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Abstract

P300 spellers provide a means of communication for individuals with severe physical limitations, 

especially those with locked-in syndrome, such as amyotrophic lateral sclerosis (ALS). However, 

P300 speller use is still limited by relatively low communication rates due to the multiple data 

measurements that are required to improve the signal-to-noise ratio of event-related potentials for 

increased accuracy. Therefore, the amount of data collection has competing effects on accuracy 

and spelling speed. Adaptively varying the amount of data collection prior to character selection 

has been shown to improve spelling accuracy and speed. The goal of this study was to optimize 

a previously developed dynamic stopping algorithm that uses a Bayesian approach to control 

data collection by incorporating a priori knowledge via a language model. Participants (n = 

17) completed online spelling tasks using the dynamic stopping algorithm, with and without a 

language model. The addition of the language model resulted in improved participant performance 

from a mean theoretical bit rate of 46.12 bits/min at 88.89% accuracy to 54.42 bits/min (p < 

0.0065) at 90.36% accuracy.
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I. Introduction

THE primary motivation for brain-computer interfaces (BCI) is to provide communication 

and/or control abilities to patients whose severe physical limitations may limit or 

preclude their use of most commercially available assistive devices, such as patients 

with locked-in syndrome e.g. due to amyotrophic lateral sclerosis [1]. BCIs enable the 

neurological pathways of the user to be bypassed when transmitting different types of 

electrophysiological signals to interpret the user’s intent and execute commands; although 

some studies have shown that some voluntary control, like eye gaze, enhances user 

performance [2], [3]. ERP-based BCI spellers translate in real time time-locked event-related 

potentials (ERP) that occur in electroencephalography (EEG) data into commands for a 

spelling or word processing program. P300-based BCIs rely predominantly on eliciting a 
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P300 signal after the presentation of rare stimuli within the context of an oddball paradigm 

[4], [5], as well as other ERPs that can enhance performance [6], [7]. The P300 speller 

operates by processing the user’s EEG data after character subsets of a speller grid are 

flashed on a screen; the illumination of a target character (i.e. the character that the user 

intends to spell) elicits a P300 [8]. Classification techniques are used to distinguish between 

target and non-target EEG responses, [9], [10], to determine the character that the user 

intends to spell and the character with the largest combined classifier response after data 

collection is selected as the user’s intended choice. In recent studies, P300 spellers have 

been shown to be a viable communication tool in patients with ALS [11]-[14].

The P300 speller’s use is primarily limited by relatively low communication rates due 

to the long character selection time as character selection is made after averaging over 

multiple EEG measurements to increase signal-to-noise ratio and improve accuracy [15]. 

Most conventional ERP-based BCI spellers average data over a fixed number of trials for 

all users, with the number of trials set prior to online operation. However, the amount of 

data collection prior to character selection has competing effects on accuracy and spelling 

speed: decreasing it improves spelling speed while increasing it improves accuracy. Some 

approaches have optimized the amount of data collected prior to character selection for 

each user [13]. Alternatively, adaptively determining the optimal amount of data collection 

prior to each character selection can improve accuracy and communication speed [16], [17]. 

Most approaches vary the number of sequences from one character to the next based on 

a threshold [18]-[22]. Although these approaches showed promising results, some either 

relied on the past performance of participants or used parameters obtained by averaging 

training data across a participant pool. Since P300 signals exhibit cyclical and inter-subject 

variability [23] and are also affected by attention drift, fatigue or mood [24], [25], methods 

that rely solely on the quality of the data currently being collected are hypothesized to 

provide the best performance.

Throckmorton et al. demonstrated a statistically significant improvement in accuracy and 

communication rate using a Bayesian approach to dynamically control data collection 

when compared to static data collection [26]. In their algorithm, a probability distribution 

was maintained over characters and each classified response score was integrated into the 

model via a Bayesian update. Once the probability of a character being the target character 

attained a preset threshold value, the algorithm stopped data collection and selected the 

most probable character as the target character. The dynamic stopping algorithm had the 

advantage of being efficient in using subject-independent parameters for flash-to-flash 

evaluations of the user’s EEG data to adaptively vary the amount of data collection based on 

the quality of the data. While the algorithm provided statistically significant improvements, 

it was hypothesized that performance might be further improved if prior knowledge of the 

probability of each character was incorporated into the algorithm using a language model.

Statistical language models have been proposed to enhance P300 spellers as language is 

governed by a set of structural rules, such as phonetics, syntax, semantics or word order, that 

dictate the composition of clauses, phrases and words [27]. Language models are used in 

many applications such as speech recognition, machine translation, spelling correction, text 

retrieval or text entry. For example, predictive spelling maximizes user output by potentially 
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reducing the number of keystrokes by predicting the completion of a word a user intends to 

type based on spelling history.

Utilizing a priori knowledge of the user’s language is thus beneficial as language models 

have shown promising results in improving the online performance of P300 spellers [28], 

[29]. Ryan et al. developed a P300 speller used in conjunction with a predictive spelling 

program where numbered word options were displayed beside the P300 speller grid and 

updated based on the user spelling history [28]. The user could select one of those options 

if desired by focusing on its corresponding number in the P300 speller grid. Although a 

significant decrease in task completion time was observed with predictive spelling compared 

to non-predictive spelling, the accuracy using predictive spelling was negatively affected. 

This decrease in accuracy was hypothesized to be due to the increased task difficulty and 

cognitive load in selecting the numbered predictive word options that adversely affected 

P300 amplitudes. Kaufmann et al. integrated the predicted word options directly into the 

speller grid as a new column [29]. A significant decrease in task completion time was 

observed when using their predictive word completion option compared to conventional 

character-by-character selection. However, they did not observe a decrease in accuracy as 

task difficulty and workload was minimized because the predictive text was selected in a 

comparable manner to single character selection.

Speier et al. performed offline simulations comparing P300 speller performance using static, 

dynamic and natural language processing (NLP) methods to control data collection [30]. The 

dynamic method was similar to the Throckmorton et al. approach of initializing character 

probabilities with uniform prior and updating these probabilities via Bayesian inference 

until a threshold was reached. The NLP incorporated a language model to initialize letter 

probabilities. However, doing an offline analysis enabled them to optimize parameters for 

each subject post-hoc, an approach that is not possible in an online study. In addition, their 

trigram model did not account for possible non-alphabet character choices in a P300 speller 

grid, e.g. numeric characters, keyboard commands, punctuation marks etc., such as those 

shown in Fig. 1.

Given the potential benefit of language models that have been implemented in the literature, 

we propose optimizing the Throckmorton et al. dynamic stopping criterion by integrating 

a language model to improve online P300 speller performance. The Throckmorton et al. 
algorithm has the advantage that the initialization procedure for character probabilities 

provides a mechanism for inclusion of language-based knowledge without affecting the 

general function of the interface, thus avoiding potential issues associated with increased 

cognitive load. The language model used in this study sets the initial character probabilities 

based on whether the previous character selection was alphabetic or non-alphabetic. The 

added predictability was hypothesized to reduce the number of flashes prior to character 

selection thereby potentially improving spelling speed. In this study, we compare the online 

performances of participants using the dynamic stopping criterion with and without the 

language model.
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II. Methods

A. Participants

Seventeen healthy participants were recruited from the student and work population at Duke 

University (10 males and 7 females), and gave informed consent prior to participating in this 

study. The Duke University Institutional Board Review approved the study. Participants were 

numbered in the order they were recruited.

B. Equipment

The open source BCI2000 software package was used for stimulus presentation and data 

collection [31], with additional functionality added to implement dynamic stopping and 

dynamic stopping with language model algorithms [26]. EEG responses were measured 

using 32-channel electrode caps (Electro-Cap International, Inc.) connected to a computer 

via two 16-channel biosignal amplifiers (Guger Tec g.USBamp).

C. Signal Acquisition

Data collected from electrodes Fz, Cz, P3, Pz, P4, PO7, Po8, and oz, which have been 

shown to optimize performance in P300 spellers, were used for classification [9], [32]. 

(While only a subset of electrodes was used for signal processing and classification, data 

from 32 channels were recorded to have a more comprehensive potential map of the whole 

scalp to use for offline algorithm development). The left and right mastoids were used 

for ground and reference electrodes, respectively. The EEG signals were digitized at 256 

samples/s and filtered between 0.5Hz - 30Hz. From the third participant, a considerable 

degree of 60Hz noise started to be visually observed in some participant waveforms where 

we recorded high electrode impedance values; high impedance values are a common cause 

of residual mains interference [33]. While we typically record with impedance values ≤10 

kΩ, sometimes those values could not be achieved. Subsequently, a notch filter was used to 

minimize the electrical noise in those participants.

D. P300 Speller Paradigm

The row-column paradigm in BCI2000 was used to flash character subsets on a screen [8]. 

Participants were presented with a 9×8 grid of characters on a computer screen, (see Fig. 1). 

A sequence consists of flashing all rows and columns i.e. 1 sequence = 9 rows + 8 column 

flashes = 17 flashes. Word or number tokens to be spelled were shown on the top left of 

the matrix, with the intended characters to spell displayed in parentheses at the end of the 

word. The task consisted of locating the specified character in parentheses in the grid matrix, 

focusing on this character and mentally counting the number of times it was flashed on the 

screen. The flash duration was 62.5 ms and was followed by an interstimulus interval of 62.5 

ms prior to the next flash. After a target character was selected, an interval of 3.5 seconds 

occurred prior to selection of the next character.

Participants completed the study in a single session, which consisted of six training and six 

online test runs for both dynamic stopping algorithms. Each run consisted of six-character 

tokens: 5 word tokens and 1 number token. The tokens were randomly selected, with the 

word tokens drawn at random from a subset of the available words in the English Lexicon 
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project [34]. The word set consisted of 400 six-character words with the highest frequency 

of occurrence in written communication as measured by the Hyperspace Analogue to 

Language (HAL) corpus frequency [35].

E. Classification

The training runs consisted of the participants copy spelling the tokens with no feedback 

provided. Data collected for each character was obtained from flashing 10 sequences per 

character, corresponding to a total of 6120 row/column flashes. Feature extraction and 

P300 classifier training were done using MATLAB software (MathWorks Inc.). Features 

extracted from the EEG data from the training session were used to train a Stepwise Linear 

Discriminant Analysis (SWLDA) classifier [36] to obtain feature weights that were used 

in the dynamic stopping and dynamic stopping with language model algorithms. Using 

the SWLDA classifier calculated from the training run data, participants were tested using 

both dynamic stopping algorithms by performing copy-spelling tasks with feedback and 

no error correction. The tasks were counterbalanced across participants to avoid biasing 

the results by algorithm order. The odd-numbered participants tested in the order dynamic 

stopping followed by dynamic stopping with the language model, while the even-numbered 

participants tested in the reverse order.

Features extracted from the training EEG data were used to train a single classifier that 

was used in all six testing runs (see Krusienski et al. (2008) for details [32]). Following 

each flash, 800 ms of data was extracted from the raw EEG signal from each of the 8 

channels and decimated to a rate of approximately 20 averaged time samples/s by averaging 

13 time samples to generate one feature point (as a result, the last 10 time samples were 

discarded). The features were concatenated across the channels of interest to generate a 

1×120 observation feature vector, f, (120 features/flash = 15 features/channel*flash × 8 

channels), with a corresponding truth label assigned based on whether the target character 

was or was not present in the flash. With 6120 flashes generated during training, there 

were 720 target and 5400 non-target responses per participant. A training set for each 

participant consisted of a 6120×120 matrix of observation features vectors and a 6120×1 

vector of corresponding truth labels. The features and corresponding truth labels were used 

to generate features weights for a classifier using SWLDA. SWLDA weights each feature by 

its ability to discriminate between non-target and target responses.

F. Dynamic Stopping Criterion (DS)

The dynamic stopping algorithm consists of an offline and online portion and is described in 

Throckmorton et al. [26]. In the offline phase, EEG data obtained during the training phase 

were grouped into target and non-target responses. The weight vector, w (1 × 120), obtained 

from training the SWLDA classifier were used to calculate classifier response scores, 

x, from feature vectors obtained from the training data, where x = wf⊤. Kernel density 

estimation was used to smooth the histograms of the grouped scores to generate likelihood 

probability density functions (pdfs) of the non-target and target responses, p(x∣H0) and 

p(x∣H1), respectively.
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In the online testing phase of the dynamic stopping algorithm without a language model, 

character probabilities were initialized from a uniform distribution i.e. 1
N , where N is the 

number of choices in the grid. With each new flash of a subset of characters, Si, the classifier 

response score, xi, was calculated and used to estimate the character non-target and target 

likelihoods from the likelihood pdfs. The character posterior probabilities were updated with 

these likelihood values using Bayesian inference:

P (Cn ∣ xi, Xi − 1, Si) = P (Cn ∣ Xi − 1) × p(xi ∣ Cn, Si)
∑n = 1

N P (Cn ∣ Xi − 1) × p(xi ∣ Cn, Si)
(1)

where P(Cn∣xi, Xi−1, Si) is the posterior probability of character Cn being the target, given 

the current classifier score, xi, all the previously observed classifier responses, Xi−1 = [x1, 

… , xi−1], and the current subset of flashed characters, Si; P(Cn∣Xi−1) is the prior probability 

of character Cn being the target, given all the previously observed classifier responses, Xi−1; 

p(xi∣Cn, Si) is the likelihood of the current classifier response, xi, given that the character 

was or was not present in the current subset of flashed characters, Si; and the denominator 

normalizes the probabilities over all the character probabilities. The likelihood, p(xi∣Cn, Si), 

was set according to:

p(xi ∣ Cn, Si) =
p(xi ∣ H0), Cn ∉ Si
p(xi ∣ H1), Cn ∈ Si

(2)

If a character probability exceeded the threshold probability of 0.9, it was selected as 

the target character. A maximum limit of 10 sequences was imposed and if the threshold 

probability was not reached, the character with the maximum probability was selected as 

the target. For the next character, the character probabilities were re-initialized to 1
N  and the 

above process to update the probabilities was repeated.

G. Dynamic Stopping Criterion with Language Model (DSLM)

In DSLM, the initialization probability of a character depended on the previously spelled 

character, implemented via a letter bigram model. An n-gram language model assigns a 

probability to a sequence of tokens, c1
k = c1, c2, …, ck, (ci can denote letters in a word or 

words in a sentence; i denotes the position of the token in the sequence), using the chain rule 

of probability:

P (c1
k) = ∏

i = 1

k
P (ci ∣ c1

i − 1) ≈ ∏
i = 1

k
P ci ∣ ci − (n − 1)

i − 1 (3)

where P (c1
k) denotes the probability of a sequence of tokens; ∏i = 1

k P (ci ∣ c1
i − 1) denotes 

the chain rule probability decomposition; P ci ∣ ci − (n − 1)
i − 1  denotes the model approximation 

that reflects the Markov assumption that only the most recent n − 1 tokens are relevant in 

determining the conditional probability of the next token [27]. With the letter bigram model, 
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i.e. n = 2, the conditional probability of the letter ci given letter ci−1 can be estimated by 

maximum likelihood estimation using a relative frequency count:

P (ci ∣ ci − 1) = f(ci − 1, ci)
f(ci − 1) (4)

where f(ci−1, ci) and f(ci−1) are counts of the number of times that ci−1 was followed by ci, 

and that ci−1 appears in a given body of text, respectively.

A character pair probability matrix, Fig. 2, was generated from the Carnegie Mellon 

University online dictionary [37]. The element in the ith row and jth column of the matrix 

denotes the conditional probability, P (Aj ∣ Ai), that the next spelled letter is jth letter of 

the alphabet, Aj, given the most recently spelled letter is ith letter, Ai. For example, if 

the preceding letter is a Q, the likelihood of the subsequent character being a U is very 

high, hence the character pair probability is much higher for P(U∣Q) compared to P(T∣Q) 

or P(A∣Q). For the first character of a word, the character initialization probabilities were 

assigned from a uniform distribution. For subsequent character selection, the initialization 

probabilities were based on whether the previous character was alphabetic or non-alphabetic, 

with the uniform distribution used if it was non-alphabetic. If the previous character was 

alphabetic, the initialization probabilities of non-alphabet characters (NAC, e.g. !, Space, 

4, see Fig. 1) were assigned a probability of 1
N , where N is the total number of character 

choices in the speller grid. For alphabet characters, the initialization probabilities were 

originally calculated according to:

P (Cn ∣ X0) = P (Cn ∣ At − 1) 1 − ∑
NAC

1
N (5)

where P(Cn∣X0) denotes the initialization estimate of the character’s probability of being 

the target; P (Cn ∣ At − 1) denotes the conditional probability that the next letter is Cn, given 

the previously spelled letter is At − 1; and 1 − ∑NAC
1
N  is the sum of the non-alphabet 

probabilities, which is subtracted from 1 to normalize the probabilities.

However, there is the possibility of a misspelled character due to the initialization 

probabilities. For example, misspelling a Q would result in most of the initial character 

probabilities to be set to zero for the subsequent character. If the correct character’s initial 

probability is set to zero, it is unlikely that it would be successfully selected. In order to 

mitigate this potential issue, the initialization probability of the alphabet characters is set to a 

weighted sum of the bigram model probability and a uniform distribution according to:

P (Cn ∣ X0) = αP (Cn ∣ At − 1) 1 − ∑
NAC

1
N + (1 − α) 1

N (6)

where α denotes the weight of the bigram model probability and 1 − α denotes the weight 

of the uniform distribution. Offline simulations were conducted to assess the potential 

advantage/disadvantage of different weights for the bigram model. Target and non-target 
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likelihoods were generated from the data collected in [26] and random draws from these 

distributions were used to simulate subject responses to flashes. The weight of the bigram 

model was systematically varied between 0 and 1 in steps of 0.1, where 0 would indicate 

no bigram model and 1 would indicate only the bigram model was used. Based on the 

simulations, a bigram weight of 0.9 was shown to have no negative influence on accuracy or 

spelling speed and was selected for this study.

The character probabilities are updated via the Bayesian technique according to (1) and 

(2) until character selection when the threshold probability was reached. Once a character 

was selected, the character probabilities are re-initialized using (6) and the above process to 

update the probabilities was repeated.

H. Performance Measures

For each participant, the words spelled by the P300 speller and the number of flashes 

used to spell each character were recorded. The performance metrics used to compare both 

algorithms include accuracy, task completion time and bit rate. Accuracy is the percent of 

characters (out of 36) correctly spelled by the user. The task completion time (TCT) is the 

time the participant used in the spelling task in the testing run, including the time pauses 

between character selections. The maximum possible completion time, including pauses 

between character selection times, was 14 minutes, 47.5 seconds due to a sequence limit of 

10.

Bit rate is a communication measure that takes into account the accuracy, number of 

possible target choices and task completion time [38], and was calculated according to:

B = log2 N + P log2 P + (1 − P ) log2
1 − P
N − 1 (7)

Bit Rate = B 36
TCT (8)

where B is the number of transmitted bits/ character selection, N is the number of possible 

character selections in the speller grid; P is the participant accuracy and 36
TCT  represents 

the average number of selections transmitted per minute, based on the participant task 

completion time.

Theoretical bit rate differs from bit rate by excluding the time pauses (3.5 seconds) between 

character selections, so it represents the upper bound of the user’s possible communication 

rate. Time pauses between character selections vary across research studies as the values are 

often adjusted for user comfort. Theoretical bit rate may provide a more consistent measure 

of performance.

Statistical significance was tested using the Wilcoxon signed-ranked test, since it could not 

be guaranteed that the participant population was normally distributed.
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III. Results

The addition of the language model to the dynamic stopping criterion was hypothesized 

to improve P300 speller performance. Fig. 3(A-D) compares the accuracy, task completion 

time, bit rate and theoretical bit rate, respectively, achieved using the dynamic stopping 

algorithm with and without the language model. The average performance results are 

summarized in Table 1 and participant-specific results are shown in Table II.

In Fig. 3, participants are sorted based on their Ds theoretical bit rate. Odd-numbered 

participants were tested with Ds first, then DsLM while even-numbered participants were 

tested first with DsLM, then with Ds. No order effects were observed for the four 

performance metrics plotted. From Fig. 3(A), participant accuracy was similar across both 

conditions. In general, the proportion of correct characters spelled per number of flashes 

was similar under both conditions. No significant difference was observed between the 

accuracies of DS (mean = 88.89%, SD = 9.32%) and DSLM (mean = 90.36%, SD = 8.95%), 

p < 0.2426. However, all but one participant completed the spelling task in less time, as 

shown in Fig. 3(B) under DSLM (mean = 6.27 minutes, SD = 2.11 minutes), compared to 

DS (mean = 6.80 minutes, SD = 2.21 minutes), p < 0.00025.

The consistent reduction in task completion time resulted in a significant increase in 

communication rates, Fig. 3(C-D). A significant increase in both bit rate and theoretical bit 

rate was observed under DSLM (mean = 33.15 bits/min, SD = 11.29 bits/min; mean = 54.42 

bits/min, SD = 23.78 bits/min, respectively), respectively, compared to DS (mean = 29.55 

bits/min, SD = 10.23 bits/min, p < 0.0221; mean = 46.12 bits/min, SD = 20.63 bits/min, p < 

0.0065). As calculated, the bit rate and theoretical bit rate may overestimate the actual user’s 

communication rate, as spelling errors were not corrected by the user. The spelling task was 

designed with no error correction to test the robustness of including the error factor in the 

language model. However, practical bit rate, a communication rate that includes correcting 

for errors and the time pause between character selection, can also be considered and was 

calculated according to [13]. The average practical bit rate is significantly higher for DSLM 

(mean = 32.29 bits/min, SD = 12.24 bits/min), compared to DS (mean = 28.45 bits/min, SD 

= 11.17 bits/min, p < 0.0379) for this data collection.

The data was further analyzed to determine the difference in the number of flashes between 

DS and DSLM. Fig. 4 shows a plot of the average number of flashes used to spell a 

character under both algorithms, with the error bars representing the standard deviation. The 

number of flashes used to spell each character varied across characters for each participant, 

with the mean number of flashes/character decreasing with increased communication rate. 

However, it can be observed that the average number of flashes decreased when using 

DSLM (mean = 55.53 flashes, SD = 28.11 flashes) compared to DS (mean = 62.70 flashes, 

SD = 29.47 flashes, p < 0.00025), resulting in the observed significant reduction in task 

completion time.

The impact of using a language model in the Bayesian update process to set the character 

initializations was further analyzed. In offline simulations, each participant’s SWLDA 

classifier, target and non-target pdfs developed in the training phase, and respective 
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algorithm EEG data collected in the testing phase were used to determine the flash-to-flash 

progression of the selected target probabilities for each character selection under DS and 

DSLM. The results were averaged across the characters, excluding the first character in each 

word since the character initialization probability was uniform in both algorithms. In order 

to keep the number of averaged points constant across the number of flashes, flash-to-flash 

progressions that ended with less than 170 flashes due to dynamic stopping were padded 

with the final probability. In Fig. 5, the progression of the average target probability with 

respect to the flash number is shown for each participant. The offset between DS and DSLM 

is not constant as might be expected if the impact of adding the language model was to 

merely increase the initial target probability. Instead, the rate at which the target probability 

reaches threshold increases in some cases (e.g. participant 1). These results suggest that the 

impact of the language model is to not only start the target at a higher initial probability, but 

also enable the updating process to discard non-targets more quickly.

IV. Discussion

The primary goal of this study was to determine if the Throckmorton et al. dynamic stopping 

algorithm could be improved by incorporating a priori knowledge via a language model. 

A significant improvement in accuracy was not expected, as the threshold limit for both 

algorithms was the same, 0.9, resulting in the average accuracy of about 90% observed 

across both algorithms. The added predictability of the language model reduced the number 

of flashes required to reach the decision threshold, hence a significant reduction in task 

completion time was observed in all but one participant. By reducing the task completion 

time while maintaining similar accuracy on average, a significant increase in communication 

rates was achieved.

While an improvement in communication rates was observed, mostly mid-performing 

participants derived an appreciable benefit in the bit rate or theoretical bit rate from the 

inclusion of the language model. The high performing participants are already performing 

close to the upper limit of communication rate and so it is difficult to improve on their 

already high performance. The lower performing participants used a much higher number 

of flashes and though they observed a reduction in their task completion time, it was not 

enough to observe a noticeable improvement in communication rate. Nonetheless, the high 

number of flashes leaves room for reducing the task completion time to improve their 

communication rates.

Similar to Throckmorton et al., the list of words were randomly chosen from the English 

Lexicon project, which are words that are typically used in communication, so the words 

should not result in a heavy cognitive load to the P300 speller user due to rare usage. 

However, an additional consideration when using the language model is the possibility that 

character pair combinations with low initialization probabilities might adversely impact the 

algorithm performance, e.g. the pair ‘in’ in single has a relatively high probability compared 

to ‘af’ in afraid. Since each participant was tested with a randomly selected set of words, 

it might be hypothesized that the performance of some participants would be adversely 

affected by the words selected for them.
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In order to determine the impact of randomly selecting words per participant, offline 

analyses were performed prior to this study and the potential bias in two performance 

metrics, accuracy or task completion time, was assessed. Using the Throckmorton et al. data, 

participant target/nontarget likelihood distributions were generated and dynamic stopping 

with the language model was simulated on words by initializing character probabilities, 

performing random draws of scores from participant likelihood distributions and updating 

character probabilities until the threshold for character selection was met. A comparison was 

done on two types of word sets: randomly selected words for each participant and identical 

words for all participants. It was hypothesized that if word selection were to have an impact, 

then the variance for accuracy and time to completion would be much higher for random 

word selection. However, variances for the two metrics were similar for both methods of 

word selection. while these conclusions were drawn with respect to the above simulations, 

based on an additional literature review, it has not been shown that word complexity affects 

speller performance. The advantage of using random words is that the results from this study 

are not tied to a specific selection of relevant words, thereby avoiding the issue of whether 

similar performance could be achieved for other word selections.

By incorporating the language model in the background within the algorithm, this approach 

avoided negatively influencing accuracy due to increased cognitive load and task difficulty. 

In Ryan et al., even though a significant decrease in task completion time was observed 

in the predictive speller, the increased task difficulty in selecting the numbered predicted 

options negatively affected accuracy [28]. Our dynamic stopping algorithm can be modified 

to accommodate the approach used in Kaufmann et al. where the predictive word options 

were displayed as a new column in the speller grid [29], with the modification of basing 

initialization priors of the new word options on a higher order n-gram model.

The ability of dynamic stopping algorithms to significantly outperform static stopping 

algorithms, both in terms of accuracy and communication rate, has been well demonstrated 

in general, [16], [18]-[21] and [17], as well as specifically for this algorithm, in 

Throckmorton et al. [26]. In comparison with other dynamic approaches, Throckmorton 

et al. demonstrated comparable [21] to improved performance with other dynamic stopping 

approaches used in the offline comparison study by Schreuder et al. (2011) [16]. One 

outcome of [16] was that the dynamic stopping approaches worked well for good 

performing participants and worse for low-performing participants, and this outcome was 

also observed in the updated comparison study, Schreuder et al. (2013) [17]. Throckmorton 

et al. demonstrated their approach was beneficial to low-performing (less than 60% accuracy 

in static data collection) as well as high performing participants. Thus, it can be inferred 

that the significant improvement in communication rate observed with the addition of the 

language model would add to the significant improvements of a dynamic stopping system 

when compared to a static stopping system.

The approach in this study is similar to that used by Speier et al., comparing static, 

dynamic and natural language processing (NLp) methods to control data collection [30]. 

They assumed Gaussian likelihood distributions (verified via Kolmogorov-Smirnov tests) 

for the target and non-target classifier scores and used a trigram model obtained from the 

Brown corpus. Their analysis was performed offline on training data using SWLDA weights 
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obtained from nine-fold cross-validation. offline data analysis enabled them to vary the 

threshold probability in the dynamic data collection in order to optimize bit rates for each 

subject. Statistical significance was not tested between the dynamic stopping method and 

the NLP method; however, mean accuracy improved from 89.6% correct to 93.3% correct 

and bit rate improved from 27.7 bits/min to 33.2 bits/min, respectively. The online results 

presented in this study are similar to these results despite the lack of a priori knowledge 

of the optimal parameters. Further, the independence of training and testing datasets and 

real-time closed-loop user responses did not have a negative impact. These results indicate 

the robustness of a language model, as implemented here, to provide an improvement in 

communication rate for P300 spellers.

Our algorithm can be improved by further advancing the language model. The Carnegie 

Mellon corpus was used to train the language model and this large vocabulary of words 

might not be applicable to a particular user. A user-specific body of text can be used 

to provide even more language context. A higher order n-gram model based on all the 

user’s spelling history can be used as it utilizes more information in assigning initialization 

probabilities. For example, if a user has already spelled LIST, the initialization probabilities 

of grid character Cn will be based on all the previous character selections, instead of a 

bigram model, P(Cn∣T), or trigram model, P(Cn∣ST). With the added predictability of a 

higher order n-gram model, we hypothesize there will be a further reduction in the number 

of flashes required to reach the decision threshold. This is because the number of possible 

letters to complete a word begins to narrow down as the user spells and so a higher order 

model will tend to bias the initialization probabilities towards these possible letters. As 

noted earlier, participants did not correct for spelling errors with the backspace command 

as the error factor was introduced to account for possible misspellings. The algorithm 

can be improved by incorporating spelling correction with feedback on user errors, e.g. 

[39], obtained via error-related potentials which occur due to the user being aware of, or 

perceiving an error [40].

The dynamic stopping with language model algorithm was evaluated in healthy individuals. 

Mak et al. note that P300-based BCI literature have predominantly been in young and 

healthy adults, with limited reported results in patients with disabilities who represent the 

target P300 speller population [41]. The utility of the algorithm will need to be validated in 

disabled individuals, as results from the healthy participants do not necessarily generalize 

to those with disabilities who exhibit differences due to the causes and/or progression of 

their disabilities. Recent P300 speller studies have demonstrated accuracy levels as high as 

70-100% [11]-[14]. In comparison to healthy individuals, patients with disabilities typically 

operate the system with a 6×6 matrix at slower flash rates and require more sequences per 

character selection (Townsend et al. and Sellers et al. used a 9×8 matrix in ALS patients). 

Although Townsend et al. optimized the number of sequences for character selection in ALS 

patients, the range of sequences was not reported. If the trend of the results in Throckmorton 

et al. and our study holds true for the disabled population, this will hopefully result in a more 

practical and efficient P300 speller system for daily use in severely disabled patients, thereby 

improving their quality of life.
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V. Conclusion

Enhancing accuracy, spelling speed and communication rates results in more practical and 

efficient daily use of BCI-based spellers in patients with severe disabilities. This study 

contributes to research by demonstrating a significant improvement in online P300 task 

completion time and communication rates using dynamic data collection with a language 

model. The language model developed in this study accounts for spelling non-alphabet and 

alphabet characters and possible misspellings of characters.
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Fig. 1. 
Screen display used for the P300 speller in this study. The word to be spelled is displayed in 

the top left, with the current target character in parentheses. Rows and columns are flashed 

in random order prior to character selection. If feedback is desired, the selected choice is 

displayed below the intended target after character selection has been made.
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Fig. 2. 
Character Pair Probability matrix generated from Carnegie Mellon University online 

dictionary. The element in the ith row and jth column in the matrix denotes the probability, 

P (Aj ∣ Ai), that the next spelled letter is the jth letter in the alphabet, given the most recently 

spelled letter is ith letter. Probability values were clipped at 0.5 to enhance visualization.
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Fig. 3. 
Comparison of performance measures between DS and DSLM in terms of (A) Accuracy, 

(B) Task Completion Time, (C) Bit Rate and (D) Theoretical Bit Rate. The accuracy is the 

percentage of the 36 characters that the participant correctly spelled. The maximum possible 

completion time, including pauses between character selection times, was 14 minutes, 47.5 

seconds due to a sequence limit of 10. Bit rate is a communication rate that takes into 

account accuracy, task completion time and the number of possible character choices. 

Theoretical bit rate excludes the 3.5-second pauses between character selections.
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Fig. 4. 
Average number of flashes to spell a character using DS and DSLM algorithms for each 

participant. The error bars represent the standard deviation. The maximum number of flashes 

possible to spell each character was 170 flashes due to a sequence limit of 10.
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Fig. 5. 
Offline calculations of the average selected target probability flash-to-flash progression 

during character selection under DS and DSLM (excluding the first character of each token).
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TABLE I

Results Summary Comparing DS and DSLM

PERFORMANCE MEASURE DS DSLM p-value

Time to complete task (mins) 6.8 ± 2.21 6.27 ± 2.11 < 0.02426

Accuracy (%) 88.89 ± 9.32 90.36 ± 9.32 < 0.00025

Bit Rate (bits/min) 29.55 ± 10.23 33.15 ± 11.29 < 0.0221

Theoretical Bit Rate (bits/min) 46.12 ± 20.63 54.42 ± 23.78 < 0.0065
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