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Abstract

Purpose of the review: Decades of research in ARDS have led to few interventions that impact 

clinical outcomes. The pandemic of patients with ARDS due to the novel SARS-CoV-2 infection 

has stressed the need for more effective therapies in ARDS. Phenotyping may enable successful 

trials and precision therapeutics in this patient population.

Recent findings: Clinical phenotypes that group patients by shared etiology, time-course, or 

radiographic presentation are of prognostic value but their use is limited by misclassification. 

Physiological phenotypes including the P/F ratio, ventilatory ratio, and dead space fraction predict 

poor outcomes but can rapidly change, making them unstable over time. Biologic phenotypes have 

prognostic value with composite clinical and biomarker sub-phenotypes additionally impacting 

treatment response but are yet to be prospectively validated.

Summary: Though much progress has been made in ARDS phenotyping, implementation of 

precision medicine practices will depend on conducting phenotype-aware trials using rapid point 

of care assays or machine learning algorithms. Omics studies will enhance our understanding of 

biologic determinants of clinical outcomes in ARDS sub-phenotypes. Whether biologic ARDS 

sub-phenotypes are specific to this syndrome or rather more broadly identify endotypes of critical 

illness remains to be determined.
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Introduction:

Acute Respiratory Distress Syndrome (ARDS) has long suffered from a paucity of practice-

changing discoveries despite rigorous research, owing to its wide range of triggers(1), broad 

definition(2), and variable outcomes. The surge of patients with ARDS beginning in 2020 

from the novel SARS-CoV-2 infection overwhelmed healthcare systems and highlighted the 

need for more effective therapies in ARDS. Phenotyping this heterogeneous syndrome into 

more homogeneous subgroups may lead to more success in identifying effective therapies.
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Since ARDS was defined in 1967, researchers have endeavored to understand its 

heterogeneity, fueled of late by advancements in phenotyping in other fields. In oncology, 

molecular phenotyping of melanoma led to the introduction of checkpoint inhibitors and 

therapies targeting BRAF V600 mutation that have significantly prolonged survival(3). 

Breast cancer treatment approaches and outcomes are vastly different based on hormone 

receptor and gene mutation phenotyping(4). In pulmonology, biomarker-based phenotyping 

has led to targeted therapies for patients with Th2 dependent inflammation and eosinophilic 

asthma(5–9). These successes have spurred the search for treatable phenotypes in syndromes 

of critical illness, namely sepsis and ARDS.

The COVID-19 pandemic led to large numbers of patients with a uniform trigger for ARDS. 

Clinical trials in patients with COVID-19-related ARDS (CARDS) met with more success in 

identifying effective therapies than decades of large, well-designed randomized trials had in 

“classical” ARDS. For example, numerous studies on the role of steroids in ARDS arrived 

at varying conclusions(10–12), yet steroids in patients with CARDS have more consistently 

demonstrated a mortality benefit(13, 14). The contrast between these findings in COVID-19 

and classical ARDS studies suggest that a steroid-responsive subgroup likely exists within 

groups of patients with classical ARDS and needs characterization. Even within CARDS, 

randomized trials studying the same drugs have met with mixed results, likely in part due 

to heterogeneous biologic response to ARDS and/or differing management strategies for 

patients with complex critical illness(14–23). Nonetheless, CARDS trials demonstrate that 

we are more likely to find successful ARDS therapies by selecting sub-groups of patients 

more likely to respond to a given treatment (predictive enrichment) and those at higher risk 

of poor outcomes (prognostic enrichment).

In this paper, we aim to briefly review current concepts in phenotyping ARDS, highlight 

some inherent challenges to phenotyping, and identify key directions toward which the field 

is headed in the coming decade.

Phenotyping: The Present

Clinical Phenotyping:

Clinical phenotyping in ARDS subdivides patients based on either a shared etiology, time-

course, or radiographic presentation of ARDS (Table 1). Evidence suggests that etiologic 

sub-phenotypes carry different prognoses and, in some cases, different treatment responses. 

The most prominent recent example of phenotyping based on a shared etiology is CARDS. 

Outside of CARDS, however, ascertaining an ARDS trigger can be difficult, and sometimes 

multiple etiologies are at play. Nevertheless, data suggests that prognosis and attributable 

mortality of ARDS differ based on etiology(24, 25). For example, ARDS induced by trauma 

carries a lower mortality rate than non-trauma related ARDS(26). ARDS resulting from 

direct injury to the lungs portends a better prognosis than ARDS due to indirect insults 

(e.g. non-pulmonary sepsis)(27). As of yet, aside from COVID-19, there is no compelling 

evidence that ARDS due to different etiologies responds differently to therapies.

The time-course of ARDS also has prognostic value. Studies have shown that late onset of 

ARDS (more than 48 hours after ICU admission) is associated with higher mortality rates 
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than earlier onset(28, 29). Among those who present with ARDS, one study found that 63% 

with moderate to severe disease based on P/F ratio paradoxically have a rapidly resolving 

phenotype and a better prognosis(30). Thus, trials recruiting patients with moderate to severe 

ARDS upon hospital presentation may inadvertently be enriched with this rapidly resolving 

clinical sub-phenotype.

Radiographic findings provide another means for prognostic and predictive trial enrichment 

in ARDS. The RALE score, which systematically quantifies the extent and density of 

alveolar infiltrates on plain films, predicts 28-day mortality with an AUC of 0.82(31). 

Similarly, the Murray Lung Score, which incorporates radiographic findings, was used as 

one approach to prognostic enrichment in the CESAR trial for ECMO(32, 33). Radiographic 

findings were used for predictive enrichment in the LIVE trial, an innovative study across 

20 ICUs in France(34). The investigators randomized patients to receive either standard 

lung-protective ventilation, or a personalized mechanical ventilation strategy based on the 

presence of focal or non-focal radiographic findings. In the personalized arm, the patients 

with focal ARDS received higher tidal volumes (8 mL/kg) and low PEEP, while those 

with non-focal disease received a lower tidal volume (6 mL/kg), recruitment maneuvers, 

and high PEEP. The trial found no significant differences in 90-day mortality, its primary 

outcome of interest. However, a post-hoc review led to the discovery that 21% of patients 

were radiographically misclassified. Accounting for this misclassification, the investigators 

found that a ventilator strategy misaligned with radiographic findings significantly increased 

90-day mortality. The LIVE trial highlights both the perils of “one size fits all” therapies in 

ARDS and misclassification inherent in clinical phenotyping.

Physiological phenotyping:

Physiologic phenotyping separates groups of patients based on severity of lung impairment 

(Table 1). The Berlin Criteria introduced the most commonly applied physiologic sub-

phenotypes of mild, moderate and severe ARDS, defined using the ratio of partial pressure 

of oxygen in arterial blood (PaO2) to the fraction of inspired oxygen (FiO2), the P/F 

ratio. These three categories of disease severity were associated with escalating mortality 

rates, and many recent trials have used P/F sub-phenotypes for prognostic enrichment by 

enrolling only those with moderate to severe ARDS (P/F <150). Despite the prevalence 

of its use, the P/F ratio is a mediocre predictor of mortality with an AUC of only 0.577 

in one analysis(2). Other physiologic sub-phenotypes that predict poor outcomes include 

dead space fraction, ventilatory ratio, and driving pressure(35–37). The main limitation 

of physiological phenotyping is that variables can rapidly change, creating unstable sub-

phenotypes that in some cases may be challenging to study in trial settings.

Biological phenotyping:

Drugs targeting biologic processes to reverse lung injury or enhance lung repair in ARDS 

have not lowered mortality, likely in part due to heterogeneity of the host response to ARDS. 

Biological phenotyping seeks to identify subgroups with a similar host response to ARDS to 

elucidate its pathophysiology and allow for prognostic and predictive trial enrichment (Table 

1).
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The largest body of work in this arena involves analyses of plasma protein biomarkers, 

several of which have demonstrated diagnostic and prognostic value in ARDS. These 

include biomarkers of alveolar epithelial injury such as soluble receptor for advanced 

glycation end products (sRAGE) and surfactant protein-D (SP-D)(38–47); endothelial 

injury such as angiopoietin-2 (Ang-2), von Willebrand factor (vWF), and intercellular 

adhesion molecule (CAM)-1(48–51); proinflammatory cytokines such as soluble tumor 

necrosis factor receptor I (sTNFr-1), interleukin (IL)-6, and IL-8(49, 50, 52–56); and 

disordered coagulation such as plasminogen activator inhibitor-1 (PAI-1) and protein C(57). 

Combinations of these biomarkers perform better in diagnosing and risk stratifying ARDS 

than each biomarker alone(44, 52, 58, 59).

Using latent class analysis (LCA), a retrospective study of clinical and protein biomarker 

data from the landmark ARMA and ALVEOLI trials of ARDS identified two sub-

phenotypes, designated as “hyperinflammatory” and “hypoinflammatory”, associated with 

distinct clinical outcomes(60–62). Retrospective analyses of data from five ARDS trials 

(ARMA(61), ALVEOLI(62), FACTT(63), SAILS(64), HARP-2(65)) as well as analyses 

of ARDS patients from two prospective observational cohorts, altogether comprising over 

4000 patients, consistently demonstrate that patients with the “hyperinflammatory” sub-

phenotype experience higher mortality rates than those with the “hypoinflammatory” sub-

phenotype(66–69). Beyond prognostic utility, these sub-phenotypes additionally seem to 

have different responses to therapies such as PEEP, fluid strategy, and simvastatin(60, 66, 

67) in secondary analyses of completed trials. A separate study using cluster analysis of 

protein biomarker data from a large cohort of patients across two ICUs in the Netherlands 

identified the presence of two molecular sub-phenotypes of ARDS designated as “reactive” 

and “uninflamed”(70). Specifically, the “reactive” sub-phenotype had higher levels of IL-6, 

Ang-1 and 2, PAI-1, and interferon-gamma levels and experienced worse outcomes than the 

“uninflamed” sub-phenotype.

Other types of biomarkers including RNA, metabolites, lipids, and extracellular vesicles 

hold potential for further untangling the complex biological phenotypes within ARDS. 

Transcriptomic analyses of peripheral blood leukocytes from the Netherland ICU cohort of 

patients identified upregulation of pathways of oxidative phosphorylation and mitochondrial 

dysfunction in the “reactive” sub-phenotype of ARDS(71). More recently in patients 

with CARDS, transcriptomic analyses of tracheal aspirates demonstrated reduced pro-

inflammatory gene expression compared to classical ARDS(72). The dysregulated host 

response in patients with CARDS was characterized by expression of genes associated with 

non-canonical roles in inflammation, potentially explaining why these patients benefit from 

steroids. Using metabolomic analyses, a subgroup of patients from a small cohort with 

ARDS were found to have a distinct metabolic profile in pulmonary edema fluid samples 

associated with higher mortality(73).

Phenotyping: The Challenges

While phenotyping holds great promise for future research trials in ARDS, the field faces 

several considerable challenges that have limited clinical implementation. One noteworthy 

challenge is disagreement over what constitutes sufficient data to recommend a change in 
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clinical practice(74). Here, the COVID-19 pandemic serves as an illustrative example. Early 

in the pandemic, researchers published observations of two apparent sub-phenotypes of 

CARDS with divergent lung compliance, radiographic, and physiological features(75). The 

“L” sub-phenotype was defined by having low lung elastance (high compliance) and was 

postulated to predominate in CARDS. The less common “H” sub-phenotype was defined by 

having high lung elastance and dense airspace filling on CT. The authors theorized that the 

high mortality rates early on in CARDS may have been partially related to inappropriate 

use of lung protective ventilation, one of the two interventions ever demonstrated to have 

a mortality benefit in ARDS(61), and recommended that the L sub-phenotype be treated 

with a different ventilator management strategy. Published in a prominent journal and 

cited over 600 times, the article reached a wide audience. However, numerous subsequent 

studies failed to identify evidence in support of the “L” and “H” sub-phenotype model, 

instead indicating that lung compliance in CARDS follows a normal distribution and is 

generally low, similar to its non-COVID counterpart(76, 77). Ideally, phenotyping should be 

data-driven and externally validated before clinical use.

Even phenotypes derived from rigorous, data-rich, and large studies still have limitations 

and must be interpreted with caution. For instance, as mentioned with the LIVE trial, 

clinical phenotypes suffer from high rates of misclassification(34). Despite retrospective 

reproducibility across multiple cohorts of ARDS, latent biologic phenotypes still require 

prospective validation before they can be of clinical utility. Lastly, detecting which 

phenotypes amongst the many that have and will be identified are clinically relevant and 

impact treatment response remains a major challenge. Adding to this complexity is our 

limited ability to identify successful interventions for complex biologic phenotypes. For 

instance, a retrospective subgroup analysis of a randomized controlled trial on the use of 

recombinant IL-1 receptor antagonist in patients with sepsis showed a paradoxical treatment 

benefit in the subset of patients with higher baseline levels of IL-1 receptor antagonists(78). 

This study illustrates that our understanding of pathobiology in critical illness remains 

rudimentary and stresses the need for more studies in preclinical models.

Phenotyping: The Potential

Advances in phenotyping and the COVID-19 pandemic have escalated the pace of 

phenotyping in ARDS. Implementation of precision medicine practices in ARDS will 

depend upon the research community conducting phenotype-aware trials, elucidating 

pathophysiologic pathways of lung injury in various forms of ARDS, and translating such 

discoveries to personalized therapies (Figure 1).

Phenotype-aware trials and cohort studies enrolling patients with predictive and prognostic 

enrichment in mind are necessary to prospectively validate sub-phenotypes of ARDS. 

However, lack of point of care assays for rapid biologic phenotyping presents a significant 

barrier to conducting such studies. To circumvent this issue, Sinha and colleagues proposed 

a machine learning algorithm tool that uses readily available laboratory and clinical 

data to phenotype patients into “hyperinflammatory” and “hypoinflammatory” ARDS on 

admission to the ICU and correlates well with the gold standard LCA based biomarker sub-

phenotypes(79). Furthermore, this algorithm might be incorporated into existing electronic 
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health records for ease of use. Investigators have also found that a parsimonious model 

using three plasma biomarkers can classify patients with ARDS into the two inflammatory 

sub-phenotypes with high accuracy(80). Based on these findings, a point of care assay for 

rapid analysis of plasma IL-6 and soluble TNFr1 levels has been developed and is being 

studied in the PHIND trial, the first prospective cohort study of ARDS patients undergoing 

biologic phenotyping upon study entry(81). The PHIND trial also aims to prospectively 

validate these biologic sub-phenotypes and test their stability over time. The future holds 

promise that “real time” phenotyping in patients with ARDS is imminent.

More studies on genomic, transcriptomic, and metabolomic phenotyping in ARDS are 

underway and will enhance our understanding of the biologic determinants of clinical 

outcomes in sub-phenotypes of ARDS. A recent multi-omics study by Overmyer and 

colleagues in patients admitted with moderate to severe respiratory issues with and without 

COVID-19 found 219 molecules strongly associated with COVID-19 status and severity 

and pointed to dysregulation of biologic processes involving lipid transport, coagulation, 

endotheliopathy, and neutrophil degranulation(82). Studies on the local versus systemic host 

response in ARDS using tracheal aspirates, bronchoalveolar lavage fluid, and fluid from 

heat-moisture exchange filters will advance our understanding of ARDS pathophysiology 

and offer novel therapeutic targets. Genome wide association studies hold the promise 

of identifying novel ARDS biology, though are challenged by the syndromic definition 

of ARDS and the difficulties of identifying genetic control groups. Ultimately, the field 

of phenotyping in ARDS is moving towards deep phenotyping wherein multiple types of 

data using a variety of technologies lead to whole-body physiological profiling, furthering 

our understanding of host response mechanisms, and enabling personalized therapies in 

ARDS(83, 84).

The question remains as to whether ARDS phenotypes are specific to this syndrome 

or rather more broadly identify endotypes of critical illness. A recent study applied 

classifiers for cluster and LCA-derived biologic sub-phenotypes of ARDS to a population 

of mechanically ventilated patients without ARDS and found that the “reactive” and 

“hyperinflammatory” sub-phenotypes were associated with higher probability of mortality 

even in patients without ARDS(85). Another study sub-phenotyping patients at risk for 

developing ARDS found that a distinct LCA defined baseline “hyperinflammatory” sub-

phenotype was associated with higher mortality and prolonged mechanical ventilation(86). 

Similar studies on ICU patients with and without ARDS are necessary to determine sub-

phenotype specificity. One can imagine a future in which our approach to treatment of 

critically ill patients revolves around biologically identified treatable traits rather than the 

current syndrome-based paradigm.

Conclusions:

Phenotyping ARDS has identified subgroups of patients with distinct outcomes. The 

composite LCA defined “hyperinflammatory” and “hypoinflammatory” sub-phenotypes 

have additionally demonstrated differential responses to ARDS therapies, albeit in post-

hoc analyses. Progress in the field is challenged by insufficient data, lack of prospective 

validation, difficulties identifying clinically relevant sub-phenotypes that impact treatment 
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outcomes, and translating discoveries into effective therapies. Real-time sub-phenotyping 

using novel assays and machine learning algorithms will enable phenotype-aware trials that 

hold the promise of identifying successful ARDS therapies. Phenotyping ARDS and critical 

illness more broadly may lead to a paradigm shift away from syndrome-based definitions 

towards treatable traits.
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Key points:

• Phenotyping ARDS using clinical, physiologic, and biologic data has 

identified subgroups of patients with distinct clinical outcomes with 

the hyperinflammatory and hypoinflammatory biologic subphenotypes 

demonstrating differential treatment response in retrospective analyses of 

randomized controlled trials and cohort studies.

• Researchers and clinicians must recognize the limitations of current 

phenotypes, including phenotypes derived from insufficient data, 

misclassification of clinical phenotypes, instability of physiologic phenotypes 

over time, and lack of prospective validation of biologic phenotypes.

• Precision medicine practices in ARDS depends upon the research community 

conducting phenotype-aware trials, elucidating pathophysiologic pathways of 

lung injury in various forms of ARDS, and translating such discoveries to 

personalized therapies.
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Figure 1. 
Schema for real-time phenotyping in ARDS.

EHR: electronic health record. POC: point of care.
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Table 1.

Overview of selected ARDS phenotypes, clinical utility, and main limitations.

Phenotypes Sub-phenotypes Established clinical use Main limitations

Prognostic Therapeutic

Clinical

Etiology X X (COVID-19 
only)

High risk of misclassification

 Sepsis

 Trauma

 Direct lung injury

Time course X

 Early vs late

 Rapidly resolving

Radiographic X

 RALE score

 Murray lung injury score

 Focal vs non-focal

Physiological

P/F ratio X X Rapidly changing variables

Dead space fraction X

Ventilatory ratio X

Driving pressure X

Biological

Protein biomarkers X Identifying interventions is complicated by partial 
understanding of complex biology

 Epithelial injury

 Endothelial injury

 Proinflammatory cytokines

 Disordered coagulation

 Reactive vs uninflamed

Composite clinical/protein X X

 Hyperinflammatory vs

 Hypoinflammatory

Metabolomics X

 High vs low metabolite 
pulmonary edema fluid
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