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Abstract

We propose a nonlinear, wavelet-based signal representation that is translation invariant and robust 

to both additive noise and random dilations. Motivated by the multi-reference alignment problem 

and generalizations thereof, we analyze the statistical properties of this representation given a 

large number of independent corruptions of a target signal. We prove the nonlinear wavelet-based 

representation uniquely defines the power spectrum but allows for an unbiasing procedure that 

cannot be directly applied to the power spectrum. After unbiasing the representation to remove 

the effects of the additive noise and random dilations, we recover an approximation of the power 

spectrum by solving a convex optimization problem, and thus reduce to a phase retrieval problem. 

Extensive numerical experiments demonstrate the statistical robustness of this approximation 

procedure.
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1. Introduction

The goal in classic multi-reference alignment (MRA) is to recover a hidden signal f:ℝ ℝ
from a collection of noisy measurements. Specifically, the following data model is assumed.

Model 1 (Classic MRA).

The classic MRA data model consists of M independent observations of a compactly 

supported, real-valued signal f ∈ L2(ℝ):

yj(x) = f x − tj + εj(x), 1 ⩽ j ⩽ M, (1.1)

†Corresponding author. littl119@msu.edu. 

HHS Public Access
Author manuscript
Inf inference. Author manuscript; available in PMC 2022 January 21.

Published in final edited form as:
Inf inference. 2021 December ; 10(4): 1287–1351. doi:10.1093/imaiai/iaaa016.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where:

i. supp yj ⊆ − 1
2 , 1

2  for 1 ⩽ j ⩽ M.

ii. tj j = 1
M  are independent samples of a random variable t ∈ ℝ.

iii. εj(x) j = 1
M  are independent white noise processes on − 1

2 , 1
2 , with variance σ2.

The signal is thus subjected to both random translation and additive noise. The MRA 

problem arises in numerous applications, including structural biology [32,64,65,70,71,79], 

single cell genomic sequencing [51], radar [43,85], crystalline simulations [76], image 

registration [18,40,69] and signal processing [85]. It is a simplified model relevant for 

cryo-electron microscopy (cryo-EM), an imaging technique for molecules that achieves near 

atomic resolution [11,14,75]. In this application one seeks to recover a three-dimensional 

reconstruction of the molecule from many noisy two-dimensional images/projections [41]. 

Although MRA ignores the tomographic projection of cryo-EM, investigation of the 

simplified model provides important insights. For example, [5,66] investigate the optimal 

sample complexity for MRA and demonstrate that M = Θ(σ6) is required to fully recover 

f in the low signal-to-noise regime when the translation distribution is periodic; this 

optimal sample complexity is the same for cryo-EM [7,82]. Recent work has established 

an improved sample complexity of M = Θ(σ4) for MRA when the translation distribution is 

aperiodic [1], and this rate has been shown to also hold in the more complicated setting of 

cryo-EM, if the viewing angles are non-uniformly distributed [72]. Problems closely related 

to Model 1 include the heterogenous MRA problem, where the unknown signal f is replaced 

with a template of k unknown signals f1, . . . , fk [16,54,66,77], as well as multi-reference 

factor analysis, where the underlying (random) signal follows a low-rank factor model and 

one seeks to recover its covariance matrix [50].

Approaches for solving MRA generally fall into two categories: synchronization methods 
and methods that estimate the signal directly, i.e. without estimating nuisance parameters. 

Synchronization methods attempt to recover the signal by aligning the translations and 

then averaging. They include methods based on angular synchronization [8,15,24,67,73,84], 

where for each pair of signals the best pairwise shift is computed and then the translations 

are estimated from this pairwise information [6], and semi-definite programming 
[4,9,10,25], which approximates the quasi-maximum likelihood estimator of the shifts by 

relaxing a non-convex rank constraint. However, these methods fail in the low signal-to-

noise regime. Methods that estimate the signal directly include both the method of moments 
[44,48,72] and expectation maximization, or EM-type, algorithms [1,30]; a number of EM-

type algorithms have also been developed for the more complicated cryo-EM problem 

[33,68]. An important special case of the method of moments is the method of invariants, 

which seeks to recover f by computing translation invariant features, and thus avoids 

aligning the translations. However, the task is a difficult one, as a complete representation 

is needed to recover the signal, and yet the representation may be difficult to invert and 

corrupted by statistical bias. Generally, the signal is recovered from translation invariant 

moments, which are estimated in the Fourier domain [29,44]. Recent work [5,14] utilizes 
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such Fourier invariants (mean, power spectrum and bispectrum) and recovers f  by solving a 

non-convex optimization problem on the manifold of phases.

Classic MRA however fails to capture many of the biological phenomena arising in 

molecular imaging, such as the random rotations of the molecules and the tomographic 

projection associated with the imaging of three-dimensional objects. Another shortcoming 

is that the model fails to capture the dynamics that arise from flexible regions 

in macromolecular structures. These flexible regions are very important in structural 

biology, for example in understanding molecular interactions [36,39,52,53] and molecular 

recognition of epigenetic regulators of histone tails [17,31,58]. The large-scale dynamics 

of these regions makes imaging challenging [81], and thus sample preparation in cryo-EM 

generally seeks to minimize these dynamics by focusing on well-folded macromolecules 

frozen in vitreous ice [63]. However, this ‘may severely impact... the nature of the intrinsic 

dynamics and interactions displayed by macromolecules’ [63]. Although modern cryo-EM 

is making great strides in understanding flexible systems [3,37,38,59], formulating models 

that are more capable of capturing the motions associated with the flexible regions of 

macromolecules could open the door to applying cryo-EM more broadly, i.e. to less well-

folded macromolecules. Mathematically, the motion of the flexible region can be modeled as 

a diffeomorphism. See Fig. 1, which shows a molecule with a flexible side chain (1(a)) and 

a diffeomorphism resulting from movement of the flexible region (1(b)). Figure 1(a) is taken 

from [63], and Fig. 1(b) was obtained by deforming it.

This article thus generalizes the classic MRA problem to include a random diffeomorphism. 

Specifically, we consider recovering a hidden signal f:ℝ ℝ from

yj(x) = Lτjf x − tj + εj(x) , 1 ⩽ j ⩽ M,

where Lτ is a dilation operator that dilates by a factor of (1−τ). The dilation operator Lτ is 

a simplified model for more general diffeomorphisms Lζ f(x) = f(ζ(x)), since in the simplest 

case when ζ(x) is affine, Lζ simply translates and dilates f (see Section 2.1). Dilations are 

also relevant for the analysis of time-warped audio signals, which can arise from the Doppler 

effect and in speech processing and bioacoustics. For example, [60–62] consider a stationary 

random signal f(x), which is time-warped, i.e. Dζf(x) = ζ′(x)f(ζ(x)), and use a maximum 

likelihood approach to estimate ζ. In [27,28], a similar stochastic time warping model is 

analyzed using wavelet based techniques. The noisy dilation MRA model considered here 

corresponds to the simplest case of time-warping, when ζ is an affine function. This special 

case is in fact very important in imaging applications [22,23,46,57,69,80], where it is critical 

to compute features which are scale invariant, as objects are naturally dilated by the ‘zoom’ 

of an image.

A new approach is needed to solve this more general MRA problem, as Fourier invariants 

will fail, being unstable to the action of diffeomorphisms, including dilations. The instability 

occurs in the high frequencies, where even a small diffeomorphism can significantly alter 

the Fourier modes. We instead propose L2(ℝ) wavelet coefficient norms as invariants, 

using a continuous wavelet transform. This approach is inspired by the invariant scattering 
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representation of [56], which is provably stable to the actions of small diffeomorphisms. 

However, here we replace local averages of the modulus of the wavelet coefficients with 

global averages (i.e. integrations) of the modulus squared, thus providing rigid invariants 

that can be statistically unbiased. Similar invariant coefficients have been utilized in a 

number of applications including predicting molecular properties [34,35] and quantum 

chemical energies [45], and in microcanonical ensemble models for texture synthesis [19]. 

Recent work [42] has also generalized such coefficients to graphs.

1.1 Notation—The Fourier transform of a signal f ∈ L1(ℝ) is

f(ω) = ∫ f(x)e−ixωdx .

We remind the reader that compactly supported L2(ℝ) functions are in L1(ℝ). The power 

spectrum is the nonlinear transform P :L2(ℝ) L1(ℝ) that maps f to

(Pf)(ω) = f(ω) 2 , ω ∈ ℝ .

We denote f(x) ⩽ Cg(x) for some absolute constant C by f(x) ≲ g(x). We also write f(x) = 

O(g(x)) if |f(x)| ⩽ Cg(x) for all x ⩾ x0 for some constants x0, C > 0; f(x) = o(g(x)) denotes 

f(x)/g(x) → 0 as x → ∞; f(x) = Θ(g(x)) denotes C1g(x) ⩽ |f(x)| ⩽ C2g(x) for all x ⩾ x0 for 

some constants x0, C1, C2 > 0. The minimum of a and b is denoted a ∧ b, and the maximum 

by a ∨ b.

2. MRA models and the method of invariants

Standard MRA models are generalized to models that include deformations of the 

underlying signal in Section 2.1. Section 2.2 reviews power spectrum invariants and 

introduces L2(ℝ) wavelet coefficient invariants. Theorem 2.4 proves wavelet coefficient 

invariants computed with a continuous wavelet transform and a suitable mother wavelet are 

equivalent to the power spectrum, showing there is no information loss in the transition from 

one representation to the other.

2.1 MRA data models

A standard MRA scenario considers the problem of recovering a signal f ∈ L2(ℝ) in which 

one observes random translations of the signal, each of which is corrupted by additive 

noise. The problem is particularly difficult when the signal-to-noise ratio (SNR) is low, as 

registration methods become intractable. In [5,13,14,16,54,74] the authors propose a method 

using Fourier-based invariants, which are invariant to translations and thus eliminate the 

need to register signals.

A more general MRA scenario incorporates random deformations of the signal f, which 

could be used to model underlying physical variability that is not captured by rigid 

transformations and additive noise models. For example [4,7] consider a discrete signal f 
corrupted by an arbitrary group action, [47,85] consider random deformations arising in 
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RADAR and [2] considers a generalization of MRA where signals are rescaled by random 

constants. Another natural mathematical model is small, random diffeomorphisms, which 

leads to observations of the form

yj(x) = Lζjf x − tj + εj(x), 1 ⩽ j ⩽ M, (2.1)

where ζj ∈ C1(ℝ) is a random diffeomorphism, tj ∈ ℝ is a random translation and the signals 

εj(x) are independent white noise random processes. The transform Lζ is the action of the 

diffeomorphism ζ on f,

Lζf(x) = f(ζ(x)) .

If ζ−1 ′
∞ < ∞, then one can verify Lζ :L2(ℝ) L2(ℝ).

One of the keys to the Fourier invariant approach of [5,13,14,16,54,74] is the authors 

can unbias the Fourier invariants of the noisy signals, thus allowing them to devise an 

unbiased estimator of the Fourier invariants of the signal f (or a mixture of signals in 

the heterogeneous MRA case). For the diffeomorphism model (2.1) this would require 

developing a procedure for unbiasing the (Fourier) invariants of yj j = 1
M  against both 

additive noise and random diffeomorphisms.

In order to get a handle on the difficulties associated with the proposed diffeomorphism 

model, in this paper we consider random dilations of the signal f, which corresponds to 

restricting the diffeomorphism to be of the form

ζ(x) = x
1 − τ , τ ⩽ 1/2.

Specifically, we assume the following noisy dilation MRA model.

Model 2 (Noisy dilation MRA data model).—The noisy dilation MRA data model 
consists of M independent observations of a compactly supported, real-valued signal 

f ∈ L2(ℝ):

yj(x) = Lτjf x − tj + εj(x), 1 ⩽ j ⩽ M, (2.2)

where Lτ is an L1(ℝ) normalized dilation operator,

Lτf(x) = (1 − τ)−1f (1 − τ)−1x .

In addition, we assume the following:

i. supp yj ⊆ − 1
2 , 1

2  for 1 ⩽ j ⩽ M.
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ii. tj j = 1
M  are independent samples of a random variable t ∈ ℝ.

iii. τj j = 1
M  are independent samples of a bounded, symmetric random variable τ 

satisfying

τ ∈ ℝ , E(τ) = 0 , Var(τ) = η2 , τ ⩽ 1/2.

iv. εj(x) j = 1
M  are independent white noise processes on − 1

2 , 1
2  with variance σ2.

Remark 2.1—The interval − 1
2 , 1

2  is arbitrary and can be replaced with any interval of 

length 1. In addition, the spatial box size is arbitrary, i.e. − 1
2 , 1

2 , can be replaced with 

− N
2 , N

2 . All results still hold with σ N replacing σ wherever it appears.

Thus, the hidden signal f is supported on an interval of length 1, and we observe M 
independent instances of the signal that have been randomly translated, randomly dilated 

and corrupted by additive white noise. We assume the hidden signal is real, but the proposed 

methods can also handle complex valued signals with minor modifications. Recall ε(x) is a 

white noise process if ε(x) = dBx, i.e. it is the derivative of a Brownian motion with variance 

σ2.

While the noisy dilation MRA model does not capture the full richness of the 

diffeomorphism model, it already presents significant mathematical difficulties. Indeed, as 

we show in Section 5, Fourier invariants, specifically the power spectrum, cannot be used 

to form accurate estimators under the action of dilations and random additive noise. The 

reason is that Fourier measurements are not stable to the action of small dilations (measured 

here by |τ|), since the displacement of Lτf(ω) relative to f(ω) depends on |ω|. Intuitively, 

high-frequency modes are unstable, and yet high frequencies are often critical; for example 

removing high frequencies increases the sample complexity needed to distinguish between 

signals in a heterogeneous MRA model [5]. We thus replace Fourier-based invariants with 

wavelet coefficient invariants, which are defined in Section 2.2. As we show the wavelet 

invariants of the signal f can be accurately estimated from wavelet invariants of the noisy 

signals yj j = 1
M , with no information loss relative to the power spectrum of f.

For future reference we also define the following dilation MRA model, which includes 

random translations and random dilations but no additive noise. Thus, Models 1 and 3 are 

both special cases of Model 2.

Model 3 (Dilation MRA data model).—The dilation MRA data model consists of M 

independent observations of a compactly supported, real-valued signal f ∈ L2(ℝ):

yj(x) = Lτjf x − tj , 1 ⩽ j ⩽ M, (2.3)

where Lτ is an L1(ℝ) normalized dilation operator,
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Lτf(x) = (1 − τ)−1f (1 − τ)−1x .

In addition, we assume (i)–(iii) of Model 2.

2.2 Method of invariants

We now discuss how invariant representations can be used to solve MRA data models and 

introduce the wavelet invariants used in this article.

2.2.1 Motivation and related work—Let Ttf(x) = f(x − t) denote the operator that 

translates by t acting on a signal f. Invariant measurement models seek a representation 

Φ(f) ∈ ℬ in a Banach space ℬ such that

Φ T tf = Φ(f), ∀t ∈ ℝ . (2.4)

In MRA problems, one additionally requires that

Φ(f) = Φ(g) g = T tf for some t ∈ ℝ . (2.5)

The first condition (2.4) removes the need to align random translations of the signal f, 
whereas the second condition (2.5) ensures that if one can estimate Φ(f) from the collection 

Φ yj j = 1
M , then one can recover an estimate of f (up to translation) by solving

f⋆ = arginf
g ∈ L1 ∩ L2(ℝ)

‖Φ(g) − Φ(f)‖ℬ,
(2.6)

where ⋅ ℬ is the Banach space norm.

When the observed signals yj j = 1
M  are corrupted by more than just a random translation, 

though, as in Model 2, estimating Φ(f) from Φ yj j = 1
M  is not always straightforward. 

Indeed, one would like to compute

ΦM(f) = 1
M ∑

j = 1

M
Φ yj , (2.7)

but the quantity ΦM(f) is not always an unbiased estimator of Φ(f), meaning that 

limM ∞ΦM(f) ≠ Φ(f). In order to circumvent this issue, one must select a representation 

Φ such that

EΦ yj = Φ(f) + bΦ(f, ℳ), (2.8)

where bΦ(f, ℳ) is a bias term depending on the choice of Φ, f, and the signal corruption 

model ℳ. If (2.8) holds and if we can compute a b such that EbΦ yj, ℳ = bΦ(f, ℳ) + δ for 

bΦ(f, ℳ) ≫ |δ|, then one can amend (2.7) to reduce the bias
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ΦM(f) = 1
M ∑

j = 1

M
Φ yj − bΦ yj, ℳ ,

in which case

lim
M ∞

ΦM(f) = Φ(f) + δ

almost surely by the law of large numbers. The main difficulty therefore is twofold. On the 

one hand, one must design a representation Φ that satisfies (2.4), (2.5) and (2.8) with a bias 

b that can be estimated; on the other hand, the optimization (2.6) must be tractable. For 

random translation plus additive noise models (i.e., Model 1), the authors of [5,14] describe 

a representation Φ based on Fourier invariants that satisfies the outlined requirements and 

for which one can solve (2.6) despite the optimization being non-convex. The Fourier 

invariants include f(0) (i.e. the integral of f), the power spectrum of f and the bispectrum 

of f. Each invariant captures successively more information in f. While f(0) carries limited 

information, the power spectrum recovers the magnitude of the Fourier transform, namely 

it recovers the non-negative, real-valued function ρ(ω) such that f(ω) = ρ(ω)eiθ(ω), but the 

phase information Θ(ω) is lost. Since Ttf(ω) = e−iωtf(ω), the power spectrum is invariant 

to translations as the Fourier modulus kills the phase factor induced by a translation t of f. 
However, it is in general not possible to recover a signal from its power spectrum, although 

in certain special cases the phase information can be resolved; results along these lines are in 

the field of phase retrieval [26,78]. The bispectrum is also translation invariant and invertible 

so long as f(ω) ≠ 0 [66].

In Section 5 we show that it is impossible to significantly reduce the power spectrum bias 

for Model 2, which includes translations, dilations and additive noise. We thus propose 

replacing the power spectrum with the L2(ℝ) norms of the wavelet coefficients of the signal 

f. These invariants satisfy (2.4) and (2.8) for Model 2 and yield a convex formulation of 

(2.6). They do not satisfy (2.5) for general f ∈ L2(ℝ), but Theorem 2.4 in Section 2.2.2 

shows that knowing the wavelet invariants of f is equivalent to knowing the power spectrum 

of f, which means that any phase retrieval setting in which recovery is possible will also 

be possible with the specified wavelet invariants. For example if the signal lives in a spline 

or shift invariant space in addition to being realvalued, then it can be recovered from its 

phaseless measurements [26,78].

2.2.2 Wavelet invariants—We now define the wavelet invariants used in this article. A 

wavelet ψ ∈ L2(ℝ) is a waveform that is localized in both space and frequency and has zero 

average,

∫ ψ(x) dx = 0.
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Note throughout this article ψ will always denote a wavelet in L1 ∩ L2(ℝ) with zero average, 

satisfying ‖ψ‖2 = 1 as well as the classic admissability condition ∫ |ψ(ω)|2
ω dω < ∞. A dilation 

of the wavelet by a factor λ ∈ (0,∞) is denoted,

ψλ(x) = λ1/2ψ(λx),

where the normalization guarantees that ‖ψλ‖2 = ‖ψ‖2 = 1. The continuous wavelet 

transform W computes

W f = f ∗ ψλ(x):λ ∈ (0, ∞), x ∈ ℝ .

The parameter λ corresponds to a frequency variable. Indeed, if ξ0 is the central frequency 

of ψ, the wavelet coefficients f ∗ ψλ recover the frequencies of f in a band of size 

proportional to λ centered at λξ0. Thus, high frequencies are grouped into larger packets, 

which we shall use to obtain a stable, invariant representation of f.

The wavelet transform Wf is equivariant to translations but not invariant. Integrating the 

wavelet coefficients over x yields translation invariant coefficients, but they are trivial 

since ∫ ψλ = 0. We therefore compute L2(ℝ) norms in the x variable, yielding the following 

nonlinear wavelet invariants:

Definition 2.1 (Wavelet invariants).: The L2 wavelet invariants of a real-valued signal 

f ∈ L1 ∩ L2(ℝ) are given by

(Sf)(λ) = f * ψλ 2
2, λ ∈ (0, ∞), (2.9)

where ψλ(x) = λ1/2ψ(λx) are dilations of a mother wavelet ψ.

Throughout this article ψ can be taken as a Morlet wavelet, in which case ψ is 

constructed to have frequency centered at ξ by ψ(x) = Cξπ−1/4e−x2/2 eiξx − e−ξ2/2  for 

Cξ = 1 − e−ξ2 − 2e−3ξ2/4 −1/2
, but results hold more generally for what we refer to as 

k-admissible wavelets, where k ⩾ 0 is an even integer. See Appendix A for a precise 

description of this admissibility criteria. The wavelet invariants can be expressed in the 

frequency domain as

(Sf)(λ) = 1
2π∫ |f(ω)|

2
|ψλ(ω)|2 dω,

which motivates the following definition of ‘wavelet invariant derivatives’.

Definition 2.2 (Wavelet invariant derivatives).: The n-th derivative of (Sf)(λ) is defined as
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(Sf)(n)(λ): = 1
2π∫ f(ω)

2 dn

dλn ψλ(ω) 2 dω .

Remark 2.2: Definition 2.1 assumes f:ℝ ℝ, which allows the wavelet ψ to be either real 

or complex. Our results can easily be extended to complex f, but a strictly complex wavelet 

would be needed, with Sf(λ) computed for all λ ∈ (−∞, ∞) \ 0.

Remark 2.3: For a discrete signal of length n, computing the wavelet invariants via a 

continuous wavelet transform is O(n2), while computing the power spectrum is O(n log n). 

Thus, one pays a computational cost to achieve greater stability with no loss of information. 

On the other hand, if wavelet invariants are computed for a dyadic wavelet transform (i.e. 

only for O(log n) λ’s), the computational cost is the same and stability is maintained, but 

more information is lost.

Remark 2.4: When (Pf)(ω) = |f(ω)|2 is continuous, Definition 2.2 reduces to a normal 

derivative, i.e. one can check that (Sf)(n)(λ) = dn

dλn (Sf)(λ). However, when Pf is not 

continuous, in general (Sf)(n)(λ) ≠ dn

dλn (Sf)(λ) and (Sf)(n)(λ) is more convenient for 

controlling the error of the estimators proposed in this article. Throughout this article, 

the notation (Sf)(n)(λ) will thus denote the derivative of Definition 2.2 and dn

dλn (Sf)(λ) will 

denote the standard derivative.

Under mild conditions, one can show that S:L2(ℝ) L1 ∩ C(0, ∞). The values λ = 2j for 

j ∈ ℤ correspond to rigid versions of first-order L2(ℝ) wavelet scattering invariants [56]. The 

continuous wavelet transform Wf is extremely redundant; indeed, for suitably chosen mother 

wavelets, the dyadic wavelet transform with λ = 2j for j ∈ ℤ is a complete representation 

of f. However, the corresponding operator S restricted to λ = 2j is not invertible. When one 

utilizes every frequency λ ∈ (0,∞), though, the resulting L2(ℝ) norms (Sf)(λ) = f ∗ ψλ 2
2

uniquely determine the power spectrum of f, so long as the wavelet ψ satisfies a type of 

independence condition.

Condition 2.3: Define

|ψλ
+(ω)|

2
= |ψλ(ω)|2 + |ψλ( − ω)|2 ⋅ 1(ω ⩾ 0) .

If for any finite sequence ωi i = 1
n  of distinct positive frequencies, the collection 

{|ψλ
+ ωi |2}i = 1

n
 is linearly independent functions of λ, we say the wavelet ψ satisfies the 

linear independence condition.
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Remark 2.5: Condition 2.3 is stated in terms of |ψλ
+(ω)|2 to avoid assumptions on 

whether ψ is real or complex. When ψ(x) ∈ ℝ, |ψλ
+(ω)|2 = 2|ψλ(ω)|2 for ω ⩾ 0. When ψ is 

complex analytic, |ψλ
+(ω)|2 = |ψλ(ω)|2. When ψ ∈ ℂ but not complex analytic, |ψλ

+(ω)|2 simply 

incorporates a reflection of |ψλ(ω)|2 about the origin. Since we assume f(x) ∈ ℝ, |ψλ
+(ω)|2

uniquely defines (Sf)(λ), since (Sf)(λ) = 1
2π 〈|f |2 , |ψλ

+|2〉 by the Plancherel and Fourier 

convolution theorems.

Theorem 2.4: Let f ∈ L1 ∩ L2(ℝ) and assume ψ satisfies Condition 2.3 and ψ has compact 

support. Then,

Sf = Sg Pf = Pg .

Proof.: First assume Pf = Pg, which means |f(ω)|2 = |g(ω)|2 for almost every ω ∈ ℝ. Using 

the Plancheral and Fourier convolution theorems,

(Sf)(λ) = ∫ |f * ψλ(x)|2 dx = 1
2π∫ |f(ω)|

2
|ψλ(ω)|2 dω

= 1
2π∫ |g(ω)

2
|ψλ(ω)|2 dω = (Sg)(λ), ∀λ ∈ (0, ∞) .

Now suppose Sf = Sg. Since Sf and Sg are continuous in λ, we have

0 = (Sf)(λ) − (Sg)(λ) = 1
2π∫ |f(ω)|2 − |g(ω)|2 |ψλ(ω)|2 dω, ∀λ ∈ (0, ∞) .

Since f ∈ L1 ∩ L2(ℝ) we have f ∈ L2 ∩ L∞(ℝ) and thus Pf ∈ L1 ∩ L∞(ℝ). By interpolation 

we have Pf ∈ L2(ℝ), and the same for Pg. By applying Lemma 2.1 (stated below) with 

p(ω) = (Pf)(ω) − (Pg)(ω) (note p is continuous since f, g ∈ L1(ℝ)), we conclude Pf = Pg for 

almost every ω. □

Lemma 2.1: Let p ∈ L2(ℝ) be continuous and assume p(ω) = p(−ω), ψ has compact support 

and Condition 2.3. Then,

∫ p(ω)|ψλ(ω)|2 dω = 0∀λ > 0 p = 0 a . e .

The proof of Lemma 2.1 is in Appendix C. We remark that many wavelets satisfy 

Condition 2.3 and have compactly supported Fourier transform, so Theorem 2.4 is broadly 

applicable. For example, Proposition 2.1 below proves that any complex analytic wavelet 

with compactly supported Fourier transform satisfies Condition 2.3. Morlet wavelets satisfy 

Condition 2.3 (see Lemma C.1 in Appendix C) but do not have compactly supported Fourier 

transform; however, ψ does have fast decay for a Morlet wavelet and numerically we 
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observe no issues. We also note, the assumption that ψ has compact support in Theorem 2.4 

can be removed if f, g are bandlimited. The following Proposition, proved in Appendix C, 

gives some sufficient conditions guaranteeing Condition 2.3.

Proposition 2.1: The following are sufficient to guarantee Condition 2.3:

i. |ψ(ω)|2 has a compact support contained in the interval [a, b], where a and b have 

the same sign, e.g. complex analytic wavelets with compactly supported Fourier 

transform.

ii. |ψ(ω) |2 ∈ C∞(ℝ) and there exists an N such that all derivatives of order at least N 
are non-zero at ω = 0, e.g. the Morlet wavelet.

Remark 2.6: In practice, Pf, Sf are implemented as discrete vectors, and Sf is obtained from 

Pf via matrix multiplication, i.e. Sf = F(Pf) for some real matrix F with FTF strictly positive 

definite. Thus, ‖Pf − Pg‖2 ⩽ σmin
−1 ‖Sf − Sg‖2, where σmin > 0 is the smallest singular value 

of the matrix F, and the spectral decay of F, which can be explicitly computed, thus 

determines the stability of the representation. The smoother the wavelet, the more rapidly 

the spectrum decays, since when Pψ ∈ Cp, FTF is defined by a Cp kernel and thus has 

eigenvalues that decay like o(1/np+1) [20]. There is thus a tradeoff between smoothness and 

stability. In this article we choose smoothness over stability, since smoothness is required 

for unbiasing noisy dilation MRA, and in our experiments the Morlet wavelet yielded the 

best results. We therefore invert the representation by solving an optimization problem that 

is initialized to be close to the desired solution (see Section 6.5), and we avoid computing 

the pseudo-inverse of F, which is unstable for our smooth wavelet.

3. Unbiasing for classic MRA

In this section we consider the classic MRA model (Model 1). We discuss unbiasing results 

for both the power spectrum and wavelet invariants, as well as simulation results comparing 

the two methods. In the following proposition we establish unbiasing results for the power 

spectrum by rederiving some results from [14], extended to the continuum setting. The 

proposition is proved in Appendix D.

Proposition 3.1

Assume Model 1. Define the following estimator of (Pf)(ω):

(Pf)(ω): = 1
M ∑

j = 1

M
Pyj (ω) − σ2 .

Then with probability at least 1 − 1/t2,

|(Pf)(ω) − (Pf)(ω) | ⩽ 2tσ
M f 1 + σ . (3.1)
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We obtain an identical result for wavelet invariants (Proposition 3.2) when signals are 

corrupted by additive noise only. See Appendix D for the proof.

Proposition 3.2

Assume Model 1. Define the following estimator of (Sf)(λ):

(Sf)(λ): = 1
M ∑

j = 1

M
Syj (λ) − σ2 .

Then with probability at least 1 − 1/t2,

|(Sf)(λ) − (Sf)(λ) | ⩽ 2tσ
M f 1 + σ . (3.2)

As M → ∞, the error of both the power spectrum and wavelet invariant estimators decays 

to zero at the same rate, and one can perfectly unbias both representations. As demonstrated 

in Section 5, this is not possible for noisy dilation MRA (Model 2), as there is a non-

vanishing bias term. However, a nonlinear unbiasing procedure on the wavelet invariants can 

significantly reduce the bias.

We illustrate and compare additive noise unbiasing for power spectrum estimation using 

Pf , the power spectrum method of Proposition 3.1 and (Sf), the wavelet invariant method 

of Proposition 3.2. To approximate (Pf) from the wavelet invariants (Sf), we apply the 

convex optimization algorithm described in Section 6.5 to obtain PSf , the power spectrum 

approximation that best matches the wavelet invariants (Sf). Thus, throughout this article, 

PSf  denotes a power spectrum estimator obtained by first unbiasing wavelet invariants 

and then running an optimization procedure, while (Pf) denotes an estimator computed by 

directly unbiasing the power spectrum. Our simulations compare the L2 error of both of 

these estimators, i.e. we compare Pf − Pf 2 and Pf − PSf 2.

Figure 2(a) shows the uncorrupted power spectrum (red curve) of a medium frequency 

Gabor function (f(x) = e−5x2cos(16x)), and the power spectrum after the signal is corrupted 

by additive noise with level σ = 2−3 (blue curve); the SNR of the experiment is 0.56 (see 

Section 6.1). Figure 2(b) shows the L2 error of the power spectrum estimation for the two 

methods as a function of log2(M) for a fixed SNR, and Fig. 2(c) shows the L2 error as a 

function of log2(σ) for a fixed M. The L2 errors for the two methods are similar; however, 

estimation via wavelet invariants is advantageous when the sample size M is small or the 

additive noise level σ is large. As M becomes very large or σ very small, the power spectrum 

method is preferable as the smoothing procedure of the wavelet invariants may numerically 

erase some extremely small scale features of the original power spectrum.
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4. Unbiasing for dilation MRA

In this section we analyze the dilation MRA model (Model 3). We thus assume the signals 

have been randomly translated and dilated but there is no additive noise.

In fact there is a simple algorithm to recover f under this model. Since fτj 2
2 = f 2

2/ 1 − τj , 

1
M ∑j = 1

M 1/ fτj 2
2 is an unbiased estimator of 1/ f 2

2, and so f 2
2 can be accurately 

approximated. Once is recovered, one can take any signal yj and dilate it so that 

yj 2
2 = f 2

2, and the result will be an accurate approximation of the hidden signal f for M 

large. However, this approach collapses in the presence of even a small amount of additive 

noise. In the presence of additive noise, an alternative is to attempt a synchronization by 

centering each signal. The center cf of signal f can be defined in the classical way by

cf = 1
f 2

2∫ x|f(x) |2 dx .

Since the signals yj(x − (cf + tj)) are perfectly aligned, one can thus attempt an alignment 

by defining yj(x) = yj x − cyj . However cyj − (cf + tj) = O(σ ∨ σ2 + η), so significant 

errors arise in the synchronization that cannot be resolved by averaging. As our goal is 

ultimately to produce a method that can be extended to the noisy dilation MRA model, we 

abandon both the trivial solution (which cannot be extended to noisy dilation MRA) and 

the synchronization approach (which produces large errors) and explore a method based on 

empirical averages.

We first observe that random dilations cause 1
M ∑j = 1

M Pyj (ω) and 1
M ∑j = 1

M Syj (λ) to be 

biased estimators of (Pf)(ω) and (Sf)(λ), and the bias for both is O(η2), where η2 is the 

variance of the dilation distribution. However, if the moments of the dilation distribution are 

known and Pf, Sf are sufficiently smooth, one can apply an unbiasing procedure to the above 

estimators so that the resulting bias is O(ηk+2), where k ⩾ 2 is an even integer.

Throughout this section, we assume k ⩾ 2 is an even integer, and define the constants Ci 

from the first k/2 even moments of τ by E τi = Ciηi for i = 2, 4, . . . , k. Note since we 

assume E τ2 = η2, C2 = 1. We define the constants B2, B4, . . . , Bk by solving

Ci
i! − B2Ci − 2

(i − 2)! − … − Bi − 2C2
2! − Bi = 0 (4.1)

for i = 2, 4, . . . , k; these constants are deterministic functions of the moments of τ. 

A non-recursive formula related to the Euler numbers can be derived, which defines Bi 

explicitly in terms of C2, . . . , Ci; however, the recursive formula (4.1) is easier to implement 

numerically.

We introduce two additional moment-based constants that are defined by the Ci, Bi 

constants:
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T : = max
i = 0, 2, …

Ci

1
i (4.2)

E: = max
i = 0, 2, …, k

max
j = 0, …, k + 2 − i

T j

j! |Bi|
1

i + j
, (4.3)

where C0, |B0| = 1, and when i = j = 0 in (4.3), T j
j! |Bi|

1
i + j

 is replaced with 1.

Remark 4.1

Since the distribution of τ is bounded, we are guaranteed that T < ∞, and in general can 

consider both T and E to be O(1) constants. For example for the uniform distribution, T ⩽ 3

and |Bi| ⩽ |Euler(i)|
i! ⩽ 1, which gives E ⩽ 3.

We utilize the following two lemmas, which are proved in Appendix E, to derive results for 

both the power spectrum and wavelet invariants.

Lemma 4.1

Let Fλ(τ) = L((1 − τ)λ) for some function L ∈ Ck+2(0, ∞) and a random variable τ 
satisfying the assumptions of Section 2.1, and let k ⩾ 2 be an even integer. Assume there 

exist functions Λi:ℝ ℝ, R:ℝ ℝ such that

|λiL(i)(λ)| ⩽ Λi(λ) for 0 ⩽ i ⩽ k + 2 ,
Λk + 2((1 − τ)λ)

Λk + 2(λ) ⩽ R(λ),

and define the following estimator of L(λ):

Gλ(τ): = Fλ(τ) − B2η2Fλ′′(τ) − B4η4Fλ
(4)(τ) − … − BkηkFλ

(k)(τ) .

Then Gλ(τ) satisfies

|EGλ(τ) − L(λ)| ≲ kR(λ)Λk + 2(λ)(2Eη)k + 2

Var Gλ(τ) ≲ k2R(λ)2Λ(λ)2

where

Λ(λ)2: = ∑
0 ⩽ i, j ⩽ k + 2, i + j ⩾ 2

Λi(λ)Λj(λ)(2Eη)i + j
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and E is the absolute constant defined in (4.3).

Lemma 4.2

Let the assumptions and notation of Lemma 4.1 hold, and let τ1, . . . , τM be independent. 

Define

L(λ): = 1
M ∑

j = 1

M
Gλ τj .

Then with probability at least 1 − 1/t2

|L(λ) − L(λ) | ≲ kR(λ) Λk + 2(λ)(2Eη)k + 2 + tΛ(λ)
M .

The deviation of the estimator L(λ) from L(λ) thus depends on two things: (1) the bias of 

the estimator that is O(ηk+2) and (2) the standard deviation of the estimator that is O ηM− 1
2 , 

since Λ(λ) = O(η).

4.1 Power spectrum results for dilation MRA

We now show how this unbiasing procedure based on both the moments of τ and the even 

derivatives of Py can be used to obtain an estimator of Pf.

Proposition 4.1—Assume Model 3 and Pf ∈ Ck + 2(ℝ). Define the following estimator of 

(Pf)(ω):

(Pf)(ω): = 1
M ∑

j = 1

M
Pyj (ω) − B2η2ω2 Pyj ′′(ω) − … − Bkηkλk Pyj

(k)(ω)

where the constants Bi satisfy (4.1). Let

Ωi(ω) = |ωi(Pf)i(ω)| for 0 ⩽ i ⩽ k + 2 , R(ω) = max
τ

Ωk + 2((1 − τ)ω)
Ωk + 2(ω) .

Then for all ω ≠ 0, with probability at least 1 − 1/t2,

|(Pf)(ω) − (Pf)(ω) | ≲ kR(ω) Ωk + 2(ω)(2Eη)k + 2 + tΩ(ω)
M , (4.4)

where

Ω(ω) = ∑
0 ⩽ i, j ⩽ k + 2, i + j ⩾ 2

Ωi(ω)Ωj(ω)(2Eη)i + j .
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Proof.: Since Pf is a translation invariant representation, we can ignore the translation 

factors tk k = 1
M  and consider the model yj = Lτjf. In addition since yj(x) ∈ ℝ, (Pyj)(ω) = 

(Pyj)(−ω) and it is sufficient to consider ω ∈ (0, ∞). Proposition 4.1 then follows directly 

from Lemma 4.2 with λ = ω, L = Pf since (Pyj)(ω) = (Pf)((1 − τj)ω) = Fω(τj), Λi = Ωi, and 

Λ = Ω. □

We postpone a discussion of the shortcomings of Proposition 4.1 to Section 4.3, where we 

compare the power spectrum and wavelet invariant results for dilation MRA.

4.2 Wavelet invariant results for dilation MRA

We now apply the same unbiasing procedure to the wavelet invariants. Unlike for the power 

spectrum, where the error may depend on the frequency ω (see (4.4) and Section 4.3), the 

wavelet invariant error can be uniformly bounded independently of λ with high probability. 

The following two Lemmas establish bounds on the derivatives of (Sf)(λ) and are needed to 

prove Proposition 4.2; they are proved in Appendix B.

Lemma 4.3 (Low-frequency bound).—Assume Pψ ∈ Cm(ℝ) and f ∈ L1(ℝ). Then the 

quantity |λm(Sf)(m)(λ)| can be bounded uniformly over all λ. Specifically:

|λm(Sf)(m)(λ)| ⩽ Ψm f 1
2

for Ψm defined in (A1).

Lemma 4.4 (High-frequency bound for differentiable functions).—Assume 

Pψ ∈ Cm(ℝ), and f′ ∈ L1(ℝ). Then the quantity |λm(Sf)(m)(λ)| can be bounded by

|λm(Sf)(m)(λ)| ⩽
Θm
λ2 f′ 1

2

for Θm defined in (A2).

When ψ is a Morlet wavelet or more generally when ψ is (k + 2)-admissible as described 

in Appendix A, these lemmas allow one to bound the error of the order k wavelet invariant 

estimator for dilation MRA in terms of the following quantities:

Λi(λ) = Ψi‖f‖1
2 ∧ Θi

λ2 ‖f′‖1
2 , Λ(λ)2 = ∑

0 ⩽ i, j ⩽ k + 2, i + j ⩾ 2
Λi(λ)Λj(λ)(2Eη)i + j, (4.5)

where Ψi, Θi are defined in (A1), (A2) and E is defined in (4.3).

Proposition 4.2—Assume Model 3, the notation in (4.5), and that ψ is (k + 2)-admissible. 

Define the following estimator of (Sf)(λ):
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(Sf)(λ): = 1
M ∑

j = 1

M
Syj (λ) − B2η2λ2 Syj ′′(λ) − … − Bkηkλk Syj

(k)(λ)

where the constants Bi satisfy (4.1). Then with probability at least 1 − 1/t2,

|(Sf)(λ) − (Sf)(λ) | ≲ k Λk + 2(λ)(2Eη)k + 2 + tΛ(λ)
M .

Proof.: Since Sf is a translation invariant representation, we can ignore the translation 

factors tk k = 1
M  and consider the model yj = Lτjf. Since ψ is k + 2-admissible, 

ψ ∈ Ck + 2(ℝ), which guarantees(Sf)(λ) ∈ Ck+2(0, ∞). We note that since f ∈ L1(ℝ), Pf 

is continuous, and the Leibniz integral rule guarantees that (Sf)(n)(λ) = dn

dλn (Sf)(λ) for 

1 ⩽ n⩽ k + 2. By applying Lemma 4.3, we have |λi(Sf)(i)(λ)| ⩽ Ψi‖f‖1
2 for all 0 ⩽ i 

⩽ k + 2, so that Lemma 4.2 holds for L(λ) = (Sf)(λ), Λi(λ) = Ψi‖f‖1
2, and R(λ) = 1. 

Now by applying Lemma 4.4, we have |λi(Sf)(i)(λ)| ⩽ Θi‖f′‖1
2/λ2 for all 0 ⩽ i ⩽ k + 

2, so that Lemma 4.2 also holds for L(λ) = (Sf)(λ), Λi(λ) = Θi‖f′‖1
2/λ2, and R(λ) = 

4 (note since |τ | ⩽ 1
2 , Λk + 2((1 − τ)λ)/Λk + 2(λ) ⩽ 4). Thus, Lemma 4.2 in fact holds with 

Λi(λ) = Ψi‖f‖1
2 ∧

Θi
λ2‖f′‖1

2 ; since (Syj)(λ) = (Sf)((1 − τj)λ) = Fλ(τj), we obtain Proposition 

4.2 □

Since Λi(λ) ⩽ Ψi f 1
2, Proposition 4.2 guarantees that the error can be uniformly bounded 

independent of λ. In addition, if the signal is smooth, the error for high-frequency λ will 

have the favorable scaling λ−2. An important question in practice is how to choose k, 

i.e. what order wavelet invariant estimator minimizes the bias. Consider for example when 

f′ ∉ L1(ℝ), and Λk + 2(λ) = Ψk + 2 f 1
2. By using a second-order estimator, we can decrease 

the bias from O(η2) to O(η4), and we can further decrease the bias to O(η6) by choosing k = 

4. However, Ψk increases very rapidly in k. Indeed, as can be seen from (A1), Ψk increases 

like k!. Thus, one possible heuristic (assuming η is known) is to choose k = k where k
minimizes the bias upper bound kΨk+2(2Eη)k+2. Since Ψk increases factorially, Ψk ∼ (Ck)k 

for some constant C, and k + 2 will be inversely proportional to η, that is (k + 2) η−1. The 

following corollary of Proposition 4.2 then holds for any k ⩽ k.

Corollary 4.1—Under the assumptions of Proposition 4.2, if Ψi(2Eη)i is decreasing for i ⩽ 
k + 2, then with probability at least 1 − 1/t2:

|(Sf)(λ) − (Sf)(λ) | ≲ ‖f‖1
2 kΨk + 2(2Eη)k + 2 + tk2η

M . (4.6)

Similarly, if Θi(2Eη)i is decreasing for i ⩽ k + 2, then with probability at least 1 − 1/t2:
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|(Sf)(λ) − (Sf)(λ) | ≲
f′ 1

2

λ2 kΘk + 2(2Eη)k + 2 + tk2η
M . (4.7)

Remark 4.2—We observe that for a discrete lattice I of λ values, we can define the 

discrete 1-norm by g L1(I) = ∑λ ∈ I |g(λ) |Δλ. Assume the lattice has cardinality n, and that 

Ψi(2Eη)i, Θi(2Eη)i are decreasing for i ⩽ k + 2. Applying Proposition 4.2 with t = ns and a 

union bound over the lattice gives

Sf − Sf
L1(I)

≲ k f 1
2Ψk + 2 + f′ 1

2Θk + 2 (2Eη)k + 2 + s nk2η
M f 1

2 + f′ 1
2

with probability at least 1 − 1/s2. When n ≪ M, which is the context for MRA, the 1-norm 

of the error is O(ηk+2) as M → ∞.

4.3 Comparison

Although Propositions 4.2 and 4.1 at first glance appear quite similar, the wavelet invariant 

method has several important advantages over the power spectrum method, which we 

enumerate in the following remarks.

Remark 4.3—Proposition 4.2 (wavelet invariants) applies to any signal satisfying 

f ∈ L1(ℝ), but Proposition 4.1 requires Pf ∈ Ck + 2(ℝ). Thus, as k is increased, the 

power spectrum results apply to an increasingly restrictive function class. Furthermore, as 

discussed in Section 5, if the signal contains any additive noise, Pyj is not even C1, which 

means the unbiasing procedure of Proposition 4.1 cannot be applied. On the other hand, 

by choosing Pψ ∈ C∞(ℝ), Sf will inherit the smoothness of the wavelet, and the wavelet 

invariant results will hold for any f ∈ L1(ℝ) and any k.

Remark 4.4—Since (Pfτ)(ξ) = (Pf)((1 − τ)ξ), dilation will transport the frequency content 

at ξ to (1 − τ)ξ, so that the displacement is τξ. Thus, when ξ is very large, |(Pf)(ξ) − (Pfτ)

(ξ)| can be large even for τ small. Because the wavelet invariants bin the frequency content, 

and these bins become increasingly large in the high frequencies, this does not occur for 

wavelet invariants. More specifically, there is always a signal f and frequency ξ for which 

|(Pf)(ξ) − (Pf)(ξ)| is large regardless of k. Consider for example when (Pf)(ω) = e−(ω − ξ)2. 

Then Ωk(ξ) ∼ ξk, and |(Pf)(ξ) − Pf (ξ)| ≳ 1. However, for M large enough, the order k 

wavelet invariant estimator satisfies |(Sf)(λ) − (Sf)(λ) | = O kΨk + 2ηk + 2  for all λ. The 

wavelet invariants are thus stable for high-frequency signals, where the power spectrum 

fails.

Remark 4.5—For the wavelet invariants there will be a unique k that minimizes 

kΨk+2(2Eη)k+2, and k does not depend on λ. Furthermore, k can be explicitly computed 

given the wavelet ψ and moment constant E. On the other hand, the minimum of kΩk+2(ω)

Hirn and Little Page 19

Inf inference. Author manuscript; available in PMC 2022 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2Eω)k+2 with respect to k will depend on both the frequency ω and the signal f, so that 

k = k(ω, f), and it becomes unclear how to choose the unbiasing order.

4.4 Simulation results for dilation MRA

We first illustrate the unbiasing procedure of Propositions 4.1 and 4.2 for the high-frequency 

signal f(x) = e−5x2cos(32x). Figure 3 shows the power spectrum estimator Pf and the 

wavelet invariant estimator PSf for k = 0, 2, 4 for both small and large dilations, where 

PSf denotes the combined wavelet invariant unbiasing plus optimization procedure (see 

Section 6.5). Higher order unbiasing is beneficial for both methods for small dilations but 

fails for the power spectrum for large dilations. Both methods will of course fail for η large 

enough, but for high-frequency signals the power spectrum fails much sooner.

Next we compare Pf − Pf 2 and Pf − PSf 2, the L2 error of estimating the power 

spectrum of the target signal via the power spectrum estimators of Proposition 4.1 and 

via the wavelet invariant estimators of Proposition 4.2, followed by a convex optimization 

procedure. We consider order k = 0, 2, 4 estimators for both the power spectrum and wavelet 

invariants on the following Gabor atoms of increasing frequency:

f1(x) = e−5x2cos(8x)

f2(x) = e−5x2cos(16x)

f3(x) = e−5x2cos(32x) .

These functions satisfy f = Real(h) where (Pℎ)(ω) = (π/5)e−(ω − ξ)2/10 for ξ = 8, 16, 32, and 

thus exhibit the behavior described in Remark 4.4.

Simulation results are shown in Fig. 4; the horizontal axis shows log2(M) while the vertical 

axis shows log2(Error). For each value of M, the error was calculated for 10 independent 

simulations and then averaged. The unbiasing procedure of Propositions 4.1 and 4.2 requires 

knowledge of the moments of the dilation distribution, but in practice these are unknown. 

Thus, the first two even moments of the dilation distribution (η2,C4η4) were estimated 

empirically with the fourth-order estimators described in Section 6.3 (see Definition 6.1). 

For the low-frequency signal, the fourth-order power spectrum estimator was best for both 

small and large dilations and is preferable due to the lower computational cost (see Remark 

2.3). For the high-frequency signal, the fourth-order wavelet invariant estimator was best for 

large dilations and WSC k = 2 and k = 4 were best and equivalent for small dilations. For the 

medium-frequency signal, the higher order power spectrum estimators were best for small 

dilations while the higher order wavelet invariant estimators were best for large dilations. 

Thus, the simulation results confirm that the wavelet invariants will have an advantage over 

Fourier invariants when the signals are either high frequency or corrupted by large dilations. 
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We remark that one obtains nearly identical error plots with oracle knowledge of the dilation 

moments, indicating that the empirical moment estimation procedure is highly accurate in 

the absence of additive noise, even for small M values.

5. Noisy dilation MRA model

Finally, we consider the noisy dilation MRA model (Model 2) where signals are randomly 

translated and dilated and corrupted by additive noise. Section 5.1 gives unbiasing results for 

wavelet invariants and Section 5.2 reports relevant simulations.

5.1 Wavelet inariant results for noisy dilation MRA

To state Proposition 5.1 as succinctly as possible, we also define the following quantity

Ψ: = ∑
m = 0, 2, …, k

Ψm(Eη)m, (5.1)

where E is defined in (4.3) and Ψm is defined in (A1).

Proposition 5.1—Assume Model 2 and that ψ is (k + 2)-admissible. Define the following 

estimator of (Sf)(λ):

(Sf)(λ): = 1
M ∑

j = 1

M
Syj (λ) − B2η2λ2 Syj ′′(λ) − … − Bkηkλk Syj

(k)(λ) − σ2

where the constants Bi satisfy (4.1). Then with probability at least 1 − 1/t2

|(Sf)(λ) − (Sf)(λ) | ≲ kΛk + 2(λ)(2Eη)k + 2

+ t
M kΛ(λ) + Ψσ2 + Ψ Λ0(λ) + Λ(λ) σ , (5.2)

where E, Λ(λ), Ψ are as defined in (4.3), (4.5), (5.1).

The following corollary is an immediate consequence of Proposition 5.1.

Corollary 5.1—Let the assumptions of Proposition 5.1 hold, and in addition assume 

Ψi(2Eη)i is decreasing for i ⩽ k + 2. Then with probability at least 1 − 1/t2

|(Sf)(λ) − (Sf)(λ) | ≲ kΨk + 2(2Eη)k + 2‖f‖1
2 + tk

M kη f 1
2 + σ‖f‖1 + σ2 . (5.3)

We remark that there are two components to the estimation error bounded by the right-hand 

side of (5.3): the first two terms are the error due to dilation, as in Corollary 4.1 of 

Proposition 4.2, and the last two terms are the error due to additive noise, as given in 

Proposition 3.2. Thus, the wavelet invariant representation allows for a decomposition of the 

error of the noisy dilation MRA model into the sum of the errors of the random dilation 

model and the additive noise model. This is possible because the representation inherits 
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the differentiability of the wavelet and is not possible when Pψ ∉ Ck(ℝ), in which case the 

dilation unbiasing procedure has a more complicated effect on the additive noise. A result 

equivalent to Proposition 5.1 cannot be made for the power spectrum, because the nonlinear 

unbiasing procedure of Proposition 4.1 cannot be applied to the power spectra of signals 

from the noisy dilation MRA corruption model, since they are not differentiable in the 

presence of additive noise.

Proof of Proposition 5.1.—Since Sf is a translation invariant representation, we can 

ignore the translation factors tj j = 1
M  and consider the model yj = fτj + εj. For notational 

convenience, we define the following order k derivative ‘unbiasing’ operator:

Aλg(λ): = g(λ) − B2η2λ2 d
dλ2g(λ) − … − Bkηkλk d

dλkg(λ), (5.4)

which is defined on any function of λ, so that we can express our estimator by

(Sf)(λ) = 1
M ∑

j = 1

M 1
2π∫ |yj(ω)|2Aλ|ψλ(ω)|2 dω − σ2

= 1
M ∑

j = 1

M 1
2π∫ |fτj(ω)|2 + fτj(ω)εj(ω) + fτj(ω)εj(ω) + |εj(ω)|2 Aλ|ψλ(ω)|2 dω − σ2 .

We can thus decompose the error as follows:

|(Sf)(λ) − (Sf)(λ) | ⩽ 1
M ∑

j = 1

M 1
2π∫ fτj(ω)εj(ω) + fτj(ω)εj(ω) Aλ ψλ(ω)

2
dω ∣

Cross Term Error

∣

+ 1
M ∑

j = 1

M 1
2π∫ fτj(ω)

2
Aλ ψλ(ω) 2 dω − (Sf)(λ) ∣

Dilation Error

+ 1
M ∑

j = 1

M 1
2π∫ εj(ω)

2
Aλ ψλ(ω) 2 dω − σ2 ∣

Additive Noise Error

.

To bound the above terms we utilize the following two Lemmas, which are proved in 

Appendix F.

Lemma 5.1—Let the notation and assumptions of Proposition 5.1 hold, and let Aλ be the 

operator defined in (5.4). Then with probability at least 1 − 1/t2

1
M ∑

j = 1

M 1
2π∫ εj(ω)

2
Aλ ψλ(ω) 2 dω − σ2 ∣ ⩽ 2t kΨσ2

M .

Lemma 5.2—Let the notation and assumptions of Proposition 5.1 hold, and let Aλ be the 

operator defined in (5.4). Then with probability at least 1 − 1/t2
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1
M ∑

j = 1

M 1
2π∫ fτj(ω)εj(ω) + fτj(ω)εj(ω) Aλ|ψλ(ω)

2
dω ≲ t

M Ψ Λ0(λ) + Λ(λ) σ .

Applying Proposition 4.2 to bound the dilation error, Lemma 5.1 to bound the additive noise 

error, and Lemma 5.2 to bound the cross term error gives (5.2). □

5.2 Simulation results for noisy dilation MRA

We once again consider the Gabor atoms of varying frequency introduced in Section 4.4, 

and compare the L2 error of estimating the power spectrum by (1) averaging the power 

spectra of the noisy signals, and applying additive noise unbiasing; this is the zero-order 

power spectrum method (PS k = 0), defined in Proposition 3.1, and (2) by approximating 

the wavelet invariants by the estimators given in Proposition 5.1 for k = 0, 2, 4, and then 

applying the optimization procedure described in Section 6.5; we refer to these methods 

as WSC k = i for i = 0, 2, 4. We emphasize that for the noisy dilation MRA model, it is 

impossible to define higher order methods for the power spectrum.

We first consider the errors obtained given oracle knowledge of the noise moments, both 

additive and dilation. Results are shown in Fig. 5 for all parameter combinations resulting 

from σ = 2−4, 2−3 (giving SNR = 2.2, 0.56) and η = 0.06, 0.12. The horizontal axis 

shows log2(M) and the vertical axis shows log2(Error); for each value of M, the error 

was calculated for 10 independent simulations and then averaged. For all simulations τ 
was given a uniform distribution, a challenging regime for dilations, and the sample size 

ranged over 16 ⩽ M ⩽ 131, 072. For the medium- and high-frequency signals, for large 

enough M, WSC k = 2 and WSC k = 4 have significantly smaller error than the order zero 

estimators, indicating that the nonlinear unbiasing procedure of Proposition 5.1 contributes a 

definitive advantage. For the high-frequency signal and large M, the error using WSC k = 4 

is decreased by a factor of about 3 from the PS k = 0 error. For small dilations (η = 0.06), 

there is not much of a difference in performance between WSC k = 2 and WSC k = 4, but 

the gap between these estimators widens for large dilations (η = 0.12), as the fourth-order 

correction becomes more important. For the low-frequency signal under small dilations, PS 

k = 0 achieves the smallest error for large M. However, when M is small or the dilations 

are large, the WSC estimators have the advantage for the low-frequency signal as well, and 

WSC k = 4 is once again the best estimator for large M.

We note that although in general recovering the power spectrum is insufficient for recovering 

the signal, the signal can be recovered when f(ω) ∈ ℝ and f(ω) ⩾ 0 by taking the inverse 

Fourier transform of the root power spectrum. Figure 6 shows the approximate signals 

recovered by this procedure from PS k = 0 (Fig. 6(c)) and WSC k = 4 (Fig. 6(b)) for the 

high-frequency Gabor signal f3(x) (Fig. 6(a)). The WSC-recovered signal is a much better 

approximation of the target signal. The recovered power spectra are shown in Fig. 6(d); 

PS k = 0 is much flatter than the target power spectrum, while WSC k = 4 is a good 

approximation of both the shape and height of the target power spectrum.
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Appendix G outlines an empirical procedure for estimating the moments of τ in the 

special case when t = 0 in the noisy dilation MRA model (i.e. no random translations). 

All simulations reported in Fig. 5 are repeated (with minor modifications) with empirical 

additive and dilation moment estimation, and the results are reported in Fig. G7 of Appendix 

G.

Appendix H contains additional simulation results for a variety of high-frequency signals.

Remark 5.1—One could also solve noisy dilation MRA with an EM algorithm. Appendix 

I describes how the method proposed in [1] can be extended to solve Model 2. Although 

EM algorithms provide a flexible tool for accurate parameter estimation in a variety of 

MRA models, the primary disadvantage is the high computational cost of each iteration. 

Each iteration costs O(Mn3), while wavelet invariant estimators can be computed in O(Mn2). 

In addition the statistical priors chosen may bias the signal reconstruction [12], and the 

algorithm will generally only converge to a local maximum. In this article we thus explore 

whether it is possible to solve noisy dilation MRA more efficiently and accurately by 

nonlinear unbiasing procedures.

6. Numerical implementation

In this section we describe the numerical implementation of the proposed method used to 

generate the results reported in Sections 3, 4.4 and 5.2. Section 6.1 describes how signals 

were generated, and Sections 6.2 and 6.3 describe empirical procedures for estimating the 

additive noise level and the moments of the dilation distribution τ. Finally, Section 6.4 

discusses how the derivatives used for unbiasing were computed, and Section 6.5 describes 

the convex optimization algorithm used to recover Pf from Sf. All simulations used a Morlet 

wavelet constructed with ξ = 3π/4.

6.1 Signal generation and SNR

All signals were defined on [−N/4, N/4] and then padded with zeros to obtain a signal 

defined on [−N/2, N/2]; the additive noise was also defined on [−N/2, N/2]. Signals were 

sampled at a rate of 1/2ℓ, thus resolving frequencies in the interval [−2ℓπ, 2ℓπ] with a 

frequency sampling rate of 2π/N. We used N = 25 and ℓ = 5 in all experiments, keeping 

the box size and resolution fixed. For each experiment with hidden signal f, the SNR was 

calculated by SNR = 1
N ∫−N/2

N/2 f(x)2 dx /σ2.

6.2 Empirical estimation of additive noise level

The additive noise level σ2 can be estimated from the mean vertical shift of the mean power 

spectrum 1
M ∑j = 1

M |yj(ω)|2 in the tails of the distribution. Specifically, for Σ = [−2ℓπ, 2ℓπ] \ 

[−2ℓ−1π, 2ℓ−1π], we define

σ2 = 1
|Σ| ∑

ω ∈ Σ
1

M ∑
j = 1

M
|yj(ω)|2 .
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If we choose ℓ large enough so that the target signal frequencies are essentially contained in 

the interval −2ℓ − 1π, 2ℓ − 1π , |yj(ω)|2 = |εj(ω)|2 for ω ∈ Σ, and this is a robust and unbiased 

estimation procedure since E|εj(ω)|2 = σ2 by Lemma D.1.

6.3 Empirical moment estimation for dilation MRA

Given the additive noise level, the moments of the dilation distribution τ for dilation MRA 

(Model 3) can be empirically estimated from the mean and variance of the random variables 

αm(yj) defined by

αm yj = ∫
0

2ℓπ
ωm|yj(ω)|2 dω (6.1)

for integer m ⩾ 0. More specifically, we define the order m squared coefficient of variation 

by

CVm: = Var αm yj

|E αm yj |2
. (6.2)

The following proposition guarantees that for M large the second and fourth moments of 

the dilation distribution can be recovered from CV0, CV1. In fact one could continue this 

procedure for higher m values, i.e. CVm m = 0
k/2 − 1 will define estimators of the first k

2  even 

moments of τ, accurate up to O(ηk+2), but for brevity we omit the general case.

Proposition 6.1—Assume Model 3 and CV0, CV1 defined by (6.1) and (6.2). Then

CV0 = η2 + 3C4 − 3 η4 + O η6

CV1 = 4η2 + 25C4 − 33 η4 + O η6 .

Proof.: Since yj = Lτjf x − tj ,

αm yj = ∫0
2ℓπ

ωm|f 1 − τj ω |
2

dω

= ∫0
2ℓπ 1 − τj ξm

1 − τj
m |f(ξ)|

2
dξ

1 − τj

= 1 − τj
−(m + 1)αm(f),

where we assume we have chosen ℓ large enough so that the target signal frequencies are 

essentially supported in [−2ℓ−1π, 2ℓ−1π]. Thus,

Hirn and Little Page 25

Inf inference. Author manuscript; available in PMC 2022 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CVm =
E αm yj

2 − E αm yj
2

E αm yj
2 =

E 1 − τj
−2(m + 1)

E 1 − τj
−(m + 1) 2 − 1.

When m = 0, we have

CV0 =
E 1 − τj

−2

E 1 − τj
−1 2 − 1

=
E 1 + 2τ + 3τ2 + 4τ3 + 5τ4 + O τ5

E 1 + τ + τ2 + τ3 + τ4 + O τ5 2 − 1

=
1 + 3η2 + 5C4η4 + O η6

1 + η2 + C4η4 + O η6 2 − 1

=
1 + 3η2 + 5C4η4 + O η6

1 + 2η2 + 2C4 + 1 η4 + O η6 − 1

= 1 + 3η2 + 5C4η4 + O η6 1 − 2η2 + 3 − 2C4 η4 + O η6 − 1
= η2 + 3C4 − 3 η4 + O η6 .

When m = 1, we have

CV1 =
E 1 − τj

−4

E 1 − τj
−2 2 − 1

=
E 1 + 4τ + 10τ2 + 20τ3 + 35τ4 + O τ5

E 1 + 2τ + 3τ2 + 4τ3 + 5τ4 + O τ5 2 − 1

=
1 + 10η2 + 35C4η4 + O η6

1 + 3η2 + 5C4η4 + O η6 2 − 1

=
1 + 10η2 + 35C4η4 + O η6

1 + 6η2 + 9 + 10C4 η4 + O η6 − 1

= 1 + 10η2 + 35C4η4 + O η6 1 − 6η2 + 27 − 10C4 η4 + O η6 − 1
= 4η2 + 25C4 − 33 η4 + O η6 .

We cannot compute CVm exactly, but by replacing Var, E with their finite sample estimators, 

we obtain an approximate CVm CVm as M → ∞. Motivated by Proposition G.1, we thus 

use CV 0, CV 1 to define estimators of η2 and C4η4.

Definition 6.1—Assume Model 3 and let CV 0, CV 1 be the empirical versions of (6.2). 

Define the second-order estimator of η2 by η2 = CV 0. Define the fourth-order estimators of 

(η2, C4η4) by the unique positive solution (η2, C4) of

CV 0 = η2 + 3C4 − 3 η4

Hirn and Little Page 26

Inf inference. Author manuscript; available in PMC 2022 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CV 1 = 4η2 + 25C4 − 33 η4 .

For noisy dilation MRA (Model 2), estimating the dilation moments is more difficult. 

We give a procedure for estimating the moments in the special case t = 0 in Appendix 

G. Empirical moment estimation procedures that are simultaneously robust to translations, 

dilations and additive noise are an important area of future research.

6.4 Derivatives

All derivatives were approximated numerically using finite difference calculations. A sixth-

order finite difference approximation was used for second derivatives, and a fourth-order 

finite difference approximation was used for fourth derivatives. This procedure was done 

on the empirical mean for each representation, not the individual signals. In fact since the 

wavelet is known, dn

dλn |ψλ(ω)|2 could be computed analytically, and (Syj)(n)(λ) computed 

using Definition 2.2. Thus error due to finite difference approximations could be avoided for 

wavelet invariant derivatives.

6.5 Optimization

In this section we describe the convex optimization algorithm for computing PSf , the 

power spectrum approximation that best matches the wavelet invariants (Sf). Since the 

wavelet invariants are only computed for λ > 0, we also incorporate zero frequency 

information into the loss function via (Pf)(0), an approximation of the power spectrum 

at frequency zero. For all of the examples reported in this article, the quasi-newton algorithm 

was used to solve an unconstrained optimization problem minimizing the following convex 

loss function:

loss(g): = ∑
λ

g2, |ψλ
+|

2
− Sf(λ)

2
+ g(0)2 − (Pf)(0) 2 .

where

|ψλ
+(ω)|

2
= |ψλ(ω)|2 + |ψλ( − ω)|2 ⋅ 1(ω ⩾ 0) .

Letting g ∗ denote the minimizer of the above loss function, we then define 

PSf : = g ∗ (ω)2. Theorem 2.4 ensures that when the loss function is defined with the exact 

wavelet invariants Sf, it has a unique minimizer corresponding to Pf. Whenever f(x) ∈ ℝ, the 

symmetry of (Pf)(ω) ensures that (Sf)(λ) = |f |2 , |ψλ
+|2 , and thus it is sufficient to optimize 

over the non-negative frequencies and then symmetrically extend the solution. Such a 

procedure ensures the output of the optimization algorithm is symmetric while avoiding 

adding constraints to the optimization. The algorithm was initialized using the mean power 
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spectrum with additive noise unbiasing only, i.e. PS k = 0. The optimization output does 

depend on various numerical tolerance parameters, which were held fixed for all examples.

Remark 6.1—Alternatively, one can invert the representation by applying a pseudo-inverse 

with Tikhonov regularization. Specifically, if F is the matrix defining the wavelet invariants, 

so that Sy = F(Py), then one can define PSf = FTF + λI −1FT (Sf). This procedure 

however requires careful selection of the hyper-parameter λ and did not work as well as 

inverting via optimization in our experiments.

7. Conclusion

This article considers a generalization of classic MRA, which incorporates random dilations 

in addition to random translations and additive noise and proposes solving the problem 

with a wavelet invariant representation. These wavelet invariants have several desirable 

properties over Fourier invariants, which allow for the construction of unbiasing procedures 

that cannot be constructed for Fourier invariants. Unbiasing the representation is critical 

for high-frequency signals, where even small diffeomorphisms cause a large perturbation. 

After unbiasing, the power spectrum of the target signal can be recovered from a convex 

optimization procedure.

Several directions remain for further investigation, including extending results to higher 

dimensions and considering rigid transformations instead of translations. Such extensions 

could be especially relevant to image processing, where variations in the size of an object 

can be modeled as dilations. Incorporating the effect of tomographic projection would also 

lead to results more directly relevant to problems such as cryo-EM. The tools of the present 

article, although significantly reducing the bias, do not allow for a completely unbiased 

estimator for noisy dilation MRA due to the bad scaling of certain intrinsic constants. Thus, 

an important open question is whether it is possible to define unbiased estimators for noisy 

dilation MRA using a different approach. The noisy dilation MRA model of this article 

corresponds to linear diffeomorphisms, and constructing unbiasing procedures that apply to 

more general diffeomorphisms is also an important future direction. In addition, one can 

construct wavelet invariants that characterize higher order auto-correlation functions such as 

the bispectrum, and future work will investigate full signal recovery with such invariants.
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A.: Wavelet admissibility conditions

This appendix describes the wavelet admissibility conditions that are needed for the main 

results in this article, namely Propositions 4.2 and 5.1. The wavelet ψ is k-admissible if 

ψ ∈ Ck(ℝ) and Ψk < ∞, Θk < ∞ where

Ψk: = 1
2π ∑

i = 0

k k
i

k!
i! ‖ωi(Pψ)(i)(ω)‖1, (A.1)

Θk: = 1
2π ∑

i = 0

k k
i

k!
i! ‖ωi − 2(Pψ)(i)(ω)‖1 . (A.2)

For ψ to be k-admissible, it is sufficient for ψ ∈ Ck(ℝ), (Pψ)(i) to decay faster than ωi+1, and 

∫ |ψ(ω)|2

ω2 dω < ∞ (see Lemma B.1 in Appendix B). The condition ∫ |ψ(ω)|2

ω2 dω < ∞ is slightly 

stronger than the classic admissability condition Cψ : = ∫ |ψ(ω)|2
ω dω < ∞ [55, Theorem 4.4]. 

When ψ is continuously differentiable, ψ(0) = 0 is sufficient to guarantee Cψ < ∞; but 

here we need ψ(ω) ω
1
2 + ϵ for some ϵ > 0 as ω → 0. If this condition is removed, we 

are not guaranteed Θk < ∞, but all results in fact still hold, with Λk(λ) = Ψk f 1
2 replacing 

Λk(λ) = Ψk‖f‖1
2 ∧

Θk‖f′‖1
2

λ2  in Propositions 4.2 and 5.1. Any wavelet with fast decay satisfies 

this stronger admissibility condition, and it ensures that a smooth signal will enjoy a fast 

decay of wavelet invariants.

Remark A.1

The Morlet wavelet ψ(x) =→g(x)(eiξx − C) is k-admissible for any k, since ψ ∈ C∞(ℝ), Pψ 
has fast decay, and ψ(ω) ω as ω → 0. One can also choose ψ to be an order k + 1-spline of 

compact support.

B.: Properties of wavelet invariants

This appendix establishes several important properties of wavelet invariants. Lemma B.1 

gives sufficient conditions guaranteeing that a wavelet is k-admissible. Lemmas 4.3 and 

4.4 bound wavelet invariant derivatives. Lemma B.2 bounds terms that arise in the dilation 

unbiasing procedure of Sections 4.2 and 5.

Lemma B.1 (k-admissible).

If ψ ∈ Ck(ℝ), (Pψ)(i) decays fast than ωi+1, and ∫ |ψ(ω)|2

ω2 dω < ∞, then ψ is k-admissible.

Hirn and Little Page 29

Inf inference. Author manuscript; available in PMC 2022 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proof.

We first note that ψ ∈ Ck(ℝ) guarantees Pψ ∈ Ck(ℝ). Since (Pψ)(i) decays faster 

than ωi+1 and Pψ ∈ Ck(ℝ), ωi(Pψ)(i)(ω) ∈ L1(ℝ) for 0 ⩽ i ⩽ k, so Ψk < ∞. Also 

Pψ ∈ Ck(ℝ) and ωi(Pψ)(i) ∈ L1(ℝ) implies ωi − 2(Pψ)(i) ∈ L1(ℝ) for 2 ⩽ i ⩽ k. In addition, 

ω−2(Pψ)(ω) ∈ L1(ℝ) by assumption. Thus, to conclude Θk < ∞, it only remains to show 

ω−1(Pψ)′(ω) ∈ L1(ℝ). Since (Pψ)′ is continuous and decays faster than ω2, only the 

integrability around the origin needs to be verified. We note that ∫ |ψ(ω)|2

ω2 dω < ∞ and Pψ 

continuous implies Pψ ∼ ω1+ϵ for some ϵ > 0 as ω → 0. Thus, (Pψ)′ ∼ ωϵ as ϵ → 0, so that 

ω−1(Pψ)′ ∼ ωϵ−1; the function is thus integrable around the origin since ϵ − 1 > −1. □

Lemma 4.3 (Low frequency bound).

Assume Pψ ∈ Cm(ℝ) and f ∈ L1(ℝ). Then the quantity |λm(Sf)(m)(λ)| can be bounded 

uniformly over all λ. Specifically,

|λm(Sf)(m)(λ)| ⩽ Ψm f 1
2

for Ψm defined in (A.1).

Proof.

Let g(ω) = (Pψ)(ω) = |ψ(ω)|2, and let

gλ(ω): = 1
λg ω

λ = |ψλ(ω)|2 .

Utilizing Definition 2.2 we obtain

λm(Sf)(m)(λ) = 1
2π∫ |f(ω) |2 λm dm

dλm
gλ(ω) dω .

Expanding the derivative gives

λm dm

dλm
gλ(ω) = Cm, 0gλ(ω) + Cm, 1ωgλ′ (ω) + Cm, 2ω2gλ′′(ω) + …Cm,mωmgλ

(m)(ω),

Cm, i = −1 m m
i

m!
i! .

Utilizing f ∞ ⩽ f 1 and gλ
(i)(ω) = 1

λi + 1g(i) ω
λ , one obtains
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|λm(Sf)(m)(λ)| ⩽ ∑
i = 0

m |Cm, i|
2π ∫ |f(ω) |2 |ωigλ

(i)(ω)|dω

⩽ ‖f‖1
2 ∑

i = 0

m |Cm, i|
2π ∫ |ωigλ

(i)(ω)|dω

= ‖f‖1
2 ∑

i = 0

m |Cm, i|
2π ∫ |ωig(i)(ω)|dω

= ‖f‖1
2 ∑

i = 0

m |Cm, i|
2π ⋅ ‖ωig(i)(ω)‖1

= Ψm‖f‖1
2 .

Lemma 4.4 (High frequency bound for differentiable functions).

Assume Pψ ∈ Cm(ℝ), and f′ ∈ L1(ℝ). Then the quantity |λm(Sf)(m)(λ)| can be bounded by

|λm(Sf)(m)(λ)| ⩽
Θm
λ2 f′ 1

2

for Θm defined in (A.2).

Proof.

Recall from the proof of Lemma 4.3 that

|λm(Sf)(m)(λ)| ⩽ ∑
i = 0

m |Cm, i|
2π ∫ |f(ω) |2 |ωigλ

(i)(ω)|dω

where gλ(ω) = 1
λg ω

λ = |ψλ(ω)|2 and Cm, i = ( − 1)m m
i

m!
i! . Since ωf(ω) ∞ ⩽ f′ 1 and 

gλ
(i)(ω) = 1

λi + 1g(i) ω
λ , we obtain

|λm(Sf)(m)(λ)| ⩽ ∑
i = 0

m |Cm, i|
2π ∫ |ωf(ω) |2 |ωi − 2gλ

(i)(ω)|dω

⩽ f′ 1
2 ∑

i = 0

m |Cm, i|
2π ∫ |ωi − 2gλ

(i)(ω)|dω

=
f′ 1

2

λ2 ∑
i = 0

m |Cm, i|
2π ∫ |ωi − 2g(i)(ω)|dω

=
f′ 1

2

λ2 ∑
i = 0

m |Cm, i|
2π ⋅ ωi − 2g(i)(ω) 1

=
Θm
λ2 f′ 1

2 .
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Lemma B.2

Assume Pf ∈ C0(ℝ) and ψ is m-admissible, and let Bm, E,Ψm,Θm be as defined in (4.1), 

(4.3), (A.1) (A.2). Then,

1
2π∫ |f(ω) |2 ⋅ Bmηmλm dm

dλm
|ψλ(ω)

2
∣ dω ⩽ (Eη)mΛm(λ),

where

Λm(λ) = ‖f‖1
2Ψm ∧

‖f′‖1
2Θm

λ2 .

Proof.

From the proof of Lemma 4.3:

1
2π∫ |f(ω) |2 ⋅ λm dm

dλm
|ψλ(ω)

2
∣ dω ⩽ Ψm‖f‖1

2 .

From the proof of Lemma 4.4:

1
2π∫ |f(ω) |2 ⋅ λm dm

dλm
|ψλ(ω)

2
∣ dω ⩽ Θm

‖f′‖1
2

λ2 .

Utilizing |Bm| ⩽ Em gives

1
2π∫ |f(ω) |2 ⋅ Bmηmλm dm

dλm
|ψλ(ω)

2
∣ dω ⩽ (Eη)m ‖f‖1

2Ψm ∧
f′ 1

2Θm
λ2 .

The following Corollary is obtained from Lemma B.2 when f is a dirac-delta function.

Corollary B.1

Assume ψ is m-admissible, and let Bm, E,Ψm be as defined in (4.1), (4.3), (A1). Then,

1
2π∫ Bmηmλm dm

dλm
|ψλ(ω)

2
∣ dω ⩽ (Eη)mΨm .

C.: Power spectrum and wavelet invariant equivalence

This appendix contains supporting results for demonstrating the equivalence of the power 

spectrum and wavelet invariants. Lemma 2.1 establishes that wavelet invariants uniquely 

determine any bandlimited L2 function, as long as the wavelet satisfies the linear 
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independence Condition 2.3 and a mild integrability condition. Proposition 2.1 gives two 

criteria that are sufficient to guarantee Condition 2.3. Finally, Lemma C.1 establishes that 

the Morlet wavelet satisfies Condition 2.3.

Lemma 2.1

Let p ∈ L2(ℝ) be continuous and assumep(w) = p(−w), ψ has compact support and Condition 

2.3. Then

Proof.

Since p is continuous, there exists an ϵ > 0 such that on (0, ϵ) one either has p = 0, p > 0, or 

p < 0. Claim: one must have p = 0. Suppose not, and without loss of generality assume p > 

0 on (0, ϵ) and that the support of |ψ+(ω)|2 is contained in the interval [1, 2]. Now choose λ0 

small enough so that |ψλ0
+ (ω)|2 is supported on [ϵ/1, ϵ) i.e. λ0 = ϵ/2. Clearly, there must exist 

a subset ℳ ⊆ [ϵ/2, ϵ] of positive measure such that |ψλ0
+ (ω)|2 > 0 on ℳ. Then,

0 = ∫0
∞

p(ω)|ψλ0
+ (ω)|

2
dω = ∫ϵ/2

ϵ
p(ω)|ψλ0

+ (ω)|
2

dω ⩾ ∫ℳ
p(ω)|ψλ0

+ (ω)|
2

dω ⩾ 0.

We conclude

∫ℳ
p(ω)|ψλ0

+ (ω)|
2

dω = 0,

but this is impossible since the integrand is strictly positive on ℳ. We thus conclude that p = 

0 on (0, ϵ). Thus, it is sufficient to only consider frequencies [ϵ, ∞].

Assume ∫ p(ω)|ψλ(ω)|2 dω = 0 for all λ. Since p(ω) = p(−ω),

∫ p(ω)|ψλ(ω)|2 dω = ∫0
∞

p(ω)|ψλ
+(ω)|

2
dω = ∫ϵ

∞
p(ω)|ψλ

+(ω)|
2

dω = 〈p, |ψλ
+|

2
〉I = 0 ∀λ,

where I = [ϵ, ∞). We now define |ϕλ
+(ω)|

2
: = λ−β|ψλ

+(ω)|2 for some β > 0, and observe that

∫0
∞

p(ω)|ϕλ
+(ω)|

2
dω = ∀λ ∫0

∞
|〈p, |ϕλ

+|
2
〉ℝ+|

2
dλ = ∫0

∞
|〈p, |ϕλ

+|
2
〉I|

2
dλ = 0.

Note
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∫0
∞

|〈p, |ϕλ
+|

2
〉I|

2
dλ = ∫0

∞
〈p, |ϕλ

+|
2
〉I〈p, |ϕλ

+|
2
〉I dλ

= ∫0
∞ ∫I p ω1 |ϕλ

+ ω1 |
2

dω1 ∫I p ω2 |ϕλ
+ ω2 |

2
dω2 dλ

= ∫I p ω2 ∫I p ω1 ∫0
∞

|ϕλ
+ ω1 |

2
|ϕλ

+ ω2 |
2

dλ dω1 dω2 .

We now apply the change of variable ωi = 1/ξi, and let g(ξi) = p(1/ξi). We obtain

0 = ∫
0

1/ϵ
g ξ2 ∫

0

1/ϵ
g ξ1 ∫

0

∞ 1
ξ1

2ξ2
2 ϕλ

+ 1
ξ1

2
ϕλ

+ 1
ξ2

2
dλ dξ1 dξ2 . (C.1)

Now consider the kernel

k ξ1, ξ2 = ∫0
∞ 1

ξ1
2ξ2

2 ϕλ
+ 1

ξ1
2 ϕλ

+ 1
ξ2

2
dλ .

Note that k is a strictly positive definite kernel function if for any finite sequence ξi i = 1
n  in 

[0, 1/ϵ], the n by n matrix A defined by

Aij = k ξi, ξj

is strictly positive definite [83]. Viewing ξi(λ) = ξi
−2|ϕλ

+ 1/ξi |
2
 as functions of λ, we see that

Aij = ξi(λ), ξj(λ) ℝ+

and A is thus a Gram matrix. Since the ξi(λ) are linearly independent if and only if the 

|ψλ
+ ωi |2 are linearly independent, and the |ψλ

+ ωi |2 are linearly independent by assumption, 

we can conclude that A and thus k are strictly positive definite. Now consider the 

corresponding integral operator on [0, 1/ϵ]:

Kg ξ2 = ∫0
1/ϵ

g ξ1 k ξ1, ξ2 dξ1 .

Since ψ ∈ L1(ℝ) , |ψλ
+|2 and thus |ϕλ

+|
2
 are continuous, and k will thus be continuous as long 

as it remains bounded. To check boundedness we observe that k(ξ1, ξ2)2 ⩽ k(ξ1, ξ1)k(ξ2, 

ξ2) [21], and

Hirn and Little Page 34

Inf inference. Author manuscript; available in PMC 2022 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



k(ξ, ξ) = ∫0
∞ 1

ξ4 ϕλ
+ 1

ξ
4

dλ

= ∫0
∞ 1

ξ4
1

λ2 + 2β ψ+ 1
λξ

4
dλ

= ∫0
∞ 1

ξ4 ωξ 2 + 2β ψ+(ω)
4 dω

ξω2

= ξ2β − 3∫0
∞

ω2β ψ+(ω)
4

dω

⩽ 3ξ2β − 3∫0
∞

ω2β |ψ(ω) |4 dω

⩽ 3ξ2β − 3 ωβPψ 2
2 .

Since ψ has a compact support, clearly ωβPψ 2
2 < ∞, and k is thus bounded on the compact 

interval [0, 1/ϵ] as long as β ⩾ 3/2. Since k is continuous and [0, 1/ϵ] is compact, K : L2[0, 

1/ϵ] → L2[0, 1/ϵ] is a compact, self-adjoint operator and by Mercer’s Theorem K is also 

strictly positive definite [83]. Since Kg, g [0, 1/ϵ] = 0 by (C.1), we conclude g = 0 in L2[0, 

1/ϵ]. Thus, p(1/ξ) = 0 for almost every ξ ∈ (0, 1/ϵ], which implies p(ω) = 0 for almost every 

ω ∈ [ϵ, ∞). Since p(ω) = p(−ω) and p = 0 on (0, ϵ), p = 0 for almost every ω ∈ ℝ. □

Proposition 2.1

The following are sufficient to guarantee Condition 2.3:

i. |ψ(ω)|2 has a compact support contained in the interval [a, b], where a and b have 

the same sign, e.g. complex analytic wavelets with compactly supported Fourier 

transform.

ii. |ψ(ω) |2 ∈ C∞(ℝ) and there exists an N such that all derivatives of order at least N 
are non-zero ω = 0, e.g. the Morlet wavelet.

Proof.

Let ωi i = 1
n  be a finite sequence of distinct positive frequencies, and let ωi(λ) = 1

|λ| |ψ
+ ωi

λ |
2

denote the corresponding functions of λ.

First assume (i). Without loss of generality we assume that [a, b] is a positive interval 

and that |ψ(ω) |2 > 0 on (a, a + ϵ) for some ϵ > 0. Clearly, |ψ+(ω)|2 = |ψ(ω)|2. A simple 

calculation shows that the support of ωi(λ) is contained in the interval 
ωi
b ,

ωi
a , and ωi(λ) > 0

in a neighborhood of 
ωi
a . Assume we have ordered the ωi so that ω1 > . . . > ωn > 0. Now 

suppose

c1ω1(λ) + ⋯ + cnωn(λ) = 0.
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Note ω1(λ) is the only function in the above collection with support in a neighborhood of 
ω1
a ; 

thus, we must have c1 = 0, so that

c2ω2(λ) + ⋯ + cnωn(λ) = 0.

But now ω2(λ) is the only function in the above collection with support in a neighborhood of 

ω2
a , so we must have c2 = 0, and proceeding iteratively we conclude that c1 = . . . = cn = 0. 

Thus, ωi(λ) i = 1
n  is a linearly independent set, and Condition 2.3 holds.

Now assume (ii). Since dn

dωn |ψ+(ω)|2
ω = 0

= 2 dn

dωn |ψ(ω)|2
ω = 0

, |ψ+(ω)|2 is C∞(ℝ)

and all derivatives of order at least N are non-zero at ω = 0. 

Note {ωi(λ)}i = 1
n = {|λ |−1 |ψ+ ωi/λ |2}i = 1

n
 are linearly independent if and only if 

{|ψ+ ωi/λ |2}i = 1
n

 are linearly independent. Defining λ = 1/λ, this holds if and only if 

{|ψ+ ωiλ |2}i = 1
n

= {g ωiλ }i = 1
n  are linearly independent as functions of λ, where we define 

g(ω) = |ψ+(ω)|2. Assume

c1g ω1λ + c2g ω2λ + ⋯ + cng ωnλ = 0.

Differentiating m times for N ⩽ m ⩽ N + n − 1, we obtain

c1ω1
Ng(N) ω1λ + ⋯ + cnωnNg(N) ωnλ = 0

⋮
c1ω1

N + n − 1g(N + n − 1) ω1λ + ⋯ + cnωnN + n − 1g(N + n − 1) ωnλ = 0.

The above holds for all λ. We now take the limit as λ 0 to obtain

g(N)(0) ω1
Nc1 + ω2

Nc2 + …ωnNcn = 0
g(N + 1)(0) ω1

N + 1c1 + ω2
N + 1c2 + …ωnN + 1cn = 0

⋮
g(N + n − 1)(0) ω1

N + n − 1c1 + ω2
N + n − 1c2 + …ωnN + n − 1cn = 0.

Since g(m) (0) ≠ 0, we obtain
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ω1
N … ωnN

ω1
N + 1 … ωnN + 1

⋮ ⋮

ω1
N + n − 1 … ωnN + n − 1

c1
c2
⋮
cn

=

0
0
⋮
0

1 … 1
ω1 ⋯ ωn
⋮ ⋮

ω1
(n − 1) … ωn(n − 1)

: = A

ω1
N 0 … 0

0 ω2
N … 0

⋮ ⋮
0 0 … ωnN

: = B

c1
c2
⋮
cn

=

0
0
⋮
0

.

Since A is a Vandermonde matrix constructed from distinct ωi, det(A) ≠ 0. Since the ωi are 

non-zero, det(B) ≠ 0. Thus, det(AB) = det(A) det(B) ≠ 0. We conclude AB is invertible and 

so all ci = 0, which gives Condition 2.3. □

Lemma C.1

Suppose we construct a Morlet wavelet with parameter ξ, that is 

ψ(x) = Cξπ−1/4e−x2/2 eiξx − e−ξ2/2  for Cξ = 1 − e−ξ2 − 2e−3ξ2/4 −1/2
. Then, for almost all 

ξ ∈ ℝ+, the wavelet satisfies Condition 2.3.

Proof.

The Fourier transform ψ has form

ψ(ω) = Cξe−ω2/2 eξω − 1

for some constant Cξ depending on ξ, so that

g(ω): = Cξ
−2|ψ(ω) |2 = e−ω2 eξω − 1 2 .

From direct calculation or a computer algebra system, one obtains

g(n)(0) =

Hn(ξ) − 2Hn(ξ/2) n odd

Hn(ξ) − 2Hn(ξ/2) + ( − 1)
n
2n!

n
2 !

n even

where Hn(ξ) is the nth degree physicist’s Hermite polynomial. We have g′(0) = 0, but for 

n > 1, g(n)(0) = 0 only when ξ is a root of the above polynomial. Since the set of roots of 

the polynomials g(n)(0) n = 1
∞  is countable, if ξ is selected at random from ℝ, it is not a root 
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of any of these polynomials with probability 1, and g(n)(0) ≠ 0 for all n. Thus, the wavelet 

satisfies criterion (ii) of Proposition 2.1, and thus the linear independence Condition 2.3. □

D.: Supporting results: classic MRA

This appendix contains supporting results for Section 3. The first two lemmas (Lemmas D.1 

and Lemma D.2) establish additive noise bounds for the power spectrum and are needed 

to prove Proposition 3.1. The next two lemmas (Lemmas D.3 and Lemma D.4) establish 

additive noise bounds for wavelet invariants and are needed to prove Proposition 3.2.

Lemma D.1

Let ε(x) be a white noise processes on − 1
2 , 1

2  with variance σ2. Then, for all frequencies ω, 

ξ,

E |ε(ω)|2 = σ2 (D.1)

E |ε(ω)|4 ⩽ 3σ4 (D.2)

E |ε(ω) |2 | ε(ξ)|2 ⩽ 3σ4 . (D.3)

Proof.

By Proposition J.1,

E |ε(ω)|2 = E[ε(ω)ε(ω)]

= E ∫−1/2
1/2

e−iωx dBx ∫−1/2
1/2

eiωx dBx

= σ2∫−1/2
1/2

dx

= σ2,

which shows (D.1). By Proposition J.2,

E |ε(ω)|4 = E ε(ω)2(ε(ω))2

= E ∫−1/2
1/2

e−iωx dBx
2 ∫−1/2

1/2
eiωx dBx

2

= 2σ4 ∫−1/2
1/2

dx
2

+ σ4 ∫−1/2
1/2

e−2iωx dx ∫−1/2
1/2

e2iωx dx

⩽ 2σ4 + σ4 ∫−1/2
1/2

|e−2iωx|dx ∫−1/2
1/2

|e2iωx|dx

= 3σ4,

which shows (D.2). Finally, by Proposition J.3, we have
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E |ε(ω) |2 |ε(ξ)|2 = E ∫−1/2
1/2

e−iωx dBx ∫−1/2
1/2

eiωx dBx ∫−1/2
1/2

e−iξx dBx ∫−1/2
1/2

eiξx dBx

= σ4 ∫−1/2
1/2

e−i(ω + ξ)x dx ∫−1/2
1/2

ei(ω + ξ)x dx

+ σ4 ∫−1/2
1/2

ei(ξ − ω)x dx ∫−1/2
1/2

ei(ω − ξ)x dx + ∫−1/2
1/2

dx ∫−1/2
1/2

dx

⩽ σ4 3 ∫−1/2
1/2

dx ∫−1/2
1/2

dx

= 3σ4,

which gives (D.3). □

Lemma D.2

Let ε(x) be a white noise processes on − 1
2 , 1

2  with variance σ2. Then, for any signal 

f ∈ L1(ℝ),

E[(P(f + ε))(ω)] = (Pf)(ω) + σ2

Var[(P(f + ε))(ω)] ⩽ 4σ2(Pf)(ω) + 2σ4 .

Proof.

Since E[ε(ω)] = E[ε(ω)] = 0 and E |ε(ω)|2 = σ2 by Lemma D.1,

E[(P(f + ε))(ω)] = E[(f(ω) + ε(ω))(f(ω) + ε(ω))]
= E |f(ω) |2 + f(ω)ε(ω) + ε(ω)f(ω) + |ε(ω)|2

= (Pf)(ω) + σ2 .

We now control Var[(P(f + ε))(ω)]. Note that:

[(P(f + ε))(ω)]2 = |f(ω) |2 + f(ω)ε(ω) + ε(ω)f(ω) + |ε(ω)|2 2

and that

E |ε(ω) |2ε(ω) = E ∫−1/2
1/2

e−iωx dBx ∫−1/2
1/2

eiωs dBs ∫−1/2
1/2

e−iωp dBp
= 0,

since even when x = s = p, E ΔBx
3 = 0. Ignoring the terms with zero expectation, we thus 

get
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E (P(f + ε))(ω)2 = E |f(ω) |4 + 4 |f(ω) |2 |ε(ω) |2 + |ε(ω) |4 + f(ω)2ε(ω)2 + ε(ω)2f(ω)
2

⩽ E |f(ω) |4 + 6 |f(ω) |2 |ε(ω) |2 + |ε(ω)|4

= (Pf)(ω) 2 + 6σ2(Pf)(ω) + 3σ4

where the last line follows from Lemma D.1. Thus,

Var[(P(f + ε))(ω)] = E (P(f + ε))(ω)2 − E[(P(f + ε))(ω)] 2

⩽ (Pf)(ω) 2 + 6σ2(Pf)(ω) + 3σ4 − (Pf)(ω) + σ2 2

= 4σ2(Pf)(ω) + 2σ4 .

□

Proposition 3.1

Assume Model 1. Define the following estimator of (Pf)(ω):

(Pf)(ω): = 1
M ∑

j = 1

M
Pyj (ω) − σ2 .

Then, with probability at least 1 − 1/t2,

|(Pf)(ω) − (Pf)(ω) | ⩽ 2tσ
M f 1 + σ . (3.1)

Proof.

Let ftj(x) = f x − tj  so that yj = ftj + εj. We first note since ftj(ω) = e−iωtjf(ω), the power 

spectrum is translation invariant, that is Pftj (ω) = (Pf)(ω) for all ω, tj. Thus, by Lemma 

D.2,

E Pyj (ω) = E P ftj + εj (ω) = Pftj (ω) + σ2 = (Pf)(ω) + σ2

and

Var Pyj (ω) = Var P ftj + εj (ω) ⩽ 4σ2 Pftj (ω) + 2σ4 = 4σ2(Pf)(ω) + 2σ4 .

Since the yj are independent,

Var 1
M ∑

j = 1

M
Pyj (ω) ⩽ 1

M 4σ2(Pf)(ω) + 2σ4 .
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Applying Chebyshev’s inequality to the random variable X = 1
M ∑j = 1

M Pyj (ω), we obtain

ℙ 1
M ∑

j = 1

M
Pyj (ω) − (Pf)(ω) + σ2 ⩾

t 2σ (Pf)(ω) + 2σ2

M ⩽ 1
t2

.

Observing that (Pf)(ω) = |f(ω) | ⩽ f 1 gives (3.1). □

Lemma D.3

Let ε(x) be a white noise processes on − 1
2 , 1

2  with variance σ2. Then,

E[(Sε)(λ)] = σ2

E (Sε)(λ)2 ⩽ 3σ4 .

Proof.

Since E |ε(ω)|2 = σ2 by Lemma D.1, we have

E[(Sε)(λ)] = E ε * ψλ 2
2

= E 1
2π ε ⋅ ψλ 2

2

= E 1
2π∫ |ε(ω) |2 |ψλ(ω)|2 dω

= σ2
2π∫ |ψλ(ω)|2 dω

= σ2 ψλ 2
2

= σ2 .

Since by Lemma D.1, E |ε(ω) |2 | ε(ξ)|2 ⩽ 3σ4, we also have

E (Sε)(λ)2 = E ε * ψλ 2
4

= E 1
(2π)2

ε ⋅ ψλ 2
2 ε ⋅ ψλ 2

2

= E 1
(2π)2

∬ |ε(ω) |2 |ε(ξ) |2 |ψλ(ω)|2|ψλ(ξ)|2 dωdξ

⩽ 3σ4

(2π)2
∬ |ψλ(ω)|2|ψλ(ξ)|2 dωdξ

= 3σ4 ψλ 2
2 2

= 3σ4 .

□
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Lemma D.4

Let ε(x) be a white noise processes on − 1
2 , 1

2  with variance σ2. Then, for any signal 

f ∈ L1(ℝ)

E[(S(f + ε))(λ)] = (Sf)(λ) + σ2

Var[(S(f + ε))(λ)] ⩽ 4σ2(Sf)(λ) + 2σ4 .

Proof.

Utilizing E[ε] = E[ε] = 0 and Lemma D.3, we have

E[(S(f + ε))(λ)] = E ∫ |(f + ε) * ψλ(u)|2 du

= ∫ |f * ψλ(u)|2 + E ∫ |ε * ψλ(u)|2 du
= (Sf)(λ) + E[(Sε)(λ)]
= (Sf)(λ) + σ2 .

To bound E (S(f + ε))(λ)2 , note that

(S(f + ε))(λ) 2

= ∫ |f * ψλ u1 |2 + ε * ψλ u1 f * ψλ u1 + f * ψλ u1 ε * ψλ u1 + ∣ ε * ψλ u1 |
2

du1

⋅ ∫ |f * ψλ u2 |2 + ε * ψλ u2 f * ψλ u2 + f * ψλ u2 ε * ψλ u2 + ∣ ε * ψλ u2 |
2

du2 .

When we take expectation, any term involving one or three ε terms disappears, so that
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E (S(f + ε))(λ)2 = E ∬ |f * ψλ u1 |2|f * ψλ u2 |2 du1 du2

+∬ |f * ψλ u1 |2 ∣ ε * ψλ u2 |
2

du1 du2

+ ∬ ε * ψλ u1 f * ψλ u1 ε * ψλ u2 f * ψλ u2 du1 du2

+ ∬ ε * ψλ u1 f * ψλ u1 f * ψλ u2 ε * ψλ u2 du1 du2

+ ∬ f * ψλ u1 ε * ψλ u1 ε * ψλ u2 f * ψλ u2 du1 du2

+ ∬ f * ψλ u1 ε * ψλ u1 f * ψλ u2 ε * ψλ u2 du1 du2

+∬ ∣ ε * ψλ u1 |
2
|f * ψλ u2 |2 du1 du2

+∬ ∣ ε * ψλ u1 |
2

∣ ε * ψλ u2 |2 du1 du2

⩽ E ∬ |f * ψλ u1 |2|f * ψλ u2 |2 du1 du2

+6∬ |f * ψλ u1 |2 ∣ ε * ψλ u2 |
2

du1 du2

+∬ ∣ ε * ψλ u1 |
2

∣ ε * ψλ u2 |2 du1 du2

= E [(Sf)(λ)]2 + 6(Sf)(λ)(Sε)(λ) + [(Sε)(λ)]2

= (Sf)(λ)2 + 6σ2(Sf)(λ) + 3σ4,

where the last line follows from Lemma D.3. Thus,

Var[(S(f + ε))(λ)] = E (S(f + ε))(λ)2 − E[(S(f + ε))(λ)] 2

⩽ (Sf)(λ) 2 + 6σ2(Sf)(λ) + 3σ4 − (Sf)(λ) + σ2 2

= 4σ2(Sf)(λ) + 2σ4 .

□

Proposition 3.2

Assume Model 1. Define the following estimator of (Sf)(λ):

(Sf)(λ): = 1
M ∑

j = 1

M
Syj (λ) − σ2 .

Then, with probability at least 1 − 1/t2,

|(Sf)(λ) − (Sf)(λ) | ⩽ 2tσ
M f 1 + σ . (D.4)

Proof.

Let ftj(x) = f x − tj  so that yj = ftj + εj. We first note that the wavelet invariants are 

translation invariant, that is Sftj = Sf for all tj. We now compute the mean and variance 

of the coefficients (Syj)(λ). By Lemma D.4,
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E Syj (λ) = E S ftj + εj (λ) = Sftj (λ) + σ2 = (Sf)(λ) + σ2

and

Var Syj (λ) = Var S ftj + εj (λ) ⩽ 4σ2 Sftj (λ) + 2σ4 = 4σ2(Sf)(λ) + 2σ4 .

Since the yj are independent,

Var 1
M ∑

j = 1

M
Syj (λ) ⩽ 1

M 4σ2(Sf)(λ) + 2σ4 .

Applying Chebyshev’s inequality to the random variable X = 1
M ∑j = 1

M Syj (λ) gives

ℙ 1
M ∑

j = 1

M
Syj (λ) − (Sf)(λ) + σ2 ⩾

t 2σ (Sf)(λ) + 2σ2

M ⩽ 1
t2

.

By Young’s convolution inequality, (Sf)(λ) = f * ψλ 2
2 ⩽ f 1

2 ψλ 2
2 = f 1

2
, which gives 

(D.4). □

E.: Supporting results: dilation MRA

This appendix contains the technical details of the dilation unbiasing procedure that is 

central to Propositions 4.1, 4.2 and 5.1. Lemma 4.1 bounds the bias and variance of the 

estimator, and Lemma 4.2 bounds the error of the estimator given M independent samples.

Lemma 4.1

Let Fλ(τ) = L((1 − τ)λ) for some function L ∈ Ck+2(0, ∞) and a random variable τ 
satisfying the assumptions of Section 2.1, and let k ⩾ 2 be an even integer. Assume there 

exist functions Λi:ℝ ℝ, R:ℝ ℝ such that

|λiL(i)(λ)| ⩽ Λi(λ) for 0 ⩽ i ⩽ k + 2 ,
Λk + 2((1 − τ)λ)

Λk + 2(λ) ⩽ R(λ),

and define the following estimator of L(λ):

Gλ(τ): = Fλ(τ) − B2η2Fλ′′(τ) − B4η4Fλ
(4)(τ) − … − BkηkFλ

(k)(τ) .

Then Gλ(τ) satisfies

|EGλ(τ) − L(λ)| ≲ kR(λ)Λk + 2(λ)(2Eη)k + 2
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VarGλ(τ) ≲ k2R(λ)2Λ(λ)2

where

Λ(λ)2: = ∑
0 ⩽ i, j ⩽ k + 2, i + j ⩾ 2

Λi(λ)Λj(λ)(2Eη)i + j

and E is the absolute constant defined in (4.3).

Proof.

We Taylor expand Fλ(τ) about τ = 0

Fλ(τ) = Fλ(0) + Fλ′ (0)τ +
Fλ′′(0)

2 τ2 + … +
Fλ

(k + 1)(0)
(k + 1)! τk + 1 + ∫0

τ Fλ
(k + 2)(t)
(k + 1)! (τ − t)k + 1 dt

: = R0(τ, λ)

.

We note

E Fλ(τ) = Fλ(0) +
Fλ′′(0)

2 η2 + … +
Fλ

k(0)
k! Ckηk + E R0(τ, λ) ,

which motivates an unbiasing with the first k/2 even derivatives, and thus a Taylor expansion 

of these derivatives

Fλ(τ) = Fλ(0) + Fλ′ (0)τ + … +
Fλ

(k + 1)(0)
(k + 1)! τk + 1 + ∫0

τ Fλ
(k + 2)(t)
(k + 1)! (τ − t)k + 1 dt

: = R0(τ, λ)

Fλ′′(τ) = Fλ′′(0) + Fλ
(3)(0)τ + … +

Fλ
(k + 1)(0)
(k − 1)! τk − 1 + ∫0

τ Fλ
(k + 2)(t)
(k − 1)! (τ − t)k − 1 dt

: = R2(τ, λ)

Fλ
(4)(τ) = Fλ

(4)(0) + Fλ
(5)(0)τ + … +

Fλ
(k + 1)(0)
(k − 3)! τk − 3 + ∫0

τ Fλ
(k + 2)(t)
(k − 3)! (τ − t)k − 3 dt

: = R4(τ, λ)
⋮

Fλ
(k)(τ) = Fλ

(k)(0) + Fλ
(k + 1)(0)τ + ∫0

τ
Fλ

(k + 2)(t)(τ − t)dt

: = Rk(τ, λ)

.
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Multiplication of the ith even derivative by Biηi gives

Fλ(τ) = Fλ(0) + Fλ′ (0)τ + … +
Fλ

(k + 1)(0)
(k + 1)! τk + 1 + R0(τ, λ)

B2η2Fλ′′(τ) = B2η2Fλ′′(0) + B2η2Fλ
(3)(0)τ + … + B2η2Fλ

(k + 1)(0)
(k − 1)! τk − 1 + B2η2R2(τ, λ)

B4η4Fλ
(4)(τ) = B4η4Fλ

(4)(0) + B4η4Fλ
(5)(0)τ + … + B4η4Fλ

(k + 1)(0)
(k − 3)! τk − 3 + B4η4R4(τ, λ)

⋮

BkηkFλ
(k)(τ) = BkηkFλ

(k)(0) + BkηkFλ
(k + 1)(0)τ + BkηkRk(τ, λ) .

We want an estimator that targets Fλ(0) = L(λ). We thus consider the following variable as 

an estimator:

Gλ(τ): = Fλ(τ) − B2η2Fλ′′(τ) − B4η4Fλ
(4)(τ) − … − BkηkFλ

(k)(τ)

and show that E Gλ(τ) = Fλ(0) + O ηk + 2  for constants Bi chosen according to (4.1). We 

have

E Fλ(τ) = Fλ(0) + Fλ′′(0)
C2
2 η2 + … + Fλ

(k)(0)
Ck
k! ηk + E R0(τ, λ)

E B2η2Fλ′′(τ) = Fλ′′(0)B2η2 + Fλ
(4)(0)

B2C2
2 η4 + … + Fλ

(k)(0)
B2Ck − 2
(k − 2)! ηk + E B2η2R2(τ, λ)

E B4η4Fλ
(4)(τ) = Fλ

(4)(0)B4η4 + Fλ
(6)(0)

B4C2
2 η6 + … + Fλ

(k)(0)
B4Ck − 4
(k − 4)! ηk + E B4η4R4(τ, λ)

⋮
E Bk − 2ηk − 2Fλ

(k − 2)(τ) = Fλ
(k − 2)(0)Bk − 2ηk − 2 + Fλ

(k)(0)
Bk − 2C2

2 ηk + E Bk − 2ηk − 2Rk − 2(τ, λ)

E BkηkFλ
(k)(τ) = Fλ

(k)(0)Bkηk + E BkηkRk(τ, λ) .

That is,

E Gλ(τ) = Fλ(0) + Fλ′′(0)
C2
2! − B2 η2 + Fλ

(4)(0)
C4
4! −

B2C2
2! − B4 η4

+ Fλ
(6)(0)

C6
6! −

B2C4
4! −

B4C2
2! − B6 η6…

+ Fλ
(k)(0)

Ck
k! −

B2Ck − 2
(k − 2)! − … −

Bk − 2C2
2! − Bk ηk + H1(λ)

where
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H1(λ) = E R0(λ, τ) − B2η2R2(τ, λ) − … − BkηkRk(λ, τ) .

Since (4.1) guarantees that

B2 =
C2
2!

B4 =
C4
4! −

C2
2!

2

B6 =
C6
6! −

C2C4
2!4! −

C4
4! −

C2
2!

2 C2
2!

⋮
Bk =

Ck
k! −

B2Ck − 2
(k − 2)! − … −

Bk − 2C2
2! ,

the coefficients of η2, η4, . . . , ηk vanish, and we obtain

E Gλ(τ) = Fλ(0) + H1(λ) .

First we bound the bias H1(λ). In the remainder of the proof we let B0 = −1 to simplify 

notation, so that

H1(λ) = ∑
i = 0, 2, …, k

− BiRi(λ, τ)ηi .

We first obtain a bound for |BiRi(λ, τ)ηi|. Note

(k + 1 − i)!ηiRi(λ, τ) = ηi∫0
τ
Fλ

(k + 2)(t) τ − t k + 1 − i dt

= ηi∫0
τ

λk + 2L(k + 2)((1 − t)λ) τ − t k + 1 − i dt .

We observe that

((1 − t)λ)k + 2L(k + 2)((1 − t)λ) ⩽ Λk + 2((1 − t)λ)

λk + 2L(k + 2)((1 − t)λ) ⩽ 1
(1 − t)k + 2

Λk + 2((1 − t)λ)
Λk + 2(λ) Λk + 2(λ)

λk + 2L(k + 2)((1 − t)λ) ⩽
R(λ)Λk + 2(λ)

(1 − t)k + 2

so that

−
R(λ)Λk + 2(λ)

(1 − t)k + 2 ⩽ λk + 2L(k + 2)((1 − t)λ) ⩽
R(λ)Λk + 2(λ)

(1 − t)k + 2 .

Now assume first of all that τ is positive. We have
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(k + 1 − i)!ηiRi(λ, τ) ⩽ ηiR(λ)Λk + 2(λ)∫0
τ (τ − t)k + 1 − i

(1 − t)k + 2 dt

⩽ ηiR(λ)Λk + 2(λ)∫0
τ τk + 1 − i

(1 − t)k + 2 dt

= ηiτk + 1 − iR(λ)Λk + 2(λ) 1
(k + 1)

1
(1 − τ)k + 1 − 1

⩽ 2k + 2R(λ)
k + 1 ηiτk + 2 − iΛk + 2(λ)

where the last line follows since 1
(1 − τ)k + 1 ⩽ 2 ⋅ 2k + 1τ for τ ∈ 0, 1

2 . A similar argument can 

be applied when τ is negative, and we can conclude

|BiηiRi(λ, τ)| ⩽ 2k + 2R(λ)
(k + 1)(k + 1 − i)!Λk + 2(λ)|Bi|ηi | τ |k + 2 − i , (E.1)

which gives

E|BiηiRi(λ, τ)| ⩽ 2k + 2R(λ)
(k + 1)(k + 1 − i)!Λk + 2(λ)Tk + 2 − i|Bi|ηk + 2

= 2k + 2(k + 2 − i)R(λ)
k + 1 Λk + 2(λ) Tk + 2 − i

(k + 2 − i)! |Bi|ηk + 2 .

We thus obtain

|E Gλ(τ) − L(λ)| = |H1(λ)| ⩽
R(λ)Λk + 2(λ)

k + 1 2Eη k + 2 ∑
i = 0, 2, …, k

(k + 2 − i)

≲ R(λ)kΛk + 2(λ) 2Eη k + 2,

which establishes the bound on the bias. We now bound the variance. We note

Gλ(τ) = ∑
i = 0, 2, …, k

∑
j = 0, 1, …, k + 1 − i

−Bi
j! Fλ

(i + j)(0)ηiτj

: = (I)

+ ∑
i = 0, 2, …, k

− BiRi(λ, τ)ηi

: = (II)

.

Thus,

Var Gλ(τ) = E Gλ τ 2 − E Gλ(τ) 2

= E[(I)(I)] + 2E[(I)(II)] + E[(II)(II)] − Fλ 0 2 − 2Fλ(0)H1(λ) − H1 λ 2

⩽ E[(I)(I)] − Fλ 0 2

: = (A)

+ 2E[(I)(II)] − 2Fλ(0)H1(λ)
: = (B)

+ E[(II)(II)]
: = (C)

and we proceed to bound each term.
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(I)(I) − Fλ(0)2 = ∑
i = 0, 2, …, k

∑
ℓ = 0, 2, …, k

∑
j = 0

k + 1 − i
∑
s = 0

k + 1 − ℓ BiBℓ
j! ℓ !Fλ

(i + j)(0)Fλ
(ℓ + s)(0)ηi + ℓτj + s1E

where 1E is an indicator function indicating that i,j,ℓ,s are not all zero. We have

E|
BiBℓ
j! ℓ !Fλ

(i + j)(0)Fλ
(ℓ + s)(0)ηi + ℓτj + s| ⩽

|BiBℓ|
j! ℓ ! Cj + sΛi + j(λ)Λℓ + s(λ)ηi + ℓ + j + s

⩽
|BiBℓ|
j! ℓ ! T jTsΛi + j(λ)Λℓ + s(λ)ηi + ℓ + j + s

⩽ Ei + jEℓ + sΛi + j(λ)Λℓ + s(λ)ηi + ℓ + j + s

= Λi + j(λ)(Eη)i + j Λℓ + s(λ)(Eη)ℓ + s .

Noting that only terms where j + s is even survive expectation, and letting i = i + j and 

ℓ = ℓ + s, we obtain

E[(I)(I)] − Fλ 0 2

⩽ ∑
i = 0, 2, …, k

∑
ℓ = 0, 2, …, k

∑
j = 0

k + 1 − i
∑
s = 0

k + 1 − ℓ
Λi + j(λ) 4Tη i + jΛℓ + s(λ) 4Tη ℓ + s1E1(j + s even)

= ∑
i = 0

k + 1
∑

ℓ = 0

k + 1
Ci , ℓΛi(λ) Eη iΛℓ(λ) Eη ℓ

for coefficients Ciℓ such that C0,0 = 0, Ciℓ = 0 if i + ℓ is odd, and Ciℓℓ ⩽ k2. Thus,

E[(I)(I)] − Fλ(0)2 ⩽ k2 ∑
2 ⩽ i + ℓ ⩽ 2k + 2

i + ℓ even

Λi(λ)Λℓ(λ)(Eη)i + ℓ ⩽ k2Λ(λ)2 .

Next we bound E[(II)(II)].

(II)(II) = ∑
i = 0, 2, …, k

∑
ℓ = 0, 2, …k

BiBℓRi(λ, τ)Rℓ(λ, τ)ηi + ℓ .

Utilizing Equation (E.1), we have

|BiBℓRi(λ, τ)Rℓ(λ, τ)ηi + ℓ| ⩽
22k + 4R(λ)2|BiBℓ|

(k + 1)2(k + 1 − i)!(k + 1 − ℓ )!
Λk + 2(λ)2ηi + ℓ|τ |2k + 4 − i − ℓ,

which gives
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E BiBℓRi(λ, τ)Rℓ(λ, τ)ηi + ℓ

⩽
22k + 4R λ 2T2k + 4 − i − ℓ|BiBℓ|

(k + 1)2(k + 1 − i)!(k + 1 − ℓ )!
Λk + 2 λ 2η2k + 4

⩽ R λ 2(k + 2 − i)(k + 2 − ℓ )
k + 1 2

Tk + 2 − i|Bi|
(k + 2 − i)!

Tk + 2 − ℓ|Bℓ|
(k + 2 − ℓ )! Λk + 2 λ 2 2η 2k + 4

⩽ R λ 2(k + 2 − i)(k + 2 − ℓ )
k + 1 2 Λk + 2 λ 2 2Eη 2k + 4

so that

E[(II)(II)] ⩽ R λ 2

k + 1 2Λk + 2 λ 2 2Eη 2k + 4 ∑
i = 0, 2, …, k

∑
ℓ = 0, 2, …k

(k + 1 − i)(k + 2 − ℓ )

≲ k2R λ 2Λk + 2 λ 2 2Eη 2k + 4

⩽ k2R λ 2Λ λ 2 .

Finally we bound the cross term 2E[(I)(II)] − 2Fλ(0)H1(λ).

(I)(II) = ∑
i = 0, 2, …, k

∑
j = 0

k + 1 − i
∑

ℓ = 0, 2, …, k

Bi
j! Fλ

(i + j)(0)ηiτjBℓRℓ(λ, τ)ηℓ (E.2)

Since |Fλ
(i + j)(0)| ⩽ Λi + j(λ) and |BℓRℓ(λ, τ)ηℓ| ⩽

2k + 2R(λ)|Bℓ|
(k + 1)(k + 1 − ℓ )!Λk + 2(λ)ηℓτk + 2 − ℓ from 

(E.1), we have

Bi
j! Fλ

(i + j)(0)ηiτjBℓRℓ(λ, τ)ηℓ ⩽
2k + 2R(λ)|BiBℓ|

(k + 1)j!(k + 1 − ℓ )!Λi + j(λ)Λk + 2(λ)ηi + ℓτk + 2 + j − ℓ

so that

E
Bi
j! Fλ

(i + j)(0)ηiτjBℓRℓ(λ, τ)ηℓ

⩽
2k + 2R(λ)Tk + 2 + j − ℓ BiBℓ

(k + 1)j!(k + 1 − ℓ )! Λi + j(λ)Λk + 2(λ)ηi + j + k + 2

= 2k + 2R(λ)(k + 2 − ℓ )
(k + 1)

T j Bi
j!

Tk + 2 − ℓ Bℓ
(k + 2 − ℓ )! Λi + j(λ)Λk + 2(λ)ηi + j + k + 2

= R(λ)(k + 2 − ℓ )
(k + 1) (Eη)i + jΛi + j(λ) ⋅ (2Eη)k + 2Λk + 2(λ) .

The same bound holds for the terms of Fλ(0)H1(λ), which arise from i = 0, j = 0 in (E.2), so 

that
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2E[(I)(II)] − 2Fλ(0)H1(λ)

≲ ∑
i = 0, 2, …, k

∑
j = 0

k + 1 − i
Eη i + jΛi + j(λ) ∑

ℓ = 0, 2, …, k
R(λ)(k + 2 − ℓ )

(k + 1) 2Eη k + 2Λk + 2(λ)

≲ k ∑
i = 0

k + 1
Λi(λ) Eη i kR(λ) 2Eη k + 2Λk + 2(λ)

⩽ k2R(λ) ∑
i = 0

k + 1
Λi(λ)Λk + 2(λ) 2Eη i + k + 2

⩽ k2R(λ)Λ λ 2 .

Thus, Var Gλ(τ) ≲ k2R(λ)2Λ(λ)2 and the lemma is proved. □

Lemma 4.2

Let the assumptions and notation of Lemma 4.1 hold, and let τ1, . . . , τM be independent. 

Define

L(λ): = 1
M ∑

j = 1

M
Gλ τj .

Then, with probability at least 1 − 1/t2,

|L(λ) − L(λ) | ≲ kR(λ) Λk + 2(λ)(2Eη)k + 2 + tΛ(λ)
M .

Proof.

By Lemma 4.1 and the independence of the τj, we have

|L(λ) − E L(λ) | ≲ kR(λ)Λk + 2(λ)(2Eη)k + 2

Var L(λ) ≲ 1
M k2Λ(λ)2

so by Chebyshev’s inequality we can conclude that with probability at least 1 − 1/t, we have

|L(λ) − E[L(λ)] | ⩽ tkR(λ)Λ(λ)
M ,

which gives

|L(λ) − L(λ) | ⩽ |L(λ) − E[L(λ)] | + |E[L(λ)] − L(λ) |
≲ kR(λ)Λk + 2(λ) 2Eη k + 2 + tkR(λ)Λ(λ)

M .
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□

F.: Supporting results: noisy dilation MRA

This appendix contains supporting results needed to prove Proposition 5.1, which defines a 

wavelet invariant estimator for noisy dilation MRA. Lemma 5.1 controls the additive noise 

error and Lemma 5.2 controls the cross-term error. Lemma F.1 guarantees that the dilation 

unbiasing procedure applied to the additive noise still has mean σ2, which is needed to prove 

Lemma 5.1.

Lemma 5.1

Let the notation and assumptions of Proposition 5.1 hold, and let Aλ be the operator defined 

in (5.4). Then, with probability at least 1 − 1/t2,

1
M ∑

j = 1

M 1
2π∫ |εj(ω)|

2
Aλ|ψλ(ω) 2 dω − σ2 ∣ ⩽ 2t kΨσ2

M .

Proof.

Let

D εj, λ : = 1
2π∫ |ϵj(ω)|2Aλ|ψλ(ω)|2 dω .

By Lemma D.1, Eε |εj(ω)|2 = σ2, and we thus obtain

Eε D εj, λ = Eε
1

2π∫ |εj(ω)|2Aλ|ψλ(ω)|2 dω

= Eε
1

2π∫ |εj(ω)|2|ψλ(ω)|2 dω − 1
2π∫ |εj(ω)|2B2η2λ2 d

dλ2 |ψλ(ω)|2 dω − …

− 1
2π∫ |εj(ω)|2Bkηkλk d

dλk |ψλ(ω)|2 dω

= σ2 1
2π∫ |ψλ(ω)|2 dω −

B2η2
2π ∫ λ2 d

dλ2 |ψλ(ω)|2 dω − …

−
Bkηk

2π ∫ λk d
dλk |ψλ(ω)|2 dω

= σ2(1 − 0 − … − 0)
= σ2,

where we have used Lemma F.1 to conclude ∫ λm dm

dλm
|ψλ(ω)|2 dω = 0 m = 2, . . . , k. Also 

since a1 + … + an
2 ⩽ n a1

2 + … + an2  by the Cauchy–Schwarz inequality, we obtain

Eε D εj, λ 2 ⩽ Eε k ∑
m = 0, 2, .., k

Bmηm
2π ∫ |εj(ω)|2λm dm

dλm
|ψλ(ω)|2 dω

2
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where we let d
dλ0 |ψλ(ω)|2 denote |ψλ(ω)|2 and B0 = 1. By Lemma D.1, we have 

Eε |εj(ω)|2|εj(ξ)|2 ⩽ 3σ4 for all frequencies ω, ξ, so that

Eε
Bmηm

2π ∫ |εj(ω)|2λm dm

dλm
|ψλ(ω)|2 dω

2

⩽ Eε
Bm2 η2m

4π2 ∬ |εj(ω)|2|εj(ξ)|2 λm dm

dλm
|ψλ(ω)|

2
⋅ λm dm

dλm
ψλ(ξ) 2 ∣ dωdξ

⩽ 3σ4 1
2π∫ Bmηmλm dm

dλm
|ψλ(ω)

2
∣ dω

2

⩽ 3σ4Ψm2 Eη 2m,

where the last line follows from Corollary B.1 in Appendix B. We thus obtain

Eε D εj, λ 2 ⩽ k ∑
m = 0, 2, .., k

Eε
Bmηm

2π ∫ |εj(ω)|2λm dm

dλm
|ψλ(ω)|2 dω

2

⩽ 3kσ4 ∑
m = 0, 2, .., k

Ψm2 Eη 2m: = (I)

so that

Eε D εj, λ − σ2 = 0

Varε D εj, λ − σ2 = Varε D εj, λ ⩽ Eε D εj, λ 2 ⩽ (I) .

Thus,

Varε
1

M ∑
j = 1

M
D εj, λ − σ2 ⩽ (I)

M

so that by Chebyshev’s inequality with probability at least 1 − 1/t2

1
M ∑

j = 1

M
D εj, λ − σ2 ⩽ t (I)

M ⩽ t 3k ∑
m = 0, 2, …, k

Ψm(Eη)m σ2
M = 2t kΨ σ2

M .

□

Lemma 5.2

Let the notation and assumptions of Proposition 5.1 hold, and let Aλ be the operator defined 

in (5.4). Then, with probability at least 1 − 1/t2,
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1
M ∑

j = 1

M 1
2π∫ fτj(ω)εj(ω) + fτj(ω)εj(ω) Aλ ψλ(ω)

2
dω ∣ ≲ t

M Ψ Λ0(λ) + Λ(λ) σ .

Proof.

We have

1
M ∑

j = 1

M 1
2π∫ fτj(ω)εj(ω) + fτj(ω)εj(ω) Aλ ψλ(ω)|2 dω = 1

M ∑
j = 1

M
Yj + Y j

where

Yj: = 1
2π∫ fτj(ω)εj(ω) Aλ|ψλ(ω)|2 dω .

The random variable Yj has randomness depending on both εj and τj. Note that

Eε, τ Y j = Eε, τ Eε, τ Y j ∣ τj

since Yj is integrable. Thus, since Eε, τ εj(ω) = 0, we obtain Eε, τ Y j ∣ τj = 0, which yields 

Eε, τ Y j = 0. We also have

Varε, τ Y j = Eε, τ Y j2

⩽ Eε, τ
1

2π∫ |fτj(ω)| ⋅ |εj(ω)| ⋅ |Aλ|ψλ(ω)|
2

∣ dω
2

⩽ Eε, τ
1

2π∫ |fτj(ω)|2 ⋅ |Aλ|ψλ(ω)|
2

∣ dω 1
2π∫ |εj(ω)|2 ⋅ |Aλ|ψλ(ω)|

2
∣ dω

= Eτ
1

2π∫ |fτj(ω)|2 ⋅ |Aλ|ψλ(ω)|
2

∣ dω Eε
1

2π∫ |εj(ω)|2 ⋅ |Aλ|ψλ(ω)|
2

∣ dω .

Letting B0 = 1 and applying Lemma B.2, we have

Eτ
1

2π∫ |fτj(ω)|2 ⋅ Aλ|ψλ(ω)
2

∣ dω ⩽ Eτ ∑
m = 0, 2, …, k

1
2π∫ |fτj(ω)|2 ⋅ Bmηmλm dm

dλm
|ψλ(ω)|

2
dω

⩽ Eτ ∑
m = 0, 2, …, k

(Eη)m fτj 1
2Ψm ∧

fτj′ 1
2Θm

λ2

⩽ ∑
m = 0, 2, …, k

(Eη)m f
1

2
Ψm ∧

4 f′ 1
2Θm

λ2

⩽ 4 ∑
m = 0, 2, …, k

(Eη)mΛm(λ)

≲ Λ0(λ) + Λ(λ)
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since τj ∞ ⩽ 1
2  guarantees fτj′ 1 = 1

1 − τj
f′ 1 ⩽ 2 f′ 1. Also,

Eε
1

2π∫ |εj(ω)|2 ⋅ Aλ|ψλ(ω)|
2

dω ⩽ Eε ∑
m = 0, 2, …, k

1
2π∫ |εj(ω)|2 ⋅ Bmηmλm dm

dλm
|ψλ(ω)|

2
dω

= σ2 ∑
m = 0, 2, …, k

1
2π∫ Bmηmλm dm

dλm
|ψλ(ω)|

2
dω

⩽ σ2 ∑
m = 0, 2, …, k

(Eη)mΨm

= σ2Ψ

where the second line follows from Lemma D.1 in Appendix D and the next to last line from 

Corollary B.1 in Appendix B. We thus have

Eε, τ Y j = 0

Varε, τ Y j ≲ σ2Ψ Λ0(λ) + Λ(λ)

and an identical argument can be applied to the Y j so that by Chebyshev’s inequality with 

probability at least 1 − 1/t2

1
M ∑

j = 1

M
Yj + Y j ⩽ 1

M ∑
j = 1

M
Yj + 1

M ∑
j = 1

M
Yj ≲ t Ψ Λ0(λ) + Λ(λ) σ

M .

□

Lemma F.1

Assume ψ is k-admissible. Then,

∫ λm dm

dλm |ψλ(ω)|2 dω = 0 (F.1)

for all 1 ⩽ m ⩽ k.

Proof.

We recall that since ψ is k-admissible, |ψλ(ω)|2 ∈ Ck(ℝ), and to simplify notation we let 

g = |ψ|2 and

gλ(ω) = 1
λg ω

λ = |ψλ(ω)|2 .

We first establish that
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λk d
dλkgλ(ω) = d

dω −ωλk − 1 d
dλk − 1gλ(ω) − (k − 1)λk − 1 d

dλk − 1gλ(ω) . (F.2)

The proof is by induction. When k = 1, we obtain

LHS of Eqn . (F . 2) = λ d
dλ

1
λg ω

λ = − ω
λ2g′ ω

λ − 1
λg ω

λ = − ωgλ′ (ω) − gλ(ω)

and

RHS of Eqn . (F.2) = d
dω −ωgλ(ω) = − ωgλ′ (ω) − gλ(ω),

so the base case is established. We now assume that Equation (F.2) holds and show it also 

holds for k+1 replacing k. By the inductive hypothesis

d
dλkgλ(ω) = d

dω −ωλ−1 d
dλk − 1gλ(ω) − (k − 1)λ−1 d

dλk − 1gλ(ω)

d
dλk + 1gλ(ω) = d

dω −ωλ−1 d
dλkgλ(ω) + d

dλk − 1gλ(ω)ωλ−2

− (k − 1) λ−1 d
dλkgλ(ω) + d

dλk − 1gλ(ω) −λ−2

= d
dω −ωλ−1 d

dλkgλ(ω) − (k − 1)λ−1 d
dλkgλ(ω)

+ d
dω ωλ−2 d

dλk − 1gλ(ω) + (k − 1)λ−2 d
dλk − 1gλ(ω)

= − λ−1 d
dλkgλ(ω) by inductive hypothesis

= d
dω −ωλ−1 d

dλkgλ(ω) − kλ−1 d
dλkgλ(ω)

so that

λk + 1 d
dλk + 1gλ(ω) = d

dω −ωλk d
dλkgλ(ω) − kλk d

dλkgλ(ω) .

Thus, (F.2) is established. We now use integration by parts to show (F.2) implies (F.1) in the 

Lemma. The proof of (F.1) is once again by induction. When k = 1, we have already shown

λ d
dλgλ(ω) = − ωgλ′ (ω) − gλ(ω) . (F.3)

Integration by parts gives

∫ ωgλ′ (ω)dω = ωgλ(ω) −∞
∞ − ∫ gλ(ω)dω = ∫ gλ(ω)dω .
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Note ωgλ(ω) vanishes at ±∞ since g ∈ L1(ℝ) guarantees gλ ∈ L1(ℝ), and thus gλ must decay 

faster that ω−1. Utilizing (F.3),

∫ ωgλ′ (ω) − gλ(ω)dω = 0 ∫ λ d
dλgλ(ω) dω = 0

and the base case is established. We now assume

∫ λk − 1 d
dλk − 1gλ(ω) dω = 0.

By integrating Equation (F.2), we obtain

∫ λk d
dλkgλ(ω) dω

= ∫ d
dω −ωλk − 1 d

dλk − 1gλ(ω) dω − (k − 1)∫ λk − 1 d
dλk − 1gλ(ω)dω

= 0 by induc . hypo .
= ∫ − ω d

dω λk − 1 d
dλk − 1gλ(ω) dω − ∫ λk − 1 d

dλk − 1gλ(ω)dω

= 0 by induc . hypo .
= − ωλk − 1 d

dλk − 1gλ(ω)|
−∞

∞
+ ∫ λk − 1 d

dλk − 1gλ(ω)dω

= 0 by induc . hypo .
= 0.

We are guaranteed −ωλk − 1 d
dλk − 1gλ(ω) vanishes at ±∞ since in the proof of Lemma 4.3 we 

showed λk − 1 d
dλk − 1gλ(ω) = ∑j = 0

k − 1Cjωjgλ
(j)(ω), and ωjgλ

(j) ∈ L1(ℝ) implies ωj + 1gλ
(j) vanishes 

at ±∞. □

G.: Moment estimation for noisy dilation MRA

In this appendix we outline a moment estimation procedure for noisy dilation MRA (Model 

2) in the special case t = 0, i.e. signals are randomly dilated and subjected to additive noise 

but are not translated. This procedure is a generalization of the method presented in Section 

6.3.

Given the additive noise level, the moments of the dilation distribution τ can be empirically 

estimated from the mean and variance of the random variables βm(yj) defined by

βm yj = ∫
0

2ℓπ
ωmyj(ω) dω (G.1)

for integer m ⩾ 0. To account for the effect of additive noise on the above random variables, 

we define
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gm( ℓ , σ) = ∫
0

2ℓπ∫
0

2ℓπ 2σ2ξmωmsin 1
2 (ξ − ω)

(ξ − ω) dω dξ (G.2)

and an order m additive noise adjusted squared coefficient of variation by

CVm: = Var βm yj − gm( ℓ , σ)
|E βm yj |2

. (G.3)

Remark G.1

If the noisy signals are supported in − N
2 , N

2  instead of − 1
2 , 1

2 , (G.2) is replaced with

gm(N, ℓ , σ) = ∫0
2ℓπ∫0

2ℓπ 2σ2ξmωmsin N
2 (ξ − ω)

(ξ − ω) dω dξ .

The following proposition mirrors Proposition 6.1 for dilation MRA; its proof appears at the 

end of Appendix G.

Proposition G.1

Assume Model 2 with t = 0 and CV0, CV1 defined by (G.1), (G.2) and (G.3). Then,

CV0 = η2 + 3C4 − 3 η4 + O η6

CV1 = 4η2 + 25C4 − 33 η4 + O η6 .

Once again we cannot compute CVm exactly, but by replacing Var, E with their finite sample 

estimators, we obtain approximations CVm that can be used to define estimators of the 

dilation moments.

Definition G.1

Assume Model 3 with t = 0 and CV 0, CV 1 the empirical counterparts of (G.3). Define the 

second-order estimator of η2 by η2 = CV 0. Define the fourth-order estimators of (η2, C4η4) 

by the unique positive solution (η2, C4) of

CV 0 = η2 + 3C4 − 3 η4

CV 1 = 4η2 + 25C4 − 33 η4 .
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As M → ∞, the second-order moment estimator is accurate up to O(η4) and the fourth-

order moment estimators are accurate up to O(η6). However, in the finite sample regime, the 

gm(ℓ, σ) appearing in (G.3) will be replaced with gm( ℓ , σ) ± O σ2/ M , so that the estimators 

given in Definition G.1 are subject to an error of order O σ2/ M . More generally, the 

additive noise fluctuations imply that to estimate the first k/2 even moments of τ up to an 

O(ηk+1) error will require σ2/ M ⩽ ηk + 1, or M ⩾ σ4η−2(k+1).

Having established an empirical moment estimation procedure for noisy dilation MRA when 

t = 0, we repeat the simulations of Section 5.2 on the restricted model, but estimate the 

additive and dilation moments empirically. Since accurately estimating the moments of τ is 

difficult for σ large, we make three modifications to the oracle set-up. First, we lower the 

additive noise level by a factor of 2 from the oracle simulations, and consider all parameter 

combinations resulting from σ = 2−5, 2−4 (giving SNR = 9.0, 2.2) and η = 0.06, 0.12. 

Secondly, we take M substantially larger than for the oracle simulations, with 16, 384 ⩽ M 
⩽ 370, 727. Thirdly, we compute WSC k = 4 only for large dilations. For large dilations 

(η2, C4η4) are approximated with fourth-order estimators, while for small dilations η2 is 

approximated with a second-order estimator (see Definition G.1).

Results are shown in Fig. G7, and the same overall behavior observed in the oracle 

simulations for large M holds. The additive noise level was estimated empirically as 

described in Section 6.2. For the medium- and high-frequency signal, WSC k = 2 has 

substantially smaller error than both PS k = 0 and WSC k = 0; for the large-frequency signal, 

the error is decreased by at least a factor of 2 for large dilations and a factor of 4 for small 

dilations relative to both zero order estimators. When WSC k = 4 is defined, it has a smaller 

error than WSC k = 2 for the high-frequency signal, while WSC k = 2 is preferable for the 

low- and medium-frequency signal. We observe that for the oracle simulations WSC k = 4 

is preferable for all frequencies, so this is most likely due to error in the moment estimation 

degrading the WSC k = 4 estimator. For the low-frequency signal, PS k = 0 once again 

achieves the smallest error for small dilations, while for large dilations the higher order 

wavelet methods appear to surpass PS k = 0 for M large enough.
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Fig. G7. 
L2 error with standard error bars for noisy dilation MRA model (t = 0, empirical moment 

estimation). First, second and third column shows results for low-, medium- and high-

frequency signals. All plots have the same axis limits.

Proof of Proposition G.1.

Since yj = Lτjf + εj, we have
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E βm yj = E ∫0
2ℓπ

ωm fτj(ω) + εj(ω) dω

= E ∫0
2ℓπ

ωmfτj(ω)dω

= E ∫0
2ℓπ

ωmf 1 − τj ω dω

= E ∫0
22π 1 − τj ξm

1 − τj
mf(ξ) dξ

1 − τj

= βm(f)E 1 − τj
−(m + 1) .

We now compute the variance. We first establish that

gm( ℓ , σ) = E ∫0
2ℓπ

ωmεj(ω)dω ∫0
2ℓπ

ωmεj(ω) dω .

By Thm 4.5 of [49]

E εj(ω)εj(ξ) = E ∫−1/2
1/2

e−iωt dBt ∫−1/2
1/2

eiξt dBt

= σ2∫−1/2
1/2

ei(ξ − ω)t dt

=
2σ2sin 1

2(ξ − ω)
(ξ − ω)

so that

E ∫0
2ℓπ

εj(ω)dω ∫0
2ℓπ

εj(ω)dω = ∫0
2ℓπ∫0

2ℓπ
ωmξmE εj(ω)εj(ξ) dω dξ

= ∫0
2ℓπ∫0

2ℓπ
ωmξm

2σ2sin 1
2(ξ − ω)

(ξ − ω) dω dξ
= gm( ℓ , σ) .

We thus obtain

|βm yj |2 = E ∫0
2ℓπ

ωm fτj(ω) + εj(ω) dω ∫0
2ℓπ

ωm fτj(ω) + εj(ω) dω

= E ∫0
2ℓπ

ωmf 1 − τj ω dω ∫0
2ℓπ

ωmf 1 − τj ω dω

+ ∫0
2ℓπ

ωmεj(ω)dω ∫0
2ℓπ

ωmεj(ω)dω

= E 1 − τj
−2(m + 1)βm(f)βm(f) + gm( ℓ , σ)

= |βm(f)|2E 1 − τj
−2(m + 1) + gm( ℓ , σ) .

Hirn and Little Page 61

Inf inference. Author manuscript; available in PMC 2022 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus,

Var βm yj − gm( ℓ , σ) = E |βm yj |2 − gm( ℓ , σ) − |E βm yj |2

= |βm(f)|2E 1 − τj
−2(m + 1) − |βm(f)|2 E 1 − τj

−(m + 1) 2
.

Dividing by |E βm yj |2 gives

CVm =
E 1 − τj

−2(m + 1)

E 1 − τj
−(m + 1) 2 − 1,

and the remainder of the proof is identical to the proof of Proposition 6.1. □

H.: Additional simulations for noisy dilation MRA

We investigate the L2 error of estimating the power spectrum using PS (k = 0) and WSC (k = 

0, 2, 4) for three additional high-frequency functions:

f4(x) = 1.175cos(32x) ⋅ 1(x ∈ [ − 0.2, 0.2])

f5(x) = 0.299exp−0.04x2cos 30x + 1.5x2

f6(x) = (2.304/π)cos(35x)sinc(3x) .

The multiplicative constants were chosen so that the L2 norms of f4, f5, f6 are comparable 

with the L2 norms of the Gabor signals f1, f2, f3 defined in Section 4.4. The signal f4 

is not continuous and has compact support, with a slowly decaying, oscillating Fourier 

transform given by f4(ω)/0.47 = sinc(0.2(ω − 32)) + sinc(0.2( − ω − 32)). The signal f5 is a 

linear chirp with a constantly varying instantaneous frequency. The signal f6 is slowly 

decaying in space, with a discontinuous Fourier transform of compact support given by 

f6(ω)/0.384 = 1(ω ∈ [ − 38, − 32]) + 1(ω ∈ [32, 38]).

Implementation details were as described in Section 6, and simulations were run with oracle 

moment estimation on the full model (parameter values as described in Section 5.2). Figure 

H8 shows the L2 error. As for the high-frequency Gabor in Section 5.2, WSC (k = 2) and 

WSC (k = 4) significantly outperformed the zero order estimators. In addition for large 

dilations, the WSC (k = 4) outperformed WSC (k = 2) on f4 and f6.
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Fig. H8. 
L2 error with standard error bars for noisy dilation MRA model (oracle moment estimation). 

First, second and third columns show results for f4, f5 and f6. All plots for the same signal 

have the same axis limits.

I.: Expectation maximization algorithm for noisy dilation MRA

In this appendix we discuss how the expectation-maximization (EM) algorithm proposed in 

[1] can be extended to solve noisy dilation MRA. We first summarize the EM framework, 

which differentiates between observed data y = yj j = 1
M , latent variables s = sj j = 1

M  and 
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model parameters x. The goal is to produce the x that maximizes the marginalized likelihood 

function

p(y x) = ∫ p(y, s x)ds .

Maximizing p(y|x) directly is generally not tenable because enumerating the various values 

for s is too costly. However, EM algorithms can be used to find local maxima of the above 

function, by iterating between estimating the conditional distribution of latent variables 

given the current estimate of parameters (E-step) and estimating parameters given the 

current estimate of the conditional distribution of latent variables (M-step). Specifically, 

the iterative procedure updates xk, the current estimate of x, by

Q x xk = Es y, xk[logp(y, s x)] E‐step (I.1)

xk + 1 = argmax
x

Q x xk M‐step . (I.2)

Since (under certain conditions) log p(y|x) improves at least as much as Q at each iteration 

[30], the algorithm converges to a local maximum of p(y|x). This framework can be applied 

to noisy dilation MRA, and explicit formulas for both the E-step and M-step can be derived. 

Assume for simplicity that signals have been discretized to have length n and that the 

translation distribution ρt and dilation distribution ρτ are unknown and also discrete with 

n possible values tℓ ℓ = 1
n

 and τq q = 1
n , respectively. Letting x = (f, ρt, ρτ) denote the 

parameters, sj = (tj, τj) denote the latent/nuisance variables, and px denote conditioning on x, 

the likelihood function has form

p(y, s |x) = px(y |s)px(s) = ∏
j = 1

M 1

2πσ2
n
2

exp − 1
2σ2 LτjTtjf − yj 2

2 ρt tj ρτ τj .

Thus (up to a constant), the log likelihood has form

logp(y, s |x) = ∑
j = 1

M
− 1

2σ2 LτjT tjf − yj 2
2 + ∑

j = 1

M
logρt tj + ∑

j = 1

M
logρτ τj . (I.3)

Given the current estimate xk = fk, ρtk, ρτk  of parameters, the E-step is performed by first 

computing the conditional distribution of the latent variables

wk
ℓ, q, j = ℙ tj = tℓ, τj = τq xk = Ck

jexp − 1
2σ2 LτjT tjf

k − yj 2
2 ρtk tℓ ρτk τq , (I.4)

where Ck
j is a normalizing constant so that ∑ℓ, qwk

ℓ, q, j = 1. These weights are then used to 

compute Q, that is, by combining (I1), (I3) and (I4):
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Q f, ρt, ρτ fk, ρtk, ρτk = ∑
j = 1

M
∑

ℓ = 1

n
∑
q = 1

n
wk

ℓ, q, j

− 1
2σ2 LτjT tjf − yj 2

2 + logρt tℓ + logρτ τq ,
(I.5)

up to a constant. The M-step is then computed by

fk + 1, ρtk + 1, ρτk + 1 = arg max
f, ρt, ρτ

Q f, ρt, ρτ fk, ρtk, ρτk . (I.6)

Since f, ρt, ρτ all appear in distinct sums in (I5), performing the maximization in (I6) is 

straightforward. Since ‖LτjTtjf − yi‖2
2 = 1

1 − τq
f − Tl

−1Lτ
−1yj‖2

2, it is easy to check that

LτjTtjf − yj 2
2 = 1

1 − τq
f − Tℓ

−1Lτ−1yj
2
2

fk + 1 = 1
C ∑

j = 1

M
∑

ℓ = 1

n
∑
q = 1

n wk
ℓ, q, j

1 − τq
Tℓ

−1Lτ
−1yj , C = ∑

j = 1

M
∑

ℓ = 1

n
∑
q = 1

n wk
ℓ, q, j

1 − τq
. (I.7)

Using Lemma 15 in [1], one can also obtain closed form expressions for the updates to ρtk, 

ρτk:

ρtk + 1 tℓ =
wk

ℓ

∑ℓ′wk
ℓ′ for wk

ℓ = ∑
j

∑
q

wk
ℓ, q, j, ρτk + 1 τq =

vk
q

∑q′vk
qq

for vk
q = ∑

j
∑
ℓ

wk
ℓ, q, j .

Note when a discrete signal defined on some fixed grid is dilated, its dilation is defined on 

a different grid. Thus, computing (I.4) and (I.7) will involve off-grid interpolation, a subtlety 

not arising in classic MRA, and this interpolation may contribute additional error. We also 

note that one can always force the translation distribution to be uniform by retranslating the 

signals uniformly, and in this case all sums over ℓ in this section could be eliminated. This 

would improve the computational complexity of the algorithm but may be disadvantageous 

in terms of sample complexity, as in classic MRA a uniform translation distribution requires 

a larger sample size for accurate estimation than an aperiodic translation distribution [1].

J.: Supporting results: stochastic calculus

This appendix contains several stochastic calculus results that are used to control the 

statistics of the additive noise. Proposition J.1 is a simple generalization of Thm 4.5 of 

[49]. Proposition J.2 controls the second moment of the stochastic quantity in Proposition 

J.1 and is in fact a special case of Proposition J.3. Both Propositions J.2 and J.3 are proved 

with standard techniques from stochastic calculus, and for brevity we omit the proofs.
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Proposition J.1

Assume ∫0
T f(t)2 dt < ∞, ∫0

T f(t)2 dt < ∝, and let Bt be a Brownian motion with variance σ2. 

Then,

E ∫0
T

f(t)dBt ∫0
T

f(t)dBt = σ2∫0
T

f(t)f(t) dt .

Proposition J.2

Let f(t) be a bounded and continuous complex deterministic function on [0, T], and let Bt be 

a Brownian motion with variance σ2. Then, for a fixed non-random time T, we have

E ∫0
T

f(t)dBt
2 ∫0

T
f(t)dBt

2
= 2σ4 ∫0

T
|f(t) |2 dt

2
+ σ4 ∫0

T
f(t)2 dt ∫0

T
f(t)2 dt .

Corollary J.1

When f(t) is real, the above reduces to

E ∫0
T

f(t)dBt
4

= 3σ4 ∫0
T

f(t)2 dt
2

.

Proposition J.3

Let f(t), g(t) be bounded and continuous complex deterministic functions on [0, T], and let 

Bt be a Brownian motion with variance σ2. Then, for a fixed non-random time T, we have

E ∫0
T

f(t)dBt ∫0
T

f(t)dBt ∫0
T

g(t)dBt ∫0
T

g(t)dBt

= σ4 ∫0
T

f(t)g(t)dt ∫0
T

f(t)g(t)dt + ∫0
T

f(t)g(t)dt ∫0
T

f(t)g(t)dt

+ ∫0
T

|f(t) |2 dt ∫0
T

|g(t) |2 dt .
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Fig. 1. 
Dynamics arising from flexible regions in macromolecular structures [63].
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Fig. 2. 
Simulation results for additive noise model for medium frequency Gabor 

f(x) = e−5x2cos (16x).
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Fig. 3. 
Order k = 0, 2, 4 power spectrum estimators Pf (first two figures) and wavelet invariant 

estimators PSf (last two figures) for the signal f3(x) = e−5x2cos(32x). Figures 3(a) and 3(c) 

show small dilations and Figs 3(b) and 3(d) show large dilations.
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Fig. 4. 
L2 error with standard error bars for dilation model (empirical moment estimation). Top row 

shows results for small dilations (η = 0.06) and bottom row shows results for large dilations 

(η = 0.12). First, second, third column shows results for low, medium, high frequency Gabor 

signals. All plots have the same axis limits.
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Fig. 5. 
L2 error with standard error bars for noisy dilation MRA model (oracle moment estimation). 

First, second and third column shows results for low-, medium- and high-frequency Gabor 

signals. All plots have the same axis limits.
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Fig. 6. 

Signal recovery results for f3(x) = e−5x2cos(32x) with M = 20, 000, η = 0.12, SNR = 2.2.
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