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ABSTRACT
As one of the most common forms of RNA modification, N6-methyladenosine (m6A) RNA modification 
has attracted increasing research interest in recent years. This reversible RNA modification added a new 
dimension to the post-transcriptional regulation of gene expression. In colorectal cancer (CRC), the role 
of m6A modification has been extensively studied, not only on mRNAs but also on non-coding RNAs 
(ncRNAs). In the present review, we depicted the role of m6A modification in CRC, systematically 
elaborate the interaction between m6A modification and regulatory ncRNAs in function and mechanism. 
Moreover, we discussed the potential applications in clinical.
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1. Introduction

As the most abundant RNA modification in eukaryotic cells 
[1], N6-methyadenosine (m6A) RNA modification played 
a vital role in cancer onset and development [2], which has 
been well studied [3]. m6A modification was first discov
ered in the 1970s [4], related research has become a new 
hot spot in the epigenetic study since the new understand
ing of the reversibility and dynamic process of m6A mod
ification in 2011 [5]. With the rapid advancement of 
sequencing technology, m6 A modification was found not 
only on messenger RNAs (mRNAs) but also on non-coding 
RNAs (ncRNAs), especially regulatory ncRNAs [6–10]. 
Until now, it has been shown that more than 7000 coding 
RNAs and 300 ncRNAs contain m6A sites [3,11]. ncRNAs 
were a group of endogenous RNA molecules that were not 
translated into proteins but played an important role in 
regulating gene expression and disease progress [12,13]. 
ncRNAs could be divided into two categories, housekeeping 
ncRNAs and regulatory ncRNAs. Regulatory ncRNAs were 
usually considered as key regulatory RNA molecules in the 
cancer process, including microRNAs (miRNAs), long non- 
coding RNAs (lncRNAs), and circular RNAs (circRNAs) 
[13,14].

Colorectal cancer (CRC) was one of the most common 
malignant tumours, caused a vast medical burden with its 
increasing mortality (the second leading cause of cancer- 
related death) [15–17]. The occurrence and metastasis of 
CRC were considered a multi-factor, multi-step process, in 
which aberrant regulation of m6A modification was widely 
involved [18–20]. While previous studies have reported 

dysregulated m6A modification in CRC tumorigenesis 
[18–20], few reviews focused on the association between 
m6A modification and regulatory ncRNAs in CRC. To 
better understand the roles of m6A modification in CRC, 
the present study systematically reviewed the up-to-date 
research progress of m6A modification and its interaction 
with regulatory ncRNAs in CRC.

2. Regulation of m6A modification

m6A sites had a typical consensus sequence ‘RRACH’ 
(R = G or A; H = A, C, or U), and were enriched in 3ʹ 
untranslated regions (UTRs) and around stop codons in 
mRNAs or near the last exon in ncRNAs [3,11]. The effect 
of m6A modification was determined by m6A regulatory 
proteins, which consisted of m6A methyltransferases ‘wri
ters’, m6A demethylases ‘erasers’, and m6A-binding pro
teins ‘readers’ [21].

m6A modification was installed by a methyltransferase 
complex (MTC), consisting of Methyltransferase-like 3 
(METTL3), Methyltransferase-like 14 (METTL14), and Vir- 
like m6A methyltransferase-associated (KIAA1429/VIRMA), 
RNA-binding motif protein 15/15B (RBM15/15B), zinc finger 
CCCH domain-containing protein 13 (ZC3H13) and other 
wirters [22]. Among them, METTL3 acted as the primary 
catalytic subunit bound to the methyl donor 
S-adenosylmethionine (SAM) and catalysed methyl group 
transfer, and METTL14 was required for stabilizing 
METTL3 conformation and substrate RNA binding [23–25]. 
In addition, it was reported that Methyltransferase-like 16 
(METTL16) was a novel m6A methyltransferase to control 
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cellular SAM level and installed m6A marks onto the U6 small 
nuclear RNA [7,26].

As shown in (Figure 1), RNA m6A modification could 
be reversibly removed, and the demethylation process 
required erasers, a-ketoglutaric acid (a-KG) and molecular 
oxygen (O2) as cosubstrates and ferrous iron (Fe2+) as 
a cofactor [27]. Alpha-ketoglutarate dependent dioxygenase 
(FTO) was the first demethylase of m6A modification [5], 
catalysed the oxidative demethylation of m6A on mRNA. 
alkB homolog 5 (ALKBH5) one of the two identified m6A 
demethylases, showed a preference for target transcripts 
that had a consensus sequence [28]. And alkB homolog 3 
(ALKBH3) was a recently discovered demethylase that pre
ferred mitochondrial transfer RNAs (tRNAs) [29].

m6A modifications exerted different biological functions 
by recruiting specific reader proteins, including the YTH 
domain family (YTHDF1–3, YTHDC1, and YTHDC2), 
IGF2BPs (IGF2BP1/2/3), Heterogeneous nuclear ribonucleo
protein C/G (HNRNPC/G), Heterogeneous nuclear ribonu
cleoprotein A2B1 (HNRNPA2B1), and other proteins. These 
readers played different roles in the nucleus and cytoplasm 
(Figure 1(b)). In addition, it was reported that METTL3 could 
also serve as an m6A reader to promote the translation of 
target RNAs [30].

3. m6A modification on mRNAs in CRC

Maintaining proper m6A modification levels on mRNAs 
was essential for normal bioprocesses and development, 
dysregulation of m6A modification was usually associated 
with cancers [2,3,31–33]. Herein, we sorted out related 
articles in CRC and classified them into different parts by 
m6A regulators.

3.1. Aberrant m6A Writers

As the earliest identified m6A methyltransferase [34], 
METTL3 had been deeply studied in recent years. In CRC, 

previous articles reported that METTL3 was highly expressed 
[35–37] and acted as an oncogene. Li et al. [31] found that 
METTL3 was highly expressed in metastatic CRC and was 
associated with a poor prognosis. Mechanistically, METTL3 
led to methylation of SRY-box transcription factor 2 (SOX2) 
transcripts, which were subsequently recognized by IGF2BP2 
to prevent the degradation of SOX2 mRNA. Xiang et al. [38] 
demonstrated that METTL3 was upregulated in CRC and 
promoted cancer proliferation, with MYC being identified as 
a target downstream that could be enhanced by IGF2BP1. 
Zhou et al [39] indicated that METTL3 epigenetically 
repressed Yippee-like 5 (YPEL5) in an m6A-YTHDF2- 
dependent manner by targeting the m6A site in the coding 
sequence region of the YPEL5 transcript. Liu and Sun et al. 
[40] found that Sec62 homolog, preprotein translocation fac
tor (Sec62) upregulated by the METTL3-mediated m6A mod
ification promotes the stemness and chemoresistance of CRC 
by binding to β-catenin and enhancing Wnt signalling. 
Furthermore, the oncogenic function of METTL3-mediated 
m6A modification was reported in other related articles [41– 
47], as shown in (Table 1). However, Deng et al. [48] con
cluded that METTL3 might play a tumour-suppressive role in 
CRC cell proliferation, migration, and invasion. They demon
strated that METTL3 inhibited CRC progression by modulat
ing the p38/ extracellular-signal-regulated kinase (ERK) 
pathway.

As another critical component of MTC, recent studies 
suggested that METTL14 played an inhibitory role in CRC 
progression. Chen and Xu et al. [32] unveiled that 
decreased METTL14 could enhance the expression of SRY- 
related high-mobility-group box 4 (SOX4) through an m6A 
YTHDF2-dependent way, then promoted SOX4-mediated 
Epithelial-mesenchymal transition (EMT) process and 
PI3K /AKT signalling pathway. And Wang et al. [49] 
demonstrated that METTL14 enhanced tumour suppressor 
Kruppel-like factor 4 (KLF4) mRNA stability in an m6A 
IGF2BP2-dependent way. In addition, other writers like 
WTAP, METTL16 were up-regulated in CRC [50,51].

Figure 1. Reversible m6A modification on Eukaryotic RNAs. a. reversible m6A modification; b. the function of m6A modification.
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3.2. Aberrant m6A Erasers

In CRC, the expression of FTO was increased [51,52]. Yue 
et al. [53] indicated that FTO activated MYC by reducing the 
m6A modification of MYC. Zhang and Gao et al. [52] raised 
that FTO activated the MZF1/c- Myc axis to promote CRC 
cell proliferation. FTO increased MZF1 expression by 
demethylating MZF1 mRNA to play its oncogenic role, 
which was mentioned in lung cancer [54]. However, Liu 
et al [55] found that reduced FTO protein expression was 
correlated with a high recurrence rate and poor prognosis in 
resectable CRC patients. Mechanistically, FTO exerted 
a tumour-suppressive role by inhibiting the expression of 
metastasis-associated protein 1 (MTA1) in an m6A-IGF2BP2 
dependent way, Demethylation decreased its mRNA stability. 
In addition, ALKBH5 was down-expressed in CRC [56,57].

3.3. Aberrant m6A Readers

The YTH domain family were overexpressed and extensively 
involved in CRC progress. Bai and Yang et al. [58] found that 
overexpressed YTHDF1 played a vital oncogenic role in CRC, and 
they proposed that YTHDF1 recognized and promoted the trans
lation of m6A-modified FZD9 and Wnt6 mRNA. Nishizawa et al. 
[59] discovered that YTHDF1 was overexpressed in CRC, which 
was transcriptionally regulated by MYC. YTHDF2, YTHDF3, and 
YTHDC2 et al. have also been mentioned [37,51,57,60–62] in 
CRC-related studies (Table 1).

IGF2BPs were newly reported m6A readers. In CRC, Xiang 
et al. [38] indicated that MYC mRNA expression might be 
regulated in an m6A-IGF2BP1 dependent manner. IGF2BP2 
and IGF2BP3 were reported to regulate target mRNAs stabi
lity in CRC cells [31,41,45,63].

Table 1. The roles of m6A modification on coding RNAs in CRC.

Regulator Role Target mRNA Function Mechanism Ref
Writer

METTL3 Oncogene SOX2 promoted CRC metastasis maintained SOX2 expression through an m6A-IGF2BP2-dependent 
way.

[31]

MYC promoted CRC proliferation and 
tumorigenesis

enhance MYC expression in an m6A IGF2BP1-dependent manner. [38]

YPEL5 promoted CRC tumorigenesis repressed YPEL5 by targeting the m6A site in the coding 
sequence region of the YPEL5 transcript.

[39]

Sec62 promoted stemness and 
chemoresistance of CRC

enhanced Sec62 mRNA stability by controlling its m6A 
modification.

[40]

HSF1 promoted CRC development promoted HSF1 mRNA translation. [46]
HK2 and 

SLC2A1/ 
GLUT1

promoted CRC tumorigenesis stabilized HK2 and SLC2A1/GLUT1 expression. [41]

GLUT1 promoted CRC tumorigenesis promoted GLUT1 translation and glucose metabolism. [47]
SOCS2 promoted CRC tumorigenesis regulated SOCS2 RNA stability with m6A modification. [42]
CCNE1 promoted CRC proliferation stabilized CCNE1 mRNA. [43]
CBX8 associated with stemness 

properties in CRC
induced aberrant overexpression of CBX8. [44]

HMGA1 promoted CRC metastasis regulated HMGA1 expression through an m6A-dependent 
mechanism.

[45]

Anti-oncogene - suppressed CRC proliferation 
migration and invasion

modulated the p38/ERK pathways through an m6A-dependent 
way.

[48]

METTL14 Anti-oncogene SOX4 suppressed CRC progress inhibited SOX4-mediated EMT process and PI3K/AKT signalling 
pathway.

[32]

KLF4 suppressed CRC metastasis regulated the expression of tumour suppressor KLF4 through 
changing m6A modification level.

[49]

Eraser
FTO Oncogene MZF1 promoted CRC proliferation activated MZF1/c-Myc axis to promote CRC cell proliferation. [52]

MYC promoted CRC progress activated MYC by reducing the m6A modification of MYC. [53]
Anti-oncogene MTA1 suppressed CRC metastasis Regulated the MTA1 expression in an m6A-dependent manner [55]

Reader
YTHDF1 Oncogene FZD9/WNT6 promoted CRC tumorigenesis recognized and promoted the translation of m6A-modified FZD9 

and Wnt6 mRNA
[58]

YTHDF2 Anti-oncogene SOX4 inhibited CRC progress modulated m6A-dependent SOX4 mRNA degradation. [32]
Oncogene YPEL5 promoted CRC progress suppressed the expression of YPEL5 [34]

YTHDC2 Oncogene HIF-1α promoted CRC proliferation stabilize HIF-1α mRNA [62]
IGF2BP1 Oncogene MYC promoted CRC progress recognized the m6A modification sites on MYC to enhance its 

mRNA stability and translation.
[38,79]

Sec62 promoted stemness and 
chemoresistance of CRC

bound to the m6A-modified Sec62 mRNA to maintain the Sec62 
mRNA stability.

[40]

IGF2BP2 Oncogene SOX2 promoted CRC progress prevented SOX2 mRNA degradation in a m6A-dependent manner. [31]
HMGA1 promoted CRC progress regulated HMGA1 mRNA stability in a m6A-dependent manner. [45]
HMGA2 promoted CRC progress regulated HMGA2 mRNA stability [63]
MYC promoted CRC progress recognized the m6A modification sites on MYC to enhance its 

mRNA stability
[82]

IGF2BP2/ 
3

Oncogene HK2 and 
SLC2A1/ 
GLUT1

promoted CRC tumorigenesis stabilized HK2 and SLC2A1/GLUT1 expression. [41]
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4. m6A modification on regulatory ncRNAs in CRC

In addition to mRNAs, ncRNAs could also be regulated by 
m6A modification [6–10]. An increasing number of studies 
have reported that m6A modification on ncRNAs was closely 
related to the occurrence and development of CRC (Table 2), 
the results were followed.

4.1. m6A on miRNAs

miRNAs were short non-coding RNAs around 22 nucleotides, 
they could endogenously express and regulate mRNA post- 
transcriptional gene expression [64]. Perious studies have 
verified that either METTL3 or METTL14 was required for 
the engagement of primiRNAs by DiGeorge Syndrome Crisis 
Area Gene 8 (DGCR8) [65,66]. In CRC, Peng et al. [67] 
indicated that overexpression of METTL3 increased the level 
of miR-1246 by promoting the maturation of miR-1246 from 
pri-miR-1246, which further enhanced the metastatic capacity 
of CRC. The result of the m6A RNA immunoprecipitation 
(MeRIP) assay showed that m6A modification was enriched 
with pri-miR-1246 sequence, and the expression level of pri- 
miR-1246 was upregulated while miR-1246 level was 
decreased in METTL3-knockdown CRC cells. Similarly, 
Chen and Xu et al. [68] found METTL14 was downregulated 
in CRC, which inhibited the pri-miR-126 processes in an 
m6A-dependent manner. They immunoprecipitated DGCR8 
and detected pri-miR-375 bound to DGCR8, the result shown 
that the expression levels of pri-miR-375 bound to DGCR8 
were significantly increased in METTL14-overexpressing CRC 
cells. Yang et al. [69] revealed that NOP2/Sun RNA methyl
transferase 2 (Nsun2) contributed to the down-regulation of 
miR-125b via the m6A-dependent way in CRC, interfering 
with the mature of miR-125b. Mature miR-125b came from 
pri-miR-125b1 and pri-miR-125b2, they revealed that the 
RNA methyltransferase NSun2 interfered with the mature 
processing of miR-125b by activating m6A modificaition on 
pre-miR-125b2, but not pri-miR-125b2.

4.2. m6A on lncRNAs

LncRNAs referred to those ncRNAs that are longer than 200 
nucleotides [70], previous studies have shown that m6A mod
ification on lncRNAs was involved in the CRC progression 
[70]. Zuo and Su et al. [71] found that m6A levels of lncRNAs 
in CRC tissues were significantly up-regulated. Wu et al. [72] 
revealed that m6A modification was involved in the upregula
tion of lncRNA RP11 via increasing its nuclear accumulation 
in CRC cells. The m6A RNA-immunoprecipitation (RIP) 
qPCR showed the m6A sites were enriched in RP11, and 
they found overexpression of METTL3 increased RP11 
expression while ALKBH5 decreased RP11 expression. 
Moreover, they indicated that overexpressed METTL3 pro
moted the binding between HNRNPA2B1 and RP11. Yang 
et al. [73] identified that METTL14 inhibited oncogenic 
lncRNA X inactivate-specific transcript (XIST) through an 
m6A dependent pathway. They found that m6A modification 
on XIST promoting YTHDF2- induced RNA degradation 
in CRC.

4.3. m6A on circRNAs

CircRNAs belonged to a new class of ncRNAs formed by 
covalently closed loops through back splicing, played impor
tant roles in various biological functions [74]. The existence of 
m6A modification in circRNAs was confirmed by the inter
action between circRNAs and YTHDF1/YTHDF2. 
Meanwhile, knockdown of METTL3 significantly affected 
m6A level on circRNAs [75,76]. Chen and Yuan et al. [77] 
reported that METTL3-induced circ1662 promoted CRC cell 
invasion and migration. Mechanistically, METTL3 induced 
circ1662 expression by marking m6A sites in flanking reverse 
complementary sequences. Meanwihle, Chen et al. [63] found 
that YTHDC1 could bind to circNSUN2 to facilitate its export 
from the nucleus to the cytoplasm in an m6A dependent 
manner, the latter was upregulated in CRC patients with 
liver metastasis (LM) and predicted poorer patient survival. 

Table 2. The role of m6A modification on regulatory ncRNAs in CRC.

Regulator Role
Target 
ncRNA Function Mechanism Ref

Writer/Eraeser
METTL3 Oncogene miR-1246 promoted CRC metastasis promoted the transition from pri-miR-1246 to mature. [67]

lncRNA 
RP11

triggered the dissemination of CRC cells increased RP11 nuclear accumulation and increased binding 
between hnRNPA2B1 and RP11.

[72]

circNSUN2 promoted CRC progression and liver 
metastasis

increased the nuclear content of circNSUN2 (vague). [63]

circ1662 promoted CRC invasion and migration induced circ1662 expression by marking m6A sites in flanking 
reverse sequences.

[77]

METTL14 Anti-oncogene miR-375 inhibited CRC tumour process modulated DGCR8 binding to pri-miR375. [68]
lncRNA 

XIST
inhibited CRC cell growth, migration, and 

invasion
knockdown of METTL14 abolished m6A level of XIST to augment 

XIST expression.
[73]

Nsun2 Oncogene miR-125b promoted CRC cell migration inhibiting the mature process of miR-125b [69]
ALKBH5 Anti-oncogene lncRNA 

RP11
inhibited CRC tumour process Increased RP11 nuclear accumulation [72]

Reader
YTHDF2 Anti-oncogene lncRNA 

XIST
inhibited CRC cell growth, migration, and 

invasion
mediated the recognition and degradation of m6A-modified XIST [73]

YTHDF3 Oncogene lncRNA 
GAS5

promoted CRC progression facilitated m6A-modified lncRNA GAS5 degradation. [81]

YTHDC1 Oncogene circNSUN2 promoted CRC progression and liver 
metastasis

mediated the nuclear export of circNSUN2. [63]
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In addition, Guo et al. [78] found that m6A modification was 
involved in regulating the degradation of circ3823, which was 
highly expressed in CRC. While the mechanism of m6A 
modification on circRNAs was still vague, these studies 
proved that m6A modification existed in the ring structure 
of circRNAs, suggesting that m6A modification could be 
a regulator to affect circRNA.

5. Regulation of m6A modification by ncRNAs

5.1 ncRNAs regulated the process of m6A modification

As explained above, m6A modification had regulatory 
effects on ncRNAs, including their mature, accumulation, 
transport, and degradation. Interestingly, regulatory 
ncRNAs mediated the process of m6A modification con
versely (Figure 3).

A previous study reported that m6A peaks were 
enriched at miRNA target sites on mRNAs, revealing 
a solid link between m6A modification and miRNAs. In 
CRC, Song and Feng et al. [46] reported that miR455-3p 
inhibited m6A modification on heat shock transcription 
factor 1 (HSF1) mRNA, thus repressing HSF1 translation. 
The m6A site on the 3ʹUTR region of HSF1 was completely 
complementary to the seed sequence of miR455-3p, thus 
formed a competitive inhibition between miR455-3p and 
METTL3. Besides, lncRNAs could also regulate the inter
action between m6A regulators and their target mRNAs. 
Zhu et al. [79] discovered the lncRNA LINC00266-1 
encoded a 71-amino acid peptide, which mainly interacted 
with the RNA-binding proteins (RBP) including IGF2BP1, 
thus named RNA binding regulatory peptide (RBRP). 
RBRP bound to IGF2BP1 and strengthened m6A recogni
tion by IGF2BP1 to increase the mRNA stability and 
expression of c-Myc [79]. Hou et al. [45] demonstrated 
that LINC00460 enhanced interaction between IGF2BP2 
and HMGA1 (High Mobility Group A1), thereby regulat
ing mRNA stability and expression of HMGA1. Moreover, 
Chen et al. [63] reported that YTHDF1-induced 
circNSUN2 promoted the interactions between IGF2BP2 
and HMGA2, and enhanced the mRNA stability of 
HMGA2 through the formation of a circNSUN2/ 
IGF2BP2/HMGA2 RNA−protein ternary complex.

5.2 ncRNAs regulated the expression of m6A regulators

m6A regulators themselves as protein-coding genes could 
be modified by methylation or acetylation or other tran
scriptional or post-transcription regulations, including the 
regulation of ncRNAs.

ncRNAs could regulate m6A modification by targeting 
the mRNAs of m6A regulators. In CRC, Yue et al. [53] 
found that miR-96 mediated m6A modification by regulat
ing AMP-activated alpha 2 (AMPKα2), which led to over
expression of FTO. And low expressed miR-1266 was 
reported to promote the occurrence and progression of 
CRC by directly targeting FTO [80]. Wen et al. [81] uncov
ered a negative feedback loop between lncRNA GAS5 and 
m6A reader YTHDF3: In normal, lncRNA GAS5 bound 

with Yes1 associated transcriptional regulator (YAP) to 
attenuate YAP-mediated transcription of YTHDF3; In 
tumour process, YTHDF3 could conversely bind with m6A- 
modified GAS5 to trigger its decay (Supplementary Figure 
S1). Moreover, Wang et al [82] also found that lncRNA 
LINRIS bound to a site of IGF2BP2 and blocked its degra
dation through the ubiquitination-autophagic pathway, 
thereby maintaining the MYC-mediated glycolysis and the 
proliferation of CRC cells.

6. Therapeutic Implications of m6A modification

6.1. m6A modification as biomarkers and therapeutic 
targets

Given that dysregulation of m6A level and aberrant expres
sion of m6A regulators were widely participated in the 
cancer progression, m6A modification and its regulatory 
proteins seemed to be potential biomarkers and therapeutic 
targets in CRC.

Most m6A related-genes were upregulated in CRC, while 
METTL14, YTHDF3, and ALKBH5 were downregulated 
[37,83]. Wang et al. [50] discovered that the differentiation 
of CRC was closely relevant to m6A modification: high 
total m6A and high expression of METTL3, METTL16, 
WTAP were relevant to poor prognosis. Liu et al. [83] 
found that the expression pattern of m6A regulators includ
ing METTL3, METTL14, METTL16, FTO and, ALKBH5 
were associated with the clinical outcomes of CRC patients. 
Li et al. [31] revealed that METTL3 was highly expressed in 
metastatic CRC tissues and associated with a poor prog
nosis. Low expression of METTL14 in CRC tissues asso
ciated with poor overall survival was revealed in Chen’s 
study [32], and the discovery of the METTL14/SOX4 axis 
on CRC metastasis would aid in exploring efficient thera
peutic target. And Bai et al. [58] revealed that overex
pressed YTHDF1 was associated with tumour depth and 
tumour size in CRC, silencing YTHDF1 could significantly 
inhibit the Wnt/β-catenin pathway activity in CRC cells, 
which provided a potential therapeutic target for CRC.

Drug resistance was responsible for treatment failure 
and/or cancer recurrence. Lan et al. [84] discovered that 
the total m6A level and the METTL3 expression were 
increased in CRC tissues from Oxaliplatin (OX) -resistant 
patients, targeting METTL3-mediated m6A modification 
might be a promising adjuvant therapeutic strategy for OX- 
resistant CRC patients. Mohammad B. Uddin et al. [36] 
found that silencing METTL3 with neplanocin A to sup
pressing m6A formation in p53 pre-mRNA could re- 
sensitize CRC cells to anticancer drugs. Moreover, 
YTHDF1 mediated cisplatin through the GLS1-glutamine 
metabolism axis was validated by an in vivo xenograft 
mouse model [85], which revealed a novel sight contribut
ing to overcoming chemo-resistant CRC.

Li et al. suggested [56] that m6A erasers contributed to 
the efficacy of immunotherapy and identified that ALKBH5 
regulated anti-PD-1 therapy response. Wang et al. [35] 
uncovered that METTL3/14 regulated immune responses 
to anti-PD-1 therapy in CRC.
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6.2. Potential application of the interaction between 
m6A modification and ncRNAs

The discovery of potent and selective inhibitors for m6A 
modification was urgent important in cancer treatment. Niu 
et al. [86] found inhibitors targeting 2-oxoglutarate (2OG) 
and iron-dependent oxygenases, and DAA (3-deazaadeno
sine) was shown to block the introduction of m6A into 
mRNA substrates by inhibiting the hydrolysis of SAH [87]. 
In addition, inhibitors of FTO including rhein, meclofenamic 
acid (MA), and MA2 have been mentioned in Acute myeloid 
leukaemia (AML) treatment [88,89].

However, the effect of these m6A inhibitors was not 
specific, and not targeted for particular m6A regulators or 
processes. It was speculated that the ncRNA regulatory 
mechanisms mentioned above could be used as break
through points in targeted therapy. Based on upstream 

regulation of m6A regulators by ncRNAs, we proposed 
a novel strategy for the CRC patients’ treatments: targeting 
unique ncRNAs to regulate their downstream m6A regula
tors and m6A processes (Supplementary Figure S2). For 
example, using small molecule that specifically acted on 
the consensus sequences of ncRNAs, the levels of m6A 
modification were changed, which affected the expression 
of downstream genes and thereby regulating the biological 
functions on CRC cells. And the clinical application of 
ncRNAs in cancer therapy has been widely studied, such 
as delivering ncRNA mimics or antisense oligonucleotide of 
ncRNAs and small molecular compounds [90], which pro
vided the possibility for the novel strategy.

However, effective therapeutic clinical application of 
ncRNAs and m6A modification has been faced lots of chal
lenges, the specific mechanism of ncRNAs for use in targeted 
therapy needed to be further warranted.

Figure 2. The function of m6A modification on ncRNAs in CRC.
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7. Discussion

In the past few years, serval reviews about m6A modifica
tion in CRC have been published [18–20]. In contrast, the 
present review especially focused on the interaction of m6A 
modification with regulatory ncRNAs in CRC, which 
included m6A modification on regulatory ncRNAs and 
the regulation of m6A modification by ncRNAs.

In CRC, the m6A modification on regulatory ncRNA 
regulated the maturation, transportation, stability, and 
degradation of the target ncRNAs (Figure 2). While m6A 
modification on ncRNAs had the same reversible process, 
the function of m6A modification on ncRNAs mainly 
depended on types of its target ncRNAs: m6A modification 
on miRNAs mainly regulated the mature process of 

Figure 3. The regulation of m6A modification by ncRNAs in CRC.

Table 3. m6A regulators modulated by regulatory ncRNAs in CRC.

ncRNA
Target m6A 

regulator Function Mechanism Ref

miR455-3p METTL3 inhibited CRC development competed with METTL3 for the m6A modification of HSF1 mRNA. [46]
miR-96 FTO stimulated CRC malignancy and 

aggressiveness
down-regulated AMPKα2 to increased expression of FTO. [53]

miR-1266 FTO inhibited CRC progression down-regulated FTO directly. [80]
lncRNA GAS5 YTHDF3 inhibited CRC progression directly bind with YAP to attenuate YAP-mediated transcription of 

YTHDF3.
[81]

LINC00266-1 IGF2BP1 promoted CRC progression strengthened IGF2BP1 m6A recognition on the target RNAs [79]
LINC00460 IGF2BP2 promoted CRC metastasis enhanced interactions between IGF2BP2 and HMGA1. [45]
lncRNA 

LINRIS
IGF2BP2 promoted CRC progression blocked K139 ubiquitination of IGF2BP2 to prevent its degradation. [82]
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miRNAs, m6A modification on lncRNAs regulated their 
translation and degradation. Meanwhile, ncRNAs also regu
lated the m6A modification in the process of post- 
transcriptional regulation (Table 3). We summarized that 
ncRNAs could regulate m6A modification in two ways: 
mediating the expression of m6A regulators; participating 
in the interaction of m6A regulators with their target RNAs 
(Figure 3). For example, miR455-3p competitively inhibited 
the binding of METTL3 to the target site on HSF1 mRNA; 
The expression of FTO was regulated by miR-96 and miR- 
1266 [53,80], IGF2BPs were habitually regulated by 
lncRNAs [45,79,82]. Furthermore, m6A-modified 
circNSUN2 enhanced HMGA2 mRNA stability through 
the m6A-IGF2BP2 dependent way [63], and there was 
a negative feedback loop between lncRNA GAS5 and m6A 
reader YTHDF3 [81]. The above researches all proved the 
interplay between m6A modification and regulatory 
ncRNAs, which was helpful to explain lots of paradoxes 
in cancer progression.

In CRC, METTL3 was the most studied m6A regulator. 
Highly expressed METTL3 served as an oncogene in cancer 
progression through targeting different downstream, such 
as SOX2, MYC, HMGA1, and YPEL5. However, it was 
controversial that Deng et al. [48] pointed out METTL3 
was low expressed and played a tumour-suppressive role 
through p38/ERK pathways in CRC. Similarly, the incon
sistent conclusions of METTL3 in different cancer types 
have been mentioned in other articles. We supposed that 
the dual role of METTL3 might be attributed to back
ground differences of target genes. He et al. [91] revealed 
that the functional effects of m6A on downstream processes 
might be heterogeneous greatly and depended on binding 
target sites of RBP. Besides, the heterogeneity of the tissue 
samples might partly explain the different expressions of 
METTL3, Liu et al. [92] indicated that the expression level 
of METTL3 was related to tumour stage and grade. And 
noteworthily, METTL3 was also mentioned as a reader in 
the cytoplasm, promoting the mRNA translation indepen
dent of its methyltransferase activity [30].

Contrary to METTL3, METTL14 acted as a tumour sup
pressor in CRC, which was contradictory for two core 
components of MTC demonstrated opposite effects on can
cer progression. It seemed that METTL3 or METTL14 
possessed methylation activity alone under certain condi
tions, while the METTL3-METTL14 complex displayed 
much higher catalytic activity [24,93], and with targets 
specificity. Moreover, Wang et al. [49] found that over
expressed methyl CpG binding protein 2 (MeCP2) occupied 
reciprocity between METTL3 and METTL14, which indi
cated that there was a competitive relationship between 
MeCP2 and METTL3 with METTL14. We speculated that 

the overexpression of METTL3 and the depletion of 
METTL14 had some feedback in the MTC. However, the 
exact mechanism of the MTC functions awaited structural 
investigation.

As one of the most vital proto-oncogenic transcription 
factors in tumorigenesis, MYC controlled the transcription 
of at least 15% of the human genes [94]. Though lack of 
knowledge the accurate m6A sites on MYC mRNA, MYC 
was reported as one of the primiary target genes of m6A 
modification in CRC [38,52,53,82], directly or indirectly. 
Xiang and Liang et al. [38] pointed out that METTL3 
methylated MYC mRNA to enhance its expression, while 
Yue et al. [53] found that FTO might demethylate MYC 
mRNA to enhance expression. We speculated that FTO 
regulated MYC expression in an indirected way as we 
noticed that FTO modulated MYC expression through the 
FTO-m6A-MZF1 axis [52]. Besides, Nishizawa et al. [59] 
discovered that YTHDF1 was overexpressed in CRC, which 
was transcriptionally regulated by MYC.

Given that m6A modification played significant roles in 
the regulation of metabolism, stemness, metastasis and, 
drug resistance in CRC, key m6A modification regulators 
might be identified as the potential targets in the diagnosis 
and treatment of CRC. Moreover, we believed that 
upstream regulation of m6A regulators by ncRNAs pro
vided a new insight for the treatment. Application of 
unique ncRNAs to regulate downstream m6A regulators 
might be more accurate and personalized for CRC 
patients.

8. Conclusions

In this review, we systematically summarized the biological 
functions of m6A regulators, investigated the interaction 
between m6A modification and regulatory ncRNAs in CRC. 
As two critical parts of post-transcriptional regulation, it was 
vital to figuring out the m6A-mediated post-transcriptional 
regulation on regulatory ncRNAs and the way regulatory 
ncRNAs modulated m6A regulators. In the present review, 
we first deeply investigated the interaction between m6A 
modification and regulatory ncRNAs in CRC, while other 
published reviews only mentioned about. Mechanistically, 
we summarized in detail the way ncRNAs regulated the pro
cess of m6A modification. In function, we concluded that the 
m6A modification on miRNA mainly regulates its maturation 
process, and the m6A modification on lncRNA regulates its 
translation and degradation. More importantly, uniquely pro
posed a novel strategy for CRC patients’ treatments based on 
the regulation of m6A modification by ncRNAs.
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