the highly and lowly expressed 
genes.

We performed Wilcoxon rank-sum tests to estimate the 
p-values of the reported signals.

Highly vs. lowly: Z-score calculation of selection for strong 
mRNA-rRNA interactions at the end of the coding sequence
In this case, we calculated the Z-score (as described above) 
based on the rRNA-mRNA interaction strength of each posi
tion in the last 20nt of the coding region in each bacterium.

For each bacterium, we found the position with a mini
mum Z-score value (strongest interaction compared to the 
null model). We created a histogram of the positions of the 
strongest Z-scores in the last 20nt of the coding region (Figure 
3(c)) and a histogram based on gene expression levels (Figure 
3(d)).

Experimental data

In this subsection of the methods, all details regarding the 
read-through experiment are described.

Selection against strong interaction at the end of the 
coding region – read-through experiment

Plasmids construction
We used plasmid pRX80 and modified it by deleting the lac I 
repressor gene and the CAT selectable marker. The resulting 
plasmid contained the RFP and GFP genes in tandem, and 
both are expressed from a promoter with two consecutive lac 
operator domains. The plasmid also contains the pBR322 
origin of replication and the Kanamycin resistance gene as a 
selectable marker. Because the two operator sequences caused 
instability at the promoter region, we replaced the promoter 
region with a lacUV promoter with only one operator 
sequence. The resulting plasmid, pRCK28, was now used to 
generate of variants that differ in the 40 last nucleotides of the 
RFP ORF. The variants include synonymous changes com
posed of both ribosome binding sites at three energy ranges 
and alter the local folding energy (LFE) of the 40 last nucleo
tides of the RFP ORF end. The variable sequences were 
synthesized as G-blocks, and Gibson assembly was used to 
replace the relevant region of the pRCK28 plasmid, generating 
nine variants as described in Figure S6 (A, C). The resulting 
variable plasmids were transformed into competent E. coli 
DH5 cells. Colonies were selected on LB Kanamycin plates. 
A few candidates were analysed by PCR and sequenced to 
verify the synonymous changes in each variant.

Fluorescent tests
Single colonies of each variant and the original pRCK28 clone 
and negative control (an E. coli clone with a Kanamycin 
resistant plasmid at the same size of pRC28 but without any 
fluorescent genes) were grown overnight in LB-Kanamycin at 
37°C. Cells were then diluted, and 10,000 cells were inoculated 
into 110ul defined rich medium (1X M9 salts, 1 mM thiamine 
hydrochloride, 2% glucose, 0.2% casamino acids, 2 mM 
MgSO4, 0.1 mM CaCl2) in 96 well plates, at 37°C. For each 
variant, two biological repeats and four technical repeats of 
each were used. A fluorimeter (Spark-Tecan) was used to run 
growth and fluorescence kinetics. For growth, OD at 600 nm 
data was collected. For red fluorescence, excitation at 555 nm 
and emission at 584 nm was used. For green fluorescence, 
excitation at 485 nm and emission at 535 nm was used. Data 
were analysed and normalized to growth intensity ratios.

Western blot analyses
Cells from the cultures used for fluorescence assay were 
diluted 1:100 in the same rich defined medium and grown 
to mid-late log phase (0.7), 1 ml cultures were concentrated 
by centrifugation lysed using the BioGold lysis buffer supple
mented with lysozyme.Total protein lysates were resolved on 
Tris-glycine 4–15% acrylamide mini protein TGX stain-free 
gels (BioRad). Proteins were transferred to nitrocellulose 
membranes using the trans-blot Turbo apparatus and transfer 
pack. Membranes were incubated in blocking buffer (TBS+1% 
casein) for 1 hr at room temperature. Anti GFP and/or anti 
RFP antibodies (Biolegend) were used at 1:5 K, for 1 hr in 
blocking buffer, at room temperature to probe the GFP and 
RFP expression. Goat anti-mouse 2nd antibody was then 
applied at 1:10 K dilution. ECL was used to probe a binding
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signal, and ImageJ software was used to determine band 
intensity.

Additional analysis and models

In this subsection of the methods, additional analysis and 
models to further infer and investigate rRNA-mRNA interac
tions are described.

Ribosome profiling
E. coli ribosome footprint reads were obtained from [28] 
(SRR2340141,3–4). E. coli transcript sequences were obtained 
from NCBI (NC_000913.3). Sequenced reads were mapped as 
described in [39] with the following minor modifications. We 
trimmed 3ʹ adaptors from the reads using Cutadapt [40] 
(version 1.17), and utilized Bowtie [41] (version 1.2.1) to 
map them to the E. coli transcriptome. In the first phase, we 
discarded reads that mapped to rRNA and tRNA sequences 
with Bowtie parameters ‘–n 2 – seedlen 21 – k 1 – norc’. In 
the second phase, we mapped the remaining reads to the 
transcriptome with Bowtie parameters ‘–v 2 – a – strata – 
best – norc – m 200ʹ. We filtered out reads longer than 30nt 
and shorter than 23nt. Unique alignments were first assigned 
to the ribosome occupancy profiles. For multiple alignments, 
the best alignments in terms of number of mismatches were 
kept. Then, multiple aligned reads were distributed between 
locations according to the distribution of unique ribosomal 
reads in the respective surrounding regions. To this end, a 
100nt window was used to compute the read count density 
RCDi (total read counts in the window divided by length, 
based on unique reads) in the vicinity of the M multiple 
aligned positions in the transcriptome, and the fraction of a 

read assigned to each position was RCDi=
PM

j¼1
RCDj. The loca

tion of the A-site was set for each read length by the peak of 
read distribution upstream of the stop codon for that length.

After creating the ribosome profiling distributions, for each 
gene, we calculated the number of positions with strong 
rRNA-mRNA interactions in the last 20 nucleotides of the 
coding region (the location of the reported signal, Figure 3 
(a)). We ranked the genes according to their ‘number of 
strong positions’, and defined the 10% highest/lowest ranking 
genes. For the highest and lowest ranking genes, we calculated 
the average Ribo-seq read count in the first 20 nucleotides of 
the 3ʹ UTR (the closest region to the stop codon), Figure 3(e).

Selection against strong interaction in the coding region 
in positions that are not upstream to a close AUG codon

We performed the following analysis to detect a signal of 
selection for/against strong interactions in the coding region 
after excluding positions upstream to a close start codon. We 
considered the E. coli genomes (both real and randomized 
versions), and in each gene, we ‘marked’ a position that is up 
to 14 positions upstream of an AUG (in all frames). We then 
computed the p-value related to selection for strong rRNA- 
mRNA interactions (as mentioned before) but when we 

consider only the non-marked positions (both in the real 
and the randomized genomes). The result can be seen in 
Figure S3.

Unified biophysical translation model of the reported 
signals

We developed a computational simulative model of transla
tion that includes the pre-initiation, initiation, and elongation 
phases. Our model is based on a mean-field approximation of 
the TASEP model [17]. All of the model parameters are based 
on rRNA-mRNA interaction strength.

The model consists of two types of ‘particles’: 1. Small 
subunits of the ribosome (pre-initiation): in this case, the 
particles’ detachment/attachment and bi-direction move
ment are possible along the entire transcript. 2. 
Ribosomes (elongation): the movement is unidirectional 
(from the 5ʹ to the 3ʹ of the mRNA) and possible only in 
the coding region; the initiation rate is affected by the 
density of the small subunits of the ribosome at the ribo
somal binding site (RBS).

The model equations
Small sub-unit basic model. In this model, several parameters 
describe the small sub-unit movement in each site of the 
transcript. The small sub-unit can attach to the mRNA’s 
relevant site at a certain rate (depends on the rRNA-mRNA 
interaction value at that site). The small sub-unit can detach 
from a site at a certain rate (depends on the complementary 
interaction to the rRNA-mRNA interaction).

Attachmentn ið Þ ¼ tanh
interactionvalue ið Þ

epsilon

� �

Detachmentn ið Þ ¼ 1 � tanh
interactionvalue ið Þ

epsilon

� �

> 0 

Attachment ið Þ ¼ c1 � Attachmentn ið Þ

Detachment ið Þ ¼ c1 � Detachmentn ið Þ

The small sub-unit movement to the next site depends on the 
detachment rate from the current site and next site’s attach
ment rate.

Forward ið Þ ¼ c2þ Detachment ið Þ � Attachment iþ 1ð Þð Þ – 
Flow from cell i to cell i + 1.
The movement backward of the small sub-unit to the previous 
site depends on the detachment rate from the current site and 
the attachment rate of the previous site.

Backward ið Þ ¼ c2þ Detachment iþ 1ð Þ � Attachment ið Þð Þ

– Flow from cell i + 1 to cell i.
The start and end terms of the equations depend on the first/ 
last site’s attachment or detachment.

‘initiation’ of the small sub-unit into the first site:

Forward 0ð Þ ¼ c2þ Attachment 1ð Þ
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Backward 0ð Þ ¼ c2þ Detachment 1ð Þ

‘termination’ of the small sub-unit from the last site:

Forward endð Þ ¼ c2þ Detachment endð Þ

Backward endð Þ ¼ c2þ Attachment endð Þ

This is an example of the simple model equations that are 
based on the RFM. The density of ribosomes in site i depend 
on the flow to the site (from the site before and the next site), 
depends on the flow from site i (to the previous site and the 
next site), and the detachment and attachment rates of site i.

For example, i = 2:

_x2 Flow 1; 2ð Þx1 1 � x2ð Þ � Flow 2; 1ð Þx2 1 � x1ð Þ

þ Flow 3; 2ð Þx3 1 � x2ð Þ � Flow 2; 3ð Þx2 1 � x3ð Þ

þ Attachemnt 2ð Þ 1 � x2ð Þ � Detachment 2ð Þx2 

Small sub-unit k-sites model. To fully grasp the intermediate 
interaction effect, we extended the small sub-unit model so 
that the i’th site is affected by k sites before it and k sites after 
it.

(1) The density of site i is dependent on the flow to the 
i’th site from i-k:i-1 and the flow from the i’th site to i 
+ 1:i + k sites.

(2) If k is larger than the number of sites before/after the 
I’th site, k = maximal possible k.

Attachment, Detachment equations are the same as in the 
basic model.

The movement between sites of the small sub-unit depends 
on the detachment rate from the i’th site and the attachment 
rate of the k’th site.

Flow from cell i to cell 
k: Flow i; kð Þ ¼ c2þ Detachment ið Þ � Attachment kð Þð Þ

FlowF – Flow forward to the first site (initiation)
FlowB – Flow backward from the first site (initiation)
The model equations for an mRNA in the length of n sites:

a. Initiation: 
_x1 FlowF 1 � x1ð Þ þ Attachment 1ð Þ 1 � x1ð Þ�

Flow 1; 2ð Þx1 1 � x2ð Þ � FlowBx1 � Detachment 1ð Þx1

þ
Xkþ1

j¼2
Flow j; 1ð Þxj 1 � x1ð Þ � Flow 1; jð Þx1 1 � xj

� �

b. Elongation (k < i < n-k):

In this case, we have k sites before the i’th site and k sites 
after the i’th site.

Therefore, we sum all contribution of all k sites (in both 
sides of site i) to calculate the density of site i.

_xi

Pi� 1

j¼i� k
Flow j;ið Þxj 1� xið Þ� Flow i;jð Þxi 1� xj

� �� �

þ
Piþk

m¼iþ1
Flow m;ið Þxm 1� xið Þ� Flow i;mð Þxi 1� xmð Þð Þ

2

6
6
6
4

3

7
7
7
5
þ

Attachemnt ið Þ 1� xið Þ� Detachment ið Þxi 

a. Elongation (i ≤ k):

In this case, we have less than k sites before the i’th site and 
k sites after the i’th site.

Therefore, we sum k sites contributions after the i’th site all 
k’ sites before the i’th site (k’<k, the maximum number of 
possible sites before the i’th site) to calculate the density of 
site i.

_xi

Pi� 1

j¼1
Flow j;ið Þxj 1� xið Þ� Flow i;jð Þxi 1� xj

� �� �

þ
Piþk

m¼iþ1
Flow m;ið Þxm 1� xið Þ� Flow i;mð Þxi 1� xmð Þð Þ

2

6
6
6
4

3

7
7
7
5
þ

Attachemnt ið Þ 1� xið Þ� Detachment ið Þxi 

a. Elongation (i ≥ n-k):

In this case, we have k sites before the i’th site and less than 
k sites after the i’th site.

Therefore, we sum all k sites contributions before the i’th 
site all k’ sites after the i’th site (k’<k, the maximum number 
of possible sites after the i’th site) to calculate the density of 
site i.

_xi

Pi� 1

j¼i� k
Flow j;ið Þxj 1� xið Þ� Flow i;jð Þxi 1� xj

� �� �

þ
Pn

m¼iþ1
Flow m;ið Þxm 1� xið Þ� Flow i;mð Þxi 1� xmð Þð Þ

2

6
6
6
4

3

7
7
7
5
þ

Attachemnt ið Þ 1� xið Þ� Detachment ið Þxi 

a. Termination: 
_xn Flow nþ 1; nð Þ 1 � xnð Þ þ Attachment nð Þ 1 � xnð Þ

� Flow n; nþ 1ð Þxn � Detachment nð Þxn

þ
Xn� 1

j¼n� k
Flow j; nð Þxj 1 � xnð Þ � Flow n; jð Þxn 1 � xj

� �

The model of ribosomal movement during elongation. To 
initiate the ribosome movement, we calculated the initiation 
rate considering the density from the small sub-unit model in 
the SD location in the 5ʹ UTR.

The ribosome movement depends on the rRNA-mRNA 
interaction of the relevant site and the effect of other features 
such as adaptation to the tRNA pool (denoted as typical 
decoding rate, TDR) on the elongation at the site codon.
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initiationrate ¼ meanðdensity 34 : 43Þð Þ

Time ið Þ ¼
1

lambda ið Þ
¼

max
TDR

TDR ið Þ

� �

þ exp
mean interactionvalue i � 12 : i � 8ð Þð Þ

max interactionvalue

� �

the time of translation of each codon.

Parameters and model validation
To demonstrate our model, we created an artificial gene with 
100 codons that all of its sites are weak sites (rRNA-mRNA 
interaction = 0). We generated five additional variants from 
this basic variant via introducing in nucleotide 33 a gradient 
of different rRNA-mRNA interaction strength.

We simulated our complete model (the pre-initiation stage 
with k = 20 and the elongation model) for all the variants 
(Figure S9.A).

To show that adding many intermediate interactions along 
the transcript (as we see in endogenous genes) improve the 
translation rate, we performed the following simulation: we 
started with a variant with one intermediate interaction close 
to the beginning of the coding sequence (3 nt after the start 
codon); we gradually added intermediate downstream of the 
start codon to improve the translation rate. Specifically, to 
make sure that even for long genes, the intermediate effect 
exists, we simulated a longer sequence with 500 nucleotides, 
and each added intermediate sequence was downstream of the 
previous one in a position that improves the translation 
(Figure S9 (B-D)).

SD sequence optimization model

The common assumption is that the SD and aSD sequences 
are usually the canonical ones. However, we believe that there 
may be organisms with different rRNA-mRNA interaction 
motifs. Thus, we developed an optimization model that finds 
the optimized SD and aSD sequences for a given bacterium in 
an unsupervised manner.

To find the optimal SD, we devised the following algorithm 
(Figure S9.E):

For a certain organism, we considered all the 6nt long sub- 
sequences at the last 20nt of the 3ʹ end of the 16S rRNA as a 
potential alternative ‘aSD’.

For each such potential alternative ‘aSD’, and for each gene 
in the organism, we considered all the sub-sequences in posi
tion −8 through −17 in the 5ʹUTR to find the sub-sequence 
with the strongest rRNA-mRNA interaction, with the poten
tial to be an alternative ‘aSD’. These values were averaged 
across the genes, and the potential alternative ‘aSD’ that yields 
the lowest average (related to strongest predicted averaged 
rRNA-mRNA interaction strength) is predicted to be an alter
native ‘aSD’ sequence.

We executed our optimization model on 551 bacteria 
(Figure S9.F).
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