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Abstract

Remarkable progress has been made in the development of new therapies for cancer, dramatically 

changing the landscape of treatment approaches for several malignancies and continuing to 

increase patient survival. Accordingly, adverse effects of cancer therapies that interfere with the 

continuation of best-possible care, induce life-threatening risks or lead to long-term morbidity are 

gaining increasing importance. Cardiovascular toxic effects of cancer therapeutics and radiation 

therapy are the epitome of such concerns, and proper knowledge, interpretation and management 

are needed and have to be placed within the context of the overall care of individual patients 

with cancer. Furthermore, the cardiotoxicity spectrum has broadened to include myocarditis with 

immune checkpoint inhibitors and cardiac dysfunction in the setting of cytokine release syndrome 

with chimeric antigen receptor T cell therapy. An increase in the incidence of arrhythmias related 

to inflammation such as atrial fibrillation can also be expected, in addition to the broadening 

set of cancer therapeutics that can induce prolongation of the corrected QT interval. Therefore, 

cardiologists of today have to be familiar not only with the cardiotoxicity associated with 

traditional cancer therapies, such as anthracycline, trastuzumab or radiation therapy, but even 

more so with an ever-increasing repertoire of therapeutics. This Review provides this information, 

summarizing the latest developments at the juncture of cardiology, oncology and haematology.

Cancer-related diseases have been on the rise and cancer-related mortality has been on 

the decline, leading to a profound increase in the number of survivors of cancer over the 

past three decades1. With this change has come greater recognition of the importance of 

the adverse effects of cancer therapies, some of the most important being cardiovascular 

in nature. Pre-existing cardiovascular disease can likewise complicate and even lead to the 

termination of cancer therapy (especially if it is not managed appropriately). Therefore, 

an important interaction exists between these two disease entities and their management. 

Considering the ageing of the general population, these dynamics are expected to increase in 

the years to come2. Preparing individuals and society for this future is an important goal, and 

its pursuit has started in the form of the emerging field of cardio-oncology.
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Ewer and Ewer provided a classic overview of the field of cardio-oncology in 2010, 

with an update in 2015 (REFS3,4). Since then, the focus of cardio-oncology might not 

have shifted much, but the field of view has certainly become much broader, including 

not only cardiotoxicity but also many other cardiovascular diseases, especially vascular 

toxicity and arrhythmias (FIG. 1; Supplementary Fig. 1). This change is in large part 

related to the progress in cancer therapeutics from chemical compounds in the twentieth 

century to targeted agents around the turn of the millennium and to immunotherapies in 

the past decade (FIG. 2). This Review provides an updated overview of cardiotoxicity and 

arrhythmias associated with cancer therapies; vascular toxic effects are covered in a separate 

Review in this Issue5. As applicable, references will be made to available guidelines and 

consensus documents from various societies (Supplementary Tables 1–7) to reflect and 

discuss currently published consensus recommendations.

Cardiotoxicity of cancer therapies

Over the years, the term ‘cardiotoxicity’ has encompassed many specific disease entities 

and is very much in need of a universal definition. This need holds true for cancer therapy-

related cardiomyopathies. The unifying element for these conditions is a decline in cardiac 

function, with differences in the defining criteria. Mechanistically, a decline in cardiac 

function can be due to direct (endogenous) cardiomyocyte damage (termed in this Review 

as ‘cancer therapy-related type I or primary (toxic) cardiomyopathy’), to alterations in 

perfusion, innervation or hormonal milieu (termed in this Review as ‘cancer therapy-related 

type II or secondary (indirect) cardiomyopathy’) or to inflammatory cell infiltration in 

the myocardium (termed ‘cancer therapy-related type III cardiomyopathy or myocarditis’) 

(BOX 1). Although cardiomyopathies associated with cancer therapies are rarely mediated 

by one single mechanism, this classification might serve the ultimate goals of fostering the 

proper selection of care and achieving the best possible outcomes.

Type I cardiomyopathy

Cancer therapy-related type I cardiomyopathies can occur with various cancer therapeutics. 

They are a consequence of direct toxic effects of cancer therapies on the myocardium and 

represent the prototypical toxic cardiomyopathy.

Conventional chemotherapies.—Conventional chemotherapeutics are chemical 

compounds intended to kill tumour cells by interfering with their high metabolic demand 

and mitotic activity. One of the most effective and prominent examples is anthracyclines, 

which intercalate between base pairs of DNA or RNA strands and thereby inhibit DNA 

or RNA synthesis6. Furthermore, anthracyclines inhibit topoisomerase IIα, an important 

enzyme for DNA transcription and replication. Other effects include induction of iron-

mediated oxidative stress that damages DNA, proteins and lipids, as well as histone 

modification that deregulates epigenomic and transcriptomic responses.

Cardiotoxicity is a dose-limiting adverse effect of anthracycline therapy (TABLE 1). 

Common terminology has been to label any evidence of cardiac injury occurring during 

and within 1 week of active cancer therapy as acute cardiotoxicity and thereafter as chronic 

cardiotoxicity, with either early or late onset (that is, within or after 1 year of completion 
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of cancer treatment)7. Acute anthracycline-related cardiotoxicity is a rare event, seen in less 

than 5% of patients. This cardiomyopathy pres ents with electrocardiogram (ECG) changes 

(in 20–30% of patients) and arrhythmias (up to 3% of patients), mainly sinus tachycardia 

but supraventricular tachycardia, heart block and ventricular arrhythmias can occur as well, 

leading to palpitations, presyncope and syncope, and even cardiac arrest. Acute declines 

in cardiac function can be seen as well, presenting with dyspnoea to the point of heart 

failure (HF)8. Finally, some patients develop pericarditis and have chest pain in addition to 

shortness of breath9. Pathologically, acute anthracycline-related cardiotoxicity resembles an 

acute toxic myocarditis with cardiomyocyte damage, inflammatory infiltrates and interstitial 

oedema10.

Chronic anthracycline-related cardiotoxicity is histopathologically characterized by vacuole 

formation, myofibril dropout, necrosis and fibrosis11. Importantly, these changes predate the 

declines in ejection fraction and can be seen in myocardial biopsy samples, ranging from 

mild to severe, while nuclear or echocardio-graphic imaging still indicates normal cardiac 

function parameters12. Moreover, even changes (increases) in myocardial injury early 

after anthracycline exposure do not necessarily correlate with changes (decreases) in left 

ventricular ejection fraction (LVEF) as assessed by either imaging modality12. Nevertheless, 

a multigated acquisition scan-based study indicated that declines in cardiac function can be 

noted in certain individuals after a cumulative doxorubicin dose of 200 mg/m2 and indicates 

the risk of progression through the HF stages13. The risk of HF progression gains particular 

meaning when one considers studies that present anthracycline-related cardiomyopathy as 

one of the worst types of cardiomyopathy14. However, data published in 2017 indicate a 

prognostic profile of anthracycline-related cardiomyopathy on a par with that of dilated 

cardiomyopathy, and an unrelenting decline in cardiac function does not have to be the norm 

with current regimens of cardiomyopathy and HF treatment15. The epidemiological scope 

of anthracycline-related cardiomyopathy is also in flux, with the reported incidence ranging 

from 0% to 57%, attributable to differences in study populations, definitions and tests used 

over time16.

The mechanisms of anthracycline-related cardiotoxicity have some overlap with its 

anticancer effects but also have unique and specific differences. For instance, anthracyclines 

inhibit topoisomerase IIβ and show a particular predilection for mitochondria in 

cardiomyocytes17. Mitochondrial injury is seemingly one of the cardinal elements of 

anthracycline-related cardiotoxicity, and damage to mitochondrial DNA has been proposed 

to be responsible for the long-term risk of cardiomyopathy associated with anthracycline 

exposure18–21. Other studies have indicated that anthracyclines preferentially affect 

progenitor cells and thereby reduce the regenerative potential of the (injured) myocardium, 

the consequences of which then emerge over time, especially with any additional 

stressors22–24.

Targeted cancer therapies.—The pharmacological action of classic chemotherapeutics 

is not very specific and, therefore, the potential to harm normal cells is fairly high. 

Consequently, therapies that specifically target the malignant molecular fingerprint were 

designed with the aim of yielding higher success rates with lower complication rates. 

A classic example is trastuzumab, a humanized antibody directed against HER2 (also 
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known as ERBB2), which is overexpressed in 15–20% of breast cancers25 (BOX 2). 

Like other oncogenes, HER2 signalling increases cancer cell proliferation, tumour growth 

and metastatic spread; HER2 inhibition, therefore, translated into revolutionary clinical 

success26,27.

Oncogenes

Oncogenes encode proteins that can transform cells into tumour cells. All but a few 

are derived from normal cellular genes (proto-oncogenes), and activation of a proto-

oncogene into an oncogene generally involves a gain-of-function mutation.

However, much at odds with the promise of ‘smarter and safer designer drugs’, trastuzumab 

caused declines in cardiac function and even HF in nearly 30% of patients in early 

seminal clinical trials28 (TABLE 2). Studies thereafter revealed an incidence of trastuzumab-

related cardiotoxicity of 15–20% and of HF of <5%. Nonetheless, declines in cardiac 

function ≥10% can be seen in 40–45% of patients receiving trastuzumab in consecutive 

patient datasets29,30. However, Ewer and Lippman pointed out unique differences between 

trastuzumab-related and anthracycline-related cardiotoxicity, leading to the terminology of 

cancer therapy-related type II (alternative) cardiotoxicity and cancer therapy-related type 

I (classic) cardiotoxicity, respectively31. A key differentiating element in these definitions 

is the recovery of cardiac function after cessation of trastuzumab therapy. However, the 

average LVEF of the original cohort of patients remained approximately 5% below baseline 

levels. Approximately 10% of patients had a LVEF that was more than 10% lower than the 

baseline level, and 20% of patients with a normal LVEF at baseline had a LVEF of less 

than 50% after treatment32. Other studies have indicated that as many as 75% of patients 

exposed to trastuzumab therapy might have an irreversible decline in cardiac function33. 

Overall, 20% of patients experience an interruption of their trastuzumab therapy, and only 

half of these patients are able to resume the therapy, with a 15–40% likelihood of a recurrent 

drop in LVEF32,34,35. These data outline the remarkable burden that trastuzumab-related 

cardiomyopathy can have in patients with breast cancer.

Elevations in the circulating levels of cardiac troponin (cTn) seem to identify those patients 

receiving trastuzumab who are at risk of an irreversible decline in cardiac function36. 

Although plasma cTn level elevations have been noted in experimental studies with 

trastuzumab37, these elevations are usually seen at the transition from anthracycline therapy 

to trastuzumab therapy. This observation highlights the previously described anthracycline–

trastuzumab interaction, whereby trastuzumab impairs the repair response to anthracycline 

in cardiomyocytes4, which can then translate into cardiac injury and dysfunction. Inhibition 

of HER2 in the presence of other potent stressors to the myocardium, such as ischaemia 

and/or high afterload, can be similarly detrimental. Therefore, trastuzumab therapy can 

unmask any injury or stress on the myocardium that leads to the upregulation and activation 

of the HER2 stress response pathway. The interplay between various risk factors and the 

state of dependence of the myocardium on the HER2 signalling pathway might also provide 

an explanation for the seemingly contradictory findings between clinical trials and real-

world registries. For instance, the risk of cardiotoxicity was low and confined to the active 

treatment period in the HERA trial38, whereas an increasing risk of HF after trastuzumab 
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therapy has been seen in the SEER–Medicare database of patients39. Of further note, in the 

SEER–Medicare database, the 3-year risk of HF was lower with anthracycline therapy than 

with trastuzumab therapy, but was highest when both were combined39. Similar observations 

were made in the Cancer Research Network as well as other registry-based studies40. In 

summary, the long-term cardiovascular implications of trastuzumab therapy remain to be 

defined.

Other HER2-directed therapies, such as lapatinib, pertuzumab and trastuzumab–emtansine, 

are associated with a lower risk of cardiotoxicity than trastuzumab. Furthermore, dual 

trastuzumab–pertuzumab HER2-directed therapy is not associated with a higher risk of 

cardiotoxicity than trastuzumab therapy alone41–43. Of interest, the reported LVEF decline 

with the tyrosine kinase inhibitors (TKIs) afatinib and osimertinib, which target epidermal 

growth factor receptor (EGFR; also known as HER1), has been attributed to inhibition of 

HER2 in addition to EGFR inhibition44.

TKIs are the second major group of targeted cancer therapies. These drugs interfere with the 

transfer of a phosphate group to a tyrosine residue of a protein, a critical regulatory cue in 

signalling pathways that control cell function, proliferation and survival45. A prominent 

example of a TKI is imatinib, which neutralizes the BCR–ABL1 fusion protein, the 

molecular fingerprint of Philadelphia chromosome-positive haematological cancers, such as 

chronic myeloid leukaemia46. Unexpectedly, cases of HF were reported in patients receiving 

imatinib, and in vivo and in vitro experiments indicated direct cardiotoxicity potential47. 

Activation of the endoplasmic reticulum stress response, collapse of the mitochondrial 

membrane potential, release of cytochrome c into the cytosol and reduction in cellular 

ATP content were the originally implicated mechanisms leading to cardiomyocyte death47. 

Over the years, experimental studies have both supported and challenged these initial 

observations19,48,49. In clinical practice, cardiomyopathy and HF are very rarely seen with 

imatinib therapy (incidence of ≤1%)50,51.

Philadelphia chromosome

Named after the city in which it was discovered in 1960 as the first tumour-specific 

chromosomal change in the form of a shortened chromosome 22 as a result of a 

reciprocal translocation that leads to the oncogenic BCR–ABL1 gene fusion, which 

has a causal role in the malignant transformation of white blood cell precursors; the 

Philadelphia chromosome is found in 90% of patients with chronic myeloid leukaemia.

Endoplasmic reticulum stress response

Disruption of endoplasmic reticulum function leads to impairment of protein folding, 

accumulation of unfolded and misfolded proteins and risk of cell toxicity. The cell 

reacts to this endoplasmic reticulum stress by initiating the unfolded protein response to 

increase the capacity of the cell to handle and/or eliminate the accumulating unfolded or 

misfolded proteins or to initiate apoptosis.
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As outlined in Supplementary Fig. 2, the incidence of cardiovascular toxicity differs 

considerably between different TKIs, and various mechanisms for the cardiotoxicity have 

been proposed over the years47,52–58. Intuitively, the thought has been that cardiotoxicity 

is the consequence of drug promiscuity (that is, a function of the number of kinases 

inhibited)47,52,55,56. However, experimental studies support the sentinel kinase theory and, 

as shown in Supplementary Fig. 2, the TKIs affecting the vascular endothelial growth 

factor (VEGF) and MAPK/ERK kinase (MEK) signalling pathways might be the TKIs 

associated with the highest risk of cardiotoxicity clinically52,59. Furthermore, elegant studies 

have shown a remarkable spectrum of changes in the heart and cardiomyocytes even with 

TKIs targeting a single kinase60. These changes encompass not only downregulation but 

also upregulation of kinase gene expression and activity. For instance, erlotinib might be 

associated with a low risk of cardiotoxicity not necessarily because of the sole inhibition 

of EGFR but rather because of the upregulation of signal transducer and activator of 

transcription 3 (STAT3) signalling, allowing adaptive fatty acid metabolism to maintain 

cardiac function60. Likewise, studies in human inducible pluripotent stem cell-derived 

cardiomyocytes point towards insulin receptor signalling as a compensatory pathway in 

therapies inhibiting VEGF signalling61. Therefore, TKI-associated cardiotoxicity is complex 

and might be best assessed in an integrative (systems biology) manner62–64.

Sentinel kinase theory

The theory that inhibition of one specific enzyme among all the enzymes that catalyse the 

transfer of a phosphate group from ATP onto a tyrosine, serine or threonine residue of a 

protein (kinome) is responsible for a specific action.

Management and prevention.—Consensus documents and guidelines on cardiotoxicity 

with cancer therapy (Supplementary Tables 1–3) generally agree that before starting any 

(potentially) cardiotoxic therapy, all patients should undergo a baseline assessment of 

cardiac function, with echocardiography as the preferred imaging modality (the American 

Society Echocardiography and European Association of Cardiovascular Imaging (ASE/

EACI) recommend 3D echocardiography or 2D contrast echocardiography, plus global 

longitudinal strain (GLS), plus cTn measurement)65, an assessment of any potential 

cardiovascular diseases and risk factors and optimal control of any of the cardiovascular 

abnormalities identified (ASE/EACI recommend cardiology referral in the case of any 

abnormal baseline parameter, for discussion of the pros and cons of cancer therapy and the 

initiation of cardioprotective strategies)65. In this way, patients with cancer are approached 

in a manner similar to a preanaesthesia medical evaluation.

Recommendations for on-therapy and after-therapy evaluations have varied for anthracycline 

and non-anthracycline regimens. This difference is on the basis of the expected 

differences in cardiac function dynamics with these medications: a drop after therapy with 

anthracyclines versus a drop during therapy with non-anthracyclines. For therapies involving 

anthracyclines, the ASE/EACI consensus recommendation is to reassess all outlined 

parameters (LVEF, GLS and cTn) at completion and at 6 months after therapy, and if the 

cumulative doxorubicin-equivalent dose is >240 mg/m2, repeated measurements of LVEF, 
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GLS and cTn should be performed before each additional dose of 50 mg/m2 (REF.65). For 

cardiotoxicity related to non-anthracycline therapies, the ASE/EACI consensus is follow-up 

every 3 months with the outlined parameters while the patient is receiving cancer therapy, 

with two exceptions: patients receiving TKIs or VEGF inhibitors, who should have an 

additional early follow-up at 1 month, and patients with previous anthracycline exposure, 

who should have an additional evaluation at 6 months65. For a surveillance strategy that 

is based on cTn levels, measurements are to be taken before and/or 24 h after each cycle 

of cancer therapy. Of note, the cumulative incidence of cTn level elevation increases with 

each cycle and can be seen with any form of high-dose chemotherapy. Patients who have 

a persistent elevation of cTn levels at 1 month of follow-up seem to be at the highest 

risk of cardiovascular events (mainly cardiomyopathy, HF and arrhythmias)66. For GLS, a 

15% relative change is considered to represent subclinical left ventricular dysfunction, but 

imaging should be repeated within 2–3 weeks65. For LVEF, a drop of 10% from baseline to 

<53% is considered to represent cardiac dysfunction. Importantly, the load dependency of 

these measures needs to be taken into consideration65.

The course of action for patients with abnormal GLS at either the relative threshold or 

the absolute threshold is not defined at present but clinical trials are ongoing to address 

this question in patients receiving anthracycline or non-anthracycline therapy, such as the 

SUCCOUR67 and TACTIC68 trials. In patients with reduced cardiac function and/or HF, 

treatment according to AHA/ACC HF stages is recommended69,70 (Supplementary Table 

4). A critical question is whether to continue cancer therapy and by which parameters and 

cut-off values this should be decided. At present, there is no consensus that the LVEF should 

be ≥40% for cancer therapy in general71, whether the LVEF cut-off level can be as low as 

30% even with anthracycline therapy72 or whether the LVEF should be >45% for patients 

receiving anthracyclines73, and whether cancer therapy should be stopped if a LVEF decline 

of a certain degree to a certain level is recognized (for example, ≥10% decline to a LVEF 

of <50%)72 and other causes cannot be identified74. Tests and prediction models of risk, 

reversibility and prognosis of cardiotoxicity would be extremely helpful. An illustrating 

example is the utility of cTn levels in defining which patients are at risk of irreversible LVEF 

decline with trastuzumab therapy, as outlined earlier.

The modes of prevention of cancer therapy-related cardiotoxicity have varied drastically. For 

anthracyclines, the considerations have been the use of epirubicin instead of doxorubicin, 

although studies have suggested that when adjusted for equivalent dose, no significant 

difference is seen between these two drugs; prolonged infusion rates to reduce peak 

circulating concentrations of the drug; use of liposomal formulations to reduce myocardial 

accumulation; concomitant use of dexrazoxane, which was introduced as an iron chelator 

but also has cardioprotective effects through interaction with topoisomerase IIβ17; and 

use of an alternative, non-anthracycline-based therapy, which might or might not have 

equivalent anticancer efficacy. Various cardiovascular disease medications, especially the 

second-generation and third-generation β-blockers carvedilol and nebivolol, angiotensin-

converting enzyme inhibitors, angiotensin-receptor blockers, spironolactone and statins, 

have been shown to have a preventive effect against anthracycline-related cardiomyopathy, 

although not unequivocally7,75. Additional novel approaches to test in future studies include 

the use of erythropoietin, which might act through the progenitor cell pool76–78. Another 
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potential approach is the use of patient-specific, inducible pluripotent stem cell-derived 

cardiomyocytes to identify patients at high risk of cardiotoxicity with anthracyclines79,80. 

However, the long turnaround time for this test currently does not allow the expeditious 

decision-making that is often needed for cancer therapy. Finally, although some gene 

variants predisposing to cancer therapy-related cardiotoxicity have been defined and their 

use for patient screening and for selecting therapy is conceptually attractive, testing for these 

variants has not yet been adopted in clinical practice63.

Effective cardioprotective therapies have not been defined for trastuzumab-induced 

cardiomyopathy, because the two trials conducted so far (one on bisoprolol and perindopril 

and one on candesartan) did not meet their primary end points81,82. Although initial reports 

suggested that cessation of trastuzumab therapy suffices for the recovery of cardiac function, 

other studies indicated that institution of guideline-directed cardiovascular therapy helps to 

decrease the burden of irreversible cardiac decline30,83. Re-exposure to trastuzumab after 

recovery of cardiac function has been deemed possible, although a redecline might occur 

and LVEF needs to be followed up serially. Severe increases in blood pressure (systolic 

blood pressure >180 mmHg) should be avoided because experimental studies and clinical 

reports show that the risk of decompensating HF is increased when (very) high afterload 

conditions are combined with HER2 inhibition84,85. This recommendation is also important 

for patients receiving VEGF-inhibitor therapies (see the next section). These considerations 

are important for the concept of the (functional) cardiovascular reserve capacity, which is a 

very simple but important and practical framework for the general approach to patients with 

cancer at risk of cardiomyopathy and HF. Related conceptual models that predict risk on 

the basis of this concept remain to be validated. The role of improving the cardiovascular 

reserve before, during and after cancer therapy has been addressed in previous reviews and a 

2019 AHA statement86,87.

Type II cardiomyopathy

In contrast to cancer therapy-related type I cardiomyopathies, in cancer therapy-related type 

II cardiomyopathies, factors other than a direct toxic effect on cardiomyocytes are the main 

reason for or contribute substantially to a decline in cardiac function. Recognizing these 

factors is important for patient management and outcomes.

Conventional chemotherapies.—Therapy with 5-fluorouracil (5-FU) and capecitabine 

has been associated with cardiotoxicity in up to 20–30% of patients (depending on the 

patient population studied and criteria used)88 (TABLE 1). Induction of profound and diffuse 

vasoconstriction that involves the coronary microcirculation is one possible mechanism of 

cardiotoxicity, especially in patients who show a rather quick recovery and have a type 

of cardiomyopathy referred to as Takotsubo syndrome89–96. In other patients, permanent 

damage can evolve as a consequence of vasospasm-related myocardial infarction (MI) 

or direct toxic injury to the myocardium and the vasculature97. Indeed, direct injury to 

cardiomyocytes, even similar to anthracycline-related damage, has been reported with 5-

FU98–102. This direct cardio toxic effect has been attributed to several mechanisms, among 

them induction of oxidative stress and metabolic derangements in cardiomyocytes103,104. 

5-FU is catabolized to fluoroacetate, which interferes with Krebs cycle activity, leading 
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to depletion of high-energy phosphates that are critical for normal cardiac function105,106. 

Importantly, the metabolism of 5-FU is controlled by dihydropyrimidine dehydrogenase 

(DPD), and deficiencies in this enzyme have been associated with an increased risk of 

5-FU-related toxic effects, although the link with cardiotoxicity remains debated107,108. 

Arguing against a link with DPD deficiency is the occurrence of 5-FU-related cardiotoxicity 

in patients with normal DPD activity104. Nonetheless, treatment with the 5-FU prodrug 

tegafur (5-fluoropyrimidine) in combination with the DPD inhibitor uracil, which allows the 

delivery of 5-fluoropyrimidine while blocking the generation of toxic metabolites, has been 

shown to reduce 5-FU-related cardiotoxicity104,108.

Targeted therapies.—HF presentations and declines of cardiac function, even 

presentations of Takotsubo cardiomyopathy, have been reported with VEGF inhibitors, 

such as bevacizumab. Given that bevacizumab does not have the confounding aspects of 

multitarget effects of TKIs and has not been shown to be directly toxic to cardiomyocytes, 

one might conclude that inhibition of the VEGF signalling pathway alone suffices to 

induce ‘cardiotoxicity’ and via effects different from conventional chemotherapy-induced 

cell toxicity109–111. As reviewed in detail previously111, inhibition of the VEGF pathway 

impairs vascular reactivity and the angiogenic response to ischaemia and increased afterload 

conditions in the heart. This effect might explain the relevance of coronary artery disease 

(CAD) and hypertension as risk factors for VEGF inhibitor-related cardiomyopathy. 

However, any pre-existing or evolving, absolute or relative, structural or functional coronary 

(micro) vascular deficit can result in a risk of cardiomyopathy with VEGF-inhibitor 

therapy111. Of note, whereas capillary regression is seen in endocrine organs rapidly after 

initiation of VEGF-inhibitor therapy, this regression is not observed in the heart112–115. 

Therefore, a decline in cardiac function with VEGF-inhibitor therapy might not be seen 

unless additional stressors increase the activity of (and/or the demand for a compensatory 

response via) the VEGF pathway.

Additional pathways of interest include the insulin receptor pathway, which can serve a 

compensatory role when VEGF signalling is inhibited61, and the platelet-derived growth 

factor subunit-β pathway, which has a critical role in pericyte viability and is a critical 

off-target pathway contributing to sunitinib-related cardiotoxicity. Sunitinib, which inhibits 

multiple receptor tyrosine kinases, including VEGF receptors and platelet-derived growth 

factor receptors, destabilizes the coronary microvascular endothelial network and reduces 

the coronary flow reserve and cardiac contractile reserve.

Immunotherapies.—Immunomodulatory strategies have been developed with the aim 

to train the host immune cells to target and destroy cancer cells. One type of cancer 

immunotherapy, known as chimeric antigen receptor (CAR) T cell therapy, is based on the 

recognition by engineered T cells of signature surface antigens on cancer cells116,117 (BOX 

3). The first CAR T cell strategy that was developed targeted melanoma-associated antigen 

3 (MAGEA3)118. Despite no signal for toxicity in preclinical testing, two patients who 

received this therapy died of HF within a few days119 (TABLE 3). Severe acute myocarditis 

with T cell-mediated cardiac injury was the underlying histopathology. Intriguingly, this 
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effect was not related to cardiac expression of MAGEA3 but instead was caused by cross-

reactive recognition of titin, a striated muscle-specific protein120.

The first CAR T cell therapy directed against HER2 was also associated with toxicity, 

inducing the development of acute respiratory failure, shock and cardiac arrest within 12 

h (REF.121). Diffuse alveolar damage was seen on autopsy and was thought to be the 

initial insult that was then followed by multiorgan ischaemia and systemic haemorrhagic 

microangiopathy. On-target and off-tumour reactivity against HER2 in normal pulmonary 

tissue on first-pass clearance in the lungs with subsequent pneumonitis and cytokine storm 

was postulated as the underlying mechanism of anti-HER2 CAR T cell toxicity. However, 

the associated adverse effects might also have been a consequence of the dose because 

this patient received the highest permitted number of cells. In agreement with this idea, 

subsequent studies with a different HER2-specific CAR T cell therapy at much lower doses 

(and without conditioning chemotherapy) have proven it to be safe122.

The currently best-studied type of CAR T cell therapy is directed against CD19 and is 

approved by the FDA as tisagenlecleucel (Kymriah) for children and young adults with 

relapsed or resistant B cell acute lymphoblastic leukaemia and adults with relapsed or 

refractory diffuse large B cell lymphoma116. The adverse effect profile associated with anti-

CD19 CAR T cell therapy is extensive, but the best-known adverse effect of this therapy, and 

of any CAR T cell therapy, is cytokine release syndrome (CRS)116,123–125.

Cytokine release syndrome

(CRS). A systemic inflammatory response that can be triggered by a variety of factors 

such as infections, antibody-based immunotherapies and chimeric antigen receptor T 

cell therapy. CRS is caused by the rapid release of a large amount of cytokines into 

the circulation, leading to fever, nausea, headache, rash, tachycardia, hypotension and 

respiratory distress.

The cardiovascular sequelae with CRS in the setting of CAR T cell therapy include 

tachycardia (with mild CRS) and hypotension, arrhythmias and decreased cardiac ejection 

fraction (with severe CRS)125. Cardiac arrest is rare, but can occur even 1 week after 

therapy initiation, as reported in one patient in conjunction with a precipitous drop in 

LVEF116,123–125. The cardiac function dynamics in CRS are thought to be similar to those 

seen in patients with systemic inflammatory response syndrome or sepsis but can differ, 

with differences in the cytokine profile and a general lack of endotoxin exposure126. Tumour 

necrosis factor (TNF) and IL-1β are considered the two leading cytokines accounting for the 

drop in LVEF in sepsis, via nitric oxide-dependent and nitric oxide-independent alteration 

of myocardial contractility127. Counterintuitively, a reduction in LVEF is not a sign of poor 

prognosis in patients with sepsis, and the presence of new-onset left ventricular dysfunction 

does not increase the risk of long-term HF outcomes in severe sepsis and septic shock128. 

Indeed, patients who survived septic shock showed a dynamic LVEF profile with decline 

during the acute phase and recovery after 7–10 days, whereas LVEF remained static in 

patients who subsequently died129. This observation seems to be the consequence of cardiac 

remodelling, that is, an increase in ventricular compliance that leads to ventricular dilatation, 
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which subsequently accounts for a lower calculated LVEF while stroke volume remains 

the same and cardiac output is not depressed. These dynamics reduce the likelihood of a 

myocardial hypercontractile response in the hyperdynamic circulatory state characteristic 

of septic shock, which translates into poorer outcomes in these patients. In agreement 

with this concept, β-blocker therapy in patients with septic shock leads to improved 

outcomes130. Importantly, although protected from hyperdynamic circulatory exhaust, the 

hearts of patients who survive sepsis remain responsive to catecholamine stimulation during 

septic shock and show increased contractility and cardiac performance with dobutamine 

therapy131. These details of cardiac function dynamics and their relationship with outcomes 

have not been fully described in patients with CRS.

A second type of T cell-directed immunotherapy, known as bispecific T cell engager therapy 

(BiTE therapy), can lead to a similar spectrum of complications as CAR T cell therapy, but 

not as commonly or severely132,133.

Bispecific T cell engager therapy

(BiTE therapy). BiTE antibody constructs are designed to create an immunologic synapse 

between an effector T cell and a tumour cell by simultaneously binding to the T cell 

activation molecule CD3 and a tumour-associated antigen, which is CD19 on B cells 

in the case of blinatumomab (approved for the treatment of B cell acute lymphoblastic 

leukaemia).

A third and the leading type of cancer immunotherapy at present is immune checkpoint 

inhibition (BOX 4). Immune checkpoint inhibitors (ICIs) are a unique type of antibody-

based targeted therapies. This approach leverages the principles of immunosurveillance, 

its under-pinning by cancer cells and its reactivation by targeting the ‘breaks’ or 

‘checkpoints’ of effector T cells134–136. Although the main cardiotoxicity associated with 

ICIs is myocarditis, Takotsubo syndrome and global cardiomyopathies have also been 

reported in patients receiving ICIs137,138. The mechanisms of these types of ICI-related 

cardiotoxicity are not entirely clear. As in all patients with myocarditis, various stressors 

could have a contributing role139. As in other patients with Takotsubo syndrome or global 

cardiomyopathy, the main clinical presentations are acute coronary syndrome and acutely 

decompensated HF139.

Radiation therapy.—Radiation therapy has always been an integral part of cancer 

treatment. The effectiveness of radiation therapy against cancer cells is mediated primarily 

by induction of DNA damage that then leads to cell senescence and cell death140. 

Generation of oxidative and nitrosative stress with modification of various cell molecules 

and structures has an additive effect on these outcomes.

Cell senescence

A process defined as irreversible cell cycle arrest, driven by a variety of mechanisms, 

including telomere shortening, other forms of genotoxic stress, mitogens or inflammatory 

Herrmann Page 11

Nat Rev Cardiol. Author manuscript; available in PMC 2022 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cytokines, that culminate in the activation of the tumour suppressor p53 and/or the 

cyclin-dependent kinase inhibitor p16.

The cardiomyopathy seen with radiation therapy is of the restrictive subtype (TABLE 

1). This cardiomyopathy typically presents as HF with preserved ejection fraction141. 

Importantly, cardiomyocytes are fairly resistant to radiation injury142. However, 

cardiomyocytes are not immune to damage to their DNA and organelles; oxidative stress 

and metabolic abnormalities can also evolve with radiation therapy143. Experimental studies 

have demonstrated degeneration of cardiomyocytes in irradiated hearts144,145, but this 

cardiomyocyte damage seemingly follows changes in the coronary microcirculation146. The 

first response in radiation-related cardiotoxicity is activation of the coronary microvascular 

endothelium (to a large part related to the activation of the nuclear factor-κB (NF-κB) 

signalling pathway), with an increase in the expression of chemoattractant and adhesion 

molecules, which favours leukocyte infiltration. In addition, an increase in vascular 

permeability leads to the extravasation of blood content such as fibrin and its deposition 

in the interstitium as amyloid-like structures147. Increased endothelial dysfunction together 

with a reduction in thrombomodulin levels contributes to thrombus formation. Depending 

on the extent of radiation-induced injury, enfacement and swelling of endothelial cells 

can also be seen, further contributing to microvascular obstruction. Capillary density 

might not change or might even slightly increase during the acute phase. However, over 

time, the proliferative (angiogenic) response of coronary microvascular endothelial cells 

is exhausted, and the area of the functionally competent microvasculature is reduced. 

This loss of microvasculature can result in ischaemia and cardiomyocyte loss with 

replacement fibrosis. Myocardial fibrosis is further provoked by the inflammatory response 

and premature senescent changes in tissue fibroblasts. These changes along with activation 

of the transforming growth factor-β (TGFβ)–SMAD signalling pathway in these fibroblasts 

induce the production of excessive amounts of collagen. A similar type of inflammatory 

and fibrotic injury response to radiation therapy can be observed on the valves and the 

pericardium148,149. Pericardial and valvular disease have long been known to contribute 

to HF, the final common pathway of radiation-induced heart disease. Defining the relative 

contributions of ischaemia, restriction, constriction, volume overload and pressure overload 

is important for the treatment of patients with radiation-induced heart disease but might 

not always be possible. Some of these factors can be differentiated by dose exposure, 

because several studies have revealed that the risk of pericarditis (and therefore its long-term 

complications) is low with dose exposures below 35–40 Gy (REF.150).

Management and prevention.—The identification and management of factors that 

contribute to or drive cancer therapy-related type II cardiomyopathies are essential for the 

management of these conditions. These factors differ by the type of cancer therapy, as 

outlined in the following paragraphs. As a common principle, cancer therapies contributing 

to the cardiotoxicity should be discontinued at least until cardiac function recovers and the 

precipitating or contributing factors are controlled. Resumption of these therapies is subject 

to risk–benefit assessment and discussion (with close follow-up of patients).
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A main element in the management of 5-FU-induced or capecitabine-induced cardiotoxicity 

is potent vasodilatory therapy. Nitrates might suffice on the epicardial level but can 

be insufficient on the coronary microcirculatory level151. Calcium-channel blockers (for 

example, diltiazem or long-acting nifedipine) are more efficacious in this regard. A history 

of cardiac disease (in particular ischaemic heart disease) significantly increases the risk 

of 5-FU-induced cardiotoxicity152. Some data suggest that renal insufficiency rather than 

age (>55 years) is also a risk factor for 5-FU-induced cardiotoxicity104,151. The mode of 

administration of the cancer therapeutic is an important factor: the risk of cardiotoxicity is 

higher with continuous administration (over 2 days) than with bolus infusion (over 3 h); the 

latter is, therefore, a preventive strategy153. In addition, patients at risk of cardiomyopathy, 

especially those with previous events, should be given vasodilatory therapy. However, this 

approach might not provide full protection, and continuous ECG monitoring is advised. In 

some patients in whom left ventricular function decline is highly suspected in the absence of 

traditional clinical signs and symptoms, on-therapy follow-up with measurement of plasma 

B-type natriuretic peptide (BNP) levels and/or by echocardiography might prove useful. 

Other approaches include the use of alternative preparations of 5-FU, such as tegafur–

uracil and tegafur–gimeracil–oteracil (known as S-1)104. Uridine triacetate (Vistogard) was 

approved in 2015 for the treatment of life-threatening 5-FU-related and capecitabine-related 

toxicity154. This compound delivers high concentrations of uridine, which competes with 

5-FU metabolites154.

For VEGF-inhibitor therapy, the evaluation and treatment of any possible contributing 

factor is the best approach, as discussed earlier and in greater detail else-where111,155 

(Supplementary Fig. 3). Proper management of hypertension is a general principle for 

the prevention of HF, but especially in patients receiving VEGF-inhibitor therapy, and an 

argument can be made for aiming towards the SPRINT156 blood pressure target of <130/80 

mmHg in these patients. Other conditions of increased cardiac afterload, such as aortic 

stenosis, might not be as easily amenable to therapy, especially if they do not yet meet 

the criteria for intervention but are still severe enough to trigger a hypertrophic response 

in the myocardium and a reduced cardiovascular flow reserve. The same reduction in the 

cardiovascular flow reserve might be present in patients with diabetes before any cancer 

therapy, and correction might also not be possible in these patients, especially not in a short 

time. Although a clinical history of CAD suffices as a risk factor for VEGF inhibitor-related 

cardiomyopathy, whether a history of MI suffices as the sole critical element leading to 

VEGF inhibitor-related cardiomyopathy or whether, for instance, the extent of baseline and 

inducible ischaemia should be defined is unknown157–159.

Cardiovascular flow reserve

The capacity of the coronary vascular bed to increase blood flow maximally to the 

myocardium, often expressed as a ratio with regard to baseline blood flow.

The treatment of choice for CRS grade 3 or greater in patients receiving CAR T cell 

therapy is an IL-6 antagonist (such as tocilizumab or siltuximab)125. The prophylactic use 

of these agents might prevent the development of CRS and is currently under investigation. 

A concern is that this strategy could negate the main anticancer effect of the CAR T 
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cell therapy. The same concerns apply to prednisone, an anti-inflammatory glucocorticoid 

therapy that is recommended for severe CRS. In patients with evidence of circulatory 

compromise (shock), haemodynamic support with vasopressors is also recommended160.

For patients receiving radiation therapy, reduction of dose exposure is the best intervention. 

Some experimental studies have indicated a benefit of statin and angiotensin-converting 

enzyme-inhibitor therapy, and anti-inflammatory and antioxidant therapies are theoretically 

attractive, but none of these approaches has been proven in clinical practice. These strategies 

should be tested, but challenges include defining the optimal treatment window and covering 

the diverse spectrum of cardiac disease associated with radiation therapy. These concerns 

apply to any strategies newly identified in preclinical studies, including TGFβ receptor 

type 1 inhibitors, sestrin 2 inducers, recombinant neuregulin 1 and miR-21 inhibitors161. 

The ASE/EAVI and the Society for Cardiovascular Angiography and Interventions provide 

consensus algorithms for follow-up after radiation therapy162,163 (Supplementary Fig. 4).

Type III cardiomyopathy

Conventional chemotherapies.—The classic example of conventional chemotherapy 

that can induce myocarditis is cyclophosphamide164. Particularly at high doses, 

cyclophosphamide can cause haemorrhagic myocarditis165. The threshold dose for 

cyclophosphamide-induced myocarditis is not defined. A dosage of >270 mg/kg for 1–4 

days or doses of ≥1.55 g/m2 are considered to be associated with a substantial risk of 

cardiotoxicity166. However, doses as low as 100 mg/kg can generate cardiotoxicity166. At 

an in-between dose of >150 mg/kg, the incidence of acute HF is 7–33%166. Interindividual 

variation in metabolism might be a factor contributing to the differences in incidence. 

Metabolites of cyclophosphamide can induce endothelial capillary injury with oedema, 

haemorrhage and thrombosis166. Tachyarrhythmias can be induced as a result of myocardial 

injury, and more advanced stages present as HF. Cyclophosphamide therapy can also induce 

pericardial effusion, even with acutely life-threatening tamponade. Progressive myocardial 

mechanical failure can also evolve. Mortality in patients with cyclophosphamide-induced 

myocarditis is 2–17%166.

Targeted cancer therapies.—Immune mechanisms have been suggested to contribute 

to the anticancer effects of trastuzumab167, but whether and to what degree immune 

mechanisms contribute to trastuzumab-induced cardiomyopathy is not known; at present, 

only little experimental evidence is available168. Only one case has been reported of 

fulminant acute myocarditis with the TKI sorafenib, which led to cardiogenic shock with 

a fatal outcome169. This patient also had myositis, a constellation of conditions more 

commonly seen with ICI therapy.

Immunotherapies.—ICIs can induce a broad spectrum of immune-related adverse events 

that differ on the basis of similarities and differences between therapies targeted at cytotoxic 

T lymphocyte antigen 4 (CTLA4) or at the programmed cell death 1 (PD1)–PD1 ligand 

1 (PDL1) axis170–172. The incidence of immune-related adverse events is generally higher 

with CTLA4 inhibition and highest (>50%) with combined CTLA4 and PDL1 inhibition173. 

Usually, colitis, dermatitis and pneumonitis are the earliest and most common organ 
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presentations (in descending order, all with incidence of >10%). However, myocarditis, 

which has been reported with all types of ICIs, is associated with the highest mortality 

(40% in a 2018 systematic review and meta-analysis)174,175. Precise estimates of the 

incidence of ICI-induced myocarditis are evolving and expected to rise beyond the currently 

reported rates of up to 1% with increasing awareness176. The severest forms of ICI-induced 

myocarditis are prone to attract clinical attention and encompass decompensated HF, 

cardiogenic shock and sudden cardiac death. Myocardial biopsy, when performed, is often 

but not always positive for myocarditis. Sampling bias and sampling error are inherent 

limitations that confound the conclusions. However, one cannot exclude the possibility that 

profound, global declines in cardiac function can develop even in the absence of florid 

myocarditis177. Furthermore, in one of the first pooled analyses of patients with ICI-induced 

cardiotoxicity (n = 30), late gadolinium enhancement (an indicator of myocardial fibrosis) 

was seen on cardiac MRI in only 23% of patients and myocardial oedema was seen in only 

33% of patients177. Apical ballooning was diagnosed in 14% of the patients, and among 

patients with available data on LVEF changes, complete reversibility of LVEF decline was 

seen in only 50% of them138,177.

By contrast, cardiac function (assessed by echocardiography) remained fairly normal despite 

evolving fulminant myocarditis with ICI use in the first reported cases of this entity178. ECG 

changes, including various forms of conduction block, ventricular ectopy and ventricular 

tachycardia (VT), and elevation of circulating cTn levels seemed to be more sensitive 

indicators of myocarditis. Circulating BNP and amino-terminal pro-BNP levels are also 

recognized as sensitive markers of myocarditis and might even be superior to cTn levels for 

detecting all forms of ICI-related cardiomyopathy, including those associated with global or 

regional (apical) cardiac function decline that does not fulfil imaging or tissue criteria for 

myocarditis138,177. Therefore, at least three different forms of cardiac function abnormalities 

with putatively different pathological mechanisms can evolve in patients undergoing ICI 

therapy.

Mechanistically, ICI-induced, immune-related adverse events such as myocarditis can be 

caused by one or a combination of the following factors: direct binding of ICIs to target 

molecules on non-lymphocytic cells, with downstream immune activation; formation of 

new T cells or reactivation of exhausted T cells against tumour antigens that cross-react 

with off-target tissues; generation of autoantibodies and production of pro-inflammatory 

cytokines136. Interestingly, PD1-deficient mice have a dramatically reduced lifespan that 

is compensated by cross-breeding with Rag1−/− mice, which lack mature B cells and T 

cells, indicating that an immune mechanism has an important role in the effects of genetic 

PD1 deficiency179. Dilated cardiomyopathy was a striking feature and accounted for the 

premature death of PD1-deficient mice. Although fibrotic reactions were seen sporadically, 

the ventricular walls of these mice appeared otherwise relatively normal, and scattered 

degeneration of cardiomyocytes was seen only on electron microscopy, with disarrayed 

and disrupted myofilaments and irregularly shaped mitochondria throughout the ventricular 

walls179. Subsequent studies revealed that the dilated cardiomyopathy was caused by the 

generation of autoantibodies against cTnI expressed on cardiomyocytes180. Of interest, 

tumours in humans can express cTn and other muscle-specific proteins, such as desmin 

and titin. However, whether the expression of these proteins (and autoantibodies against 
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them) is causally involved in ICI-related myocarditis (and/or cardiomyopathy) has not been 

confirmed. PDL1 expression on non-haematopoietic cells, mainly endothelial cells, has an 

important role in providing protection against cytotoxic T cells181–184. This protection is 

particularly relevant in the setting of non-self-antigen expression in the heart secondary to 

a viral infection. The PD1–PDL1 system is also upregulated in the setting of other intrinsic 

modes of myocardial injury that induce inflammation, such as myocardial ischaemia and 

MI, probably to prevent inflammatory over-reactivity against cardiac tissue185. Identifying 

patients vulnerable to ICI-induced myocarditis (and ICI-related cardiomyopathy) secondary 

to the upregulation of the PD1–PDL1 system or to other mechanisms is an important current 

and future need186.

Management and prevention.—One of the main prerequisites for the appropriate 

management of ICI-related myocarditis is the knowledge and anticipation of this possible 

complication. Clinical presentation differs, and subtle signs and symptoms need to 

be adequately interpreted. Waiting until HF and cardiogenic shock develop to initiate 

management is suboptimal, especially because any culprit cancer therapy should preferably 

be discontinued as soon as possible. Management is mainly supportive, which can 

entail inotropic therapy and even mechanical circulatory support, including extracorporeal 

membrane oxygenation, as a bridge to recovery, as has been shown in patients who 

developed fulminant myocarditis with cyclophosphamide and ICIs187,188.

For early detection of cancer therapy-related myocarditis, the standard 12-lead ECG 

can be very effective. A declining R-wave amplitude (low voltage) can indicate 

progressive pericardial effusion and loss of myocardial mass, as occurring in haemorrhagic 

myopericarditis induced by cyclophosphamide. Other ECG indicators of myocardial 

inflammation include PR interval prolongation, heart block, bradycardia, ventricular ectopy 

and VT. Biomarkers have a supporting role, and the classic indicator of myocarditis is a 

protracted period of markedly elevated circulating cTn levels189. In a retrospective series 

of 35 patients with ICI-induced myocarditis, circulating cTn and BNP levels were elevated 

in 33 individuals (94%)190. However, ECG and cTn levels were an integral element in 

the diagnostic inclusion of patients in this study, which might explain the high levels of 

these markers. Of note, in another study on ICI-induced myocarditis and cardiomyopathy, 

circulating BNP levels were elevated in all patients but cTn levels were elevated in only 

46%177. Coronary angiography is usually performed to exclude CAD leading to MI as the 

main differential diagnosis. In cases resembling culprit-lesion acute coronary syndrome, 

cardiac MRI is very valuable to identify acute MI with resolution of epicardial culprit-vessel 

lesion, acute myocarditis, Takotsubo cardiomyopathy or other cardiomyopathies191. Cardiac 

positron emission tomography might have a complementary role192.

In the aforementioned study involving 35 patients with ICI-related myocarditis, dyspnoea 

and oxygen requirement were two differentiating clinical features between those who 

developed major adverse cardiac events (MACE; including haemodynamically relevant heart 

block, cardiac arrest, cardiogenic shock and cardiac-related death) and those who did not190. 

Nearly 50% of all patients experienced MACE, with a mortality of 17%. These patients did 

not receive steroids as quickly or at as high a dosage as patients without MACE. LVEF 
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was normal in 38% of patients with MACE and in nearly 50% of the patients in the overall 

cohort.

Immunosuppressive therapies have been recommended for all acutely life-threatening 

scenarios; that is, with confirmed myocarditis and VT or ventricular fibrillation. 

Immunosuppressive therapies should also be considered for any other potentially life-

threatening presentation, such as advanced conduction disease or heart block owing 

to presumed myocarditis, pericarditis with cardiac tamponade and acute MI with 

coronary vasculitis on angiography. Some patients might require a quick escalation 

of immunosuppressive therapy by including immunoglobulin, antithymocyte globulin, 

infliximab (if HF is not present), mycophenolate mofetil or tacrolimus193. Plasmapheresis 

has also been implemented, with the goal of accelerating removal of the contributing 

drug (as well as any potential circulating autoantibodies). This approach is important with 

ICIs because their half-lives are extremely long: 14.5 days for ipilimumab, 25.0 days for 

pembrolizumab, 26.7 days for nivolumab and 27.0 days for atezolizumab. Finally, the 

CTLA4 agonist abatacept might be used in cases of steroid-refractory myocarditis194. 

Importantly, the clinical course of ICI-induced myocarditis can be so fulminant that 

mechanical support such as extracorporeal membrane oxygenation can become necessary 

and life-saving while all other measures are continued188. Overall, the hard evidence 

available at present is insufficient to support any of the anecdotal, albeit reasonable, 

strategies outlined above, and more evidence-based guidance in this area is needed. Current 

consensus recommendations by oncology societies are listed in Supplementary Table 2.

Arrhythmias related to cancer therapy

Several rhythm abnormalities can be seen in patients with cancer as they undergo 

therapy owing to several potential drug–drug interactions, metabolic and electrolyte 

derangements, and evolving toxic effects. In general, cancer therapy-related arrhythmias 

can be differentiated into bradycardia and tachycardia, with atrial fibrillation (AF) emerging 

as an important complication (TABLE 4). The real incidence of cancer therapy-induced 

arrhythmias is likely to be underestimated because routine cardiac monitoring is often not 

performed or includes only non-continuous 12-lead ECGs.

Bradycardia

Conventional chemotherapies.—Cardiac arrhythmias were first noted to occur with 

paclitaxel, more specifically its Kolliphor EL (formerly known as Cremophor EL) 

formulation, when continuous cardiac monitoring was used to assess hypersensitivity 

reactions. These paclitaxel-induced arrhythmias are mainly episodes of asymptomatic 

bradycardia occurring in nearly 30% of patients195. All other arrhythmias are rare: heart 

block in 0.1% of patients, supraventricular tachycardia including AF and flutter in 0.2%, 

and VT and ventricular fibrillation in 0.3%. Most of these arrhythmias are noted with the 

first or second cycle of paclitaxel therapy, sometimes even within the first 24 h (REF.196). 

Typically, these episodes are self-limiting and resolve in 48–72 h after discontinuation of 

therapy, although brief episodes of supraventricular tachycardia and premature ventricular 

contractions can persist for up to 1–2 weeks. The mechanisms of paclitaxel-induced 
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arrhythmias are not precisely defined; for example, whether these phenomena are inherent to 

paclitaxel or the vehicle used in the Kolliphor EL formulation is not clear.

Another chemotherapeutic classically associated with bradycardia is thalidomide, affecting 

as many as 50% of all patients with multiple myeloma who were treated with this 

medication. Elderly patients and those with comorbidities or receiving combination 

therapies with β-blockers, calcium-channel blockers, digoxin and antiarrhythmic drugs, or 

exposed to doxorubicin or cyclophosphamide and/or chest radiation therapy are at higher 

risk of bradycardia. Over-reactivity of the parasympathetic nervous system and thalidomide-

induced hypothyroidism have been discussed as potential mechanisms197.

Targeted cancer therapies.—Sinus bradycardia can be seen with various TKIs (TABLE 

4). Among VEGF pathway inhibitors, sinus bradycardia is most common with pazopanib 

(2–19%) but in a 2018 phase II study198, grade 4 bradycardia events were reported in 3% of 

patients with glioblastoma who were receiving bevacizumab in combination with the histone 

deacetylase (HDAC) inhibitor vorinostat. As in any other patients, other causes of sinus 

bradycardia in patients with cancer need to be excluded; for instance, sunitinib therapy can 

cause hypothyroidism, thereby leading to bradycardia199.

The other class of TKIs that has been associated with risk of bradycardia is ALK inhibitors 

(BOX 2). Sinus bradycardia has been reported in up to 15% of patients treated with 

crizotinib and up to 4% of patients treated with ceritinib200. Sinoatrial arrest and asystole 

have been reported with therapy with ibrutinib, an inhibitor of the tyrosine-protein kinase 

BTK, in addition to its well-known association with AF and ventricular arrhythmias (see 

later)201.

Immunotherapies.—In patients receiving ICI therapy, bradycardia can be seen in the 

setting of high degrees of atrioventricular (AV) block178,202. This AV block is secondary 

to inflammatory infiltration of the myocardium (that is, ICI-associated myocarditis), which 

can include the AV nodal area and the conduction system in the septum. The extent of AV 

block can warrant pacemaker implantation, even permanent devices if no resolution occurs 

in the setting of evolving fibrosis. On the basis of a 2018 systematic review, 10% of the 

cardiotoxicity events associated with ICI therapy were AV block or conduction disease, 

which leads to death in 50% of these patients176.

Radiation therapy.—Bradycardia can develop in patients after radiation therapy as a 

result of radiation injury and fibrosis in the heart with involvement of the conduction system, 

including the AV nodal area, the AV and His bundle and bundle branches203–205. In addition, 

accelerated CAD that affects the sinoatrial artery and the AV nodal branch can contribute to 

this presentation206. Calcifications of the aortomitral curtain and extensive calcification of 

the mitral annulus are indicative of the risk of bradycardia207,208.

Management and prevention.—Patients who are at risk of bradycardia with cancer 

therapy are not well defined but might present with any of the following elements: 

evidence of pre-existing cardiac conduction abnormalities (bundle branch or AV block); 

requirement of negatively dromotropic and chronotropic medications (β-blockers, digoxin 
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and calcium-channel blockers) or antiarrhythmic agents; or poor tolerance of bradycardias. 

These patients often have underlying ischaemic heart disease, cardiomyopathy or HF. In 

these patients, chemotherapeutics that have been associated with bradycardia, such as 

crizotinib, paclitaxel, pazopanib and thalidomide, should be used very carefully, with proper 

monitoring of heart rate and blood pressure. In the event of symptomatic bradycardia, any 

potentially contributing medications are to be stopped until its resolution. Thereafter, the 

risks and benefits of resuming any bradycardia-associated cancer therapy and cardiovascular 

medications alone or in combination with dose reduction and with or without pacemaker 

implantation as per the guidelines need to be determined (Supplementary Table 5). Any 

life-threatening bradycardia requires discontinuation of the cancer therapy unless concurrent 

medications associated with bradycardia can be discontinued or adjusted in dose (such as 

a β-blocker and calcium-channel blocker) to allow resumption of the cancer therapy with 

frequent monitoring (with or without pacemaker support). Electrolytes, especially serum K+ 

levels, and renal and thyroid function should be checked. In patients receiving ICI therapy, 

the development of new conduction disease should prompt an evaluation for the presence of 

myocarditis.

QTc prolongation and VT

The risk of corrected QT interval (QTc) prolongation has been attributed to the effects of 

anticancer drugs on the inward current (increase) and outward current (decrease), leading 

to prolongation of the ventricular action potential, especially the repolarization period. 

Repolarization is driven by two delayed rectifier K+ current subtypes, IKr (rapid) and IKs 

(slow), and most drug-induced QTc prolongations are related to blockade of IKr, which 

is carried by K+ voltage-gated channel subfamily H member 2, commonly known as the 

hERG channel (encoded by KCNH2). However, hERG channel blockade might not always 

translate into QTc prolongation and might not be the sole mechanism.

Conventional chemotherapies.—Arsenic trioxide is a classic agent among 

conventional chemotherapeutics with the potential to induce QTc prolongation, with up 

to one third of patients who receive this medication experiencing an increase in the QTc 

of 30–60 ms from baseline and one third experiencing an increase of >60 ms (REF.209). 

QTc prolongations of >500 ms can be seen in as many as 65% of patients receiving arsenic 

trioxide with the use of the Bazett rate correction formula, but in only 24–32% of patients 

if alternative formulas, such as the Fridericia formula, are used210. The latter is preferred 

in patients with cancer because this formula is associated with less overcorrection at higher 

heart rates and leads to fewer unnecessary cancer treatment interruptions.

Torsades de pointes is usually not seen with arsenic trioxide therapy unless other 

contributing factors, such as electrolyte abnormalities, are present210. Sudden cardiac death 

has been reported but is extremely rare. Mechanistically, arsenic trioxide can block both IKr 

and IKs but activates the ATP-dependent K+ current IK-ATP (REF.211). Other conventional 

chemotherapeutics with the potential to induce QTc prolongation include oxaliplatin, which 

increases the inward Na+ current211. For drugs such as paclitaxel, docetaxel and 5-FU, 

induction of myocardial ischaemia might be another potential mechanism leading to QTc 

prolongation.
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Targeted cancer therapies.—TKIs have a heterogeneous effect on QTc: on average, 

a 15-ms increase from baseline but notably more for sunitinib, lapatinib, nilotinib and 

vandetanib (on average, increases of 22.4, 23.4, 25.8 and 36.4 ms, respectively, from 

baseline)197. Although the incidences can differ considerably, in patients receiving TKIs, 

including dasatinib, nilotinib, pazopanib and sunitinib, QTc prolongations to 500 ms were 

noted in <5% of patients and ventricular arrhythmia and sudden cardiac death were noted 

in <1% of patients212. Vandetanib is the drug with the most robust evidence by the number 

of studies, and the incidence of all-grade or high-grade QTc prolongation with vandetanib is 

16.4% and 3.7%, respectively, among patients with non-thyroid cancer and 18% and 12%, 

respectively, among patients with thyroid cancer, who have longer durations of treatment197.

A systematic, registry-based study published in 2018 confirmed the reports on the risk of 

ventricular arrhythmias with ibrutinib213–218. On the basis of the Naranjo Adverse Drug 

Reaction Probability Scale score, the association of ibrutinib with ventricular arrhythmias 

was deemed to be at least probable, and overall a more than 10 times higher than expected 

rate of VT was observed. Of note, VT and ventricular fibrillation, even polymorphic VT, 

has been reported with ibrutinib treatment even in the presence of a normal QTc218. 

AF remained a predictor of VT in the adjusted analyses. In mice, atrial and ventricular 

arrhythmias were seen even after a single dose of ibrutinib, and high serum concentrations of 

ibrutinib, rather than chronicity of the treatment, seems to be the determining factor219.

HDAC inhibitors (BOX 2) have also been associated with QTc prolongation and 

arrhythmias197. QTc prolongation can be seen in 10% of patients receiving the HDAC 

inhibitor romidepsin, supraventricular tachycardia can be seen in 38%, VT can be seen in 

14%, atrial ectopy can be seen in 65% and ventricular ectopy can be seen in 38%. Both QTc 

prolongation and arrhythmias usually resolve before the next cycle of therapy. However, 

cases of sudden cardiac death have been reported with the use of romidepsin, underscoring 

the need for vigilance. QTc prolongation has also been reported in 10% of patients receiving 

dacinostat, 6.3–28.0% of patients receiving panobinostat and 3.5–6.0% of patients receiving 

vorinostat212. These observations are consistent with a class effect, and blockade of the 

hERG channel by HDAC inhibitors has been proposed as a mechanistic explanation. The 

risk of QTc prolongation increases as a function of peak dose; that is, it is highest with short 

bolus administrations. The risk of torsades de pointes is higher in women, elderly patients 

and patients with bradyarrhythmias, electrolyte abnormalities, structural heart diseases or 

baseline QTc prolongation.

Inhibitors of the cyclin-dependent kinases CDK4 and CDK6 (BOX 2) are another class of 

drug that has been associated with QTc-prolonging potential, albeit with great variations 

in the associated risk220. Ribociclib is the drug associated with the highest risk, and QTc 

prolongation is seen in a concentration-dependent manner, usually within the first 4 weeks 

of treatment, and the ECG changes are reversible with therapy interruption. In clinical 

trials, 6% of patients with advanced or metastatic breast cancer who were treated with 

ribociclib (in combination with an aromatase inhibitor or fulvestrant) had a >60-ms increase 

in QTc from baseline, and 1% had a QTc of >500 ms (REF.221). No cases of torsades 

de pointes were reported but one sudden cardiac death (0.3%) occurred in a patient with 

concomitant hypokalaemia222. Ribociclib should not be combined with tamoxifen given the 
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nearly threefold higher incidence of QTc increase (by >60 ms) than that seen with single 

therapy. Palbociclib and abemaciclib do not seem to lead to clinically significant (increase of 

>60 ms or duration >500 ms) QTc prolongations223.

Immunotherapies.—In patients receiving ICIs, ventricular arrhythmias might be a result 

of the inflammatory infiltration of the myocardium178. Ventricular arrhythmias are seen in 

5–10% of patients receiving ICIs and are associated with 40% mortality176. Similarly to 

new-onset conduction disease, ventricular arrhythmias indicate a more complicated clinical 

course and should prompt investigations into the presence of myocarditis. Ventricular 

arrhythmias could also conceivably be seen with other forms of cardiomyopathy reported 

with ICI therapy.

Radiation therapy.—Despite the ample reports on cardiac fibrosis in patients who 

underwent radiation therapy involving the chest, reports of ventricular arrhythmia are scarce. 

Indeed, cardiac radiation therapy is being explored as an alternative to invasive ventricular 

ablation in the treatment of ventricular arrhythmia224. In survivors of childhood cancer, 

some studies indicate a 3–5% incidence of VT, but incidence rates differ by treatment: 4% 

among those treated with chest radiation therapy and 8% among those treated with both 

chest radiation therapy and anthracyclines225. Importantly, ventricular arrhythmias are not 

restricted to patients with cardiac dysfunction and can be noted even in those with preserved 

LVEF225.

Management and prevention.—Patients with cancer who have ECG abnormalities, 

impaired exercise capacity or cardiovascular diseases at baseline should be assumed 

to be more susceptible to cancer therapy-induced arrhythmias, as are those undergoing 

treatment regimens with known cardiotoxicity potential. Therefore, as a general rule, 

comorbidities that could represent a possible arrhythmogenic substrate should be identified 

and treated aggressively before and during cancer therapy. Early identification and 

appropriate management of cardiac ischaemia, dysfunction and remodelling is also likely 

to be the best strategy to modulate the arrhythmogenic substrate and improve outcomes 

in patients with cancer therapy-induced arrhythmias. These recommendations hold true for 

QTc prolongation and related ventricular arrhythmias.

Crizotinib, dasatinib, lapatinib, nilotinib, pazopanib, sorafenib, sunitinib, vandetanib and 

vemurafenib should be administered with caution in patients with pre-existing QTc 

prolongation or QTc prolongation-related risk factors including medications and drug–drug 

interactions. As illustrated for several TKIs, such as vandetanib, electrolyte levels should be 

corrected before initiation of cancer therapy (the goal value for serum K+ levels is 4 mEq/l 

to the upper limit of normal and for serum Mg2+ and serum Ca2+ levels within the normal 

range) and should be monitored along with serial ECGs, as outlined earlier (at baseline, 

at 2–4 weeks, at 8–12 weeks and every 3 months thereafter). The same frequency of 

monitoring is required after dose reductions or therapy interruptions of more than 2 weeks. 

Importantly, vandetanib has a half-life of 19 days and, therefore, any adverse reactions can 

resolve slowly. The upper limit for QTc with vandetanib therapy is 450 ms before the start 

of therapy and 500 ms during therapy. If these thresholds are surpassed, therapy should 

be stopped and might be resumed at a reduced dose. With nilotinib therapy, ECGs should 
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be taken 7 days after initiation or change of therapy, and any QTc >480 ms requires a 

temporary cessation of therapy (or permanent cessation if QTc prolongation is recurrent 

after measures have been taken) until QTc is 450–480 ms (then therapy should be resumed 

at half the dose) or <450 ms (then therapy should be resumed at the full dose). Any grade 

4 (that is, life-threatening) QTc event also precludes any further cancer therapy. Ventricular 

arrhythmias should be managed as usual according to clinical guidelines226 (Supplementary 

Table 6).

Atrial fibrillation

AF in patients with cancer has been reported for more than half a century, initially 

as a consequence of neoplastic infiltration or mechanical pressure on the heart or 

as a complication of oncological thoracic surgery or medical therapy. Subsequently, a 

bidirectional and more so multifactorial association between cancer and AF was recognized. 

For instance, the Women’s Health Study227 showed that the risk of cancer was threefold 

higher in the first 3 months after diagnosis of AF and remained elevated by 42% beyond 

the first year. Conversely, the risk of AF was found to be increased by 20% in the first 3 

months after cancer diagnosis227. The exact mechanisms underlying this association are not 

defined, in particular, how AF begets cancer. One possible explanation is that anticoagulant 

use for treatment of AF unmasks the presence of malignancies by the induction of bleeding 

events in the tumour228. Cancer antigen 125 (also known as MUC16) is not only a marker 

for tumours, such as in ovarian cancer, but is also a predictor of AF in postmenopausal 

women229. Shared risk factors in AF and cancer include obesity and inflammation. Whether 

AF in patients with cancer can occur without any underlying substrate and predisposition 

is not fully clear. Patients with cancer are usually not fully characterized in terms of 

atrial filling pressures and pre-existing remodelling dynamics. General precipitating and 

aggravating factors for AF in patients with cancer include cardiac masses or infiltration, 

sympathetic stressors, acute and chronic inflammation, pericarditis, mediastinal irradiation, 

surgery, bone marrow transplantation and chemotherapy230.

Conventional chemotherapy.—As outlined in TABLE 4, AF has been reported with 

numerous traditional chemotherapies, especially with melphalan and paclitaxel. The precise 

mechanisms of melphalan-related supraventricular tachycardia are not known. AF is seen in 

8% of patients receiving melphalan, and is more common in elderly patients and in those 

with reduced renal function or hypertension231. Left atrial enlargement and particularly a 

history of AF are predictive of the risk of AF in patients receiving melphalan231. A history 

of cardiovascular disease has also been considered to be a risk factor for AF in patients 

receiving paclitaxel, but AF can occur in the absence of risk factors for AF. The incidence of 

paclitaxel-related AF is <2%232.

Targeted cancer therapy.—A renaissance of the topic of AF and cancer has occurred 

with the use of the TKI ibrutinib233. Incidence rates of AF with the use of ibrutinib 

range from 3% to 16% (on average 8%) according to a systematic review published in 

2017 (REFS234,235). A risk prediction model for AF in patients with chronic lymphocytic 

leukaemia was developed at the Mayo Clinic and externally validated233. The variables 

included in this model include age (<65 years, 65–74 years and >74 years), sex, valvular 
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heart disease and hypertension233. The score categories are 0–1, 2–3, 4 and 5+, and each 

step up in category corresponds to a doubling of the risk of AF (zero, twofold, fourfold 

and eightfold increase). The predictiveness of this model for AF in patients receiving 

ibrutinib was confirmed, as was the Framingham model and a model by Visentin et al. 

(the latter potentially performing the best)236,237. Other studies are in general agreement 

with the concept that patients who develop AF with exposure to ibrutinib have either a 

history of AF or predisposition for AF238,239. The underlying mechanisms are not clear 

but might be related to suppression of phosphoinositide 3-kinase (PI3K)–AKT pathway 

activity in cardiomyocytes201,240. The PI3K–AKT pathway is regulated by BTK and the 

tyrosine-protein kinase TEC, both targets of ibrutinib201,241. The second-generation BTK 

inhibitor acalabrutinib neither increases the risk of AF and bleeding nor inhibits TEC and 

SRC family members as ibrutinib does242,243.

Immunotherapy.—Inflammation and AF have been linked but with debated causality 

(direct, indirect or not at all)244–246. Nevertheless, patients with higher levels of C-reactive 

protein (CRP) in the plasma have more AF episodes, and baseline plasma CRP levels are 

predictive of future risk of AF247. Not surprisingly, new-onset AF has been seen in patients 

receiving CAR T cell therapy, even in very young patients and those without a history of 

AF123,248. AF has also been reported with ICI therapy249,250. AF in this setting could be 

caused by the induction of pericarditis or cardiomyopathy. Other conditions induced by ICIs 

that can contribute to AF include, for instance, thyroiditis.

Radiation therapy.—AF can develop in the setting of pericarditis or as a consequence of 

the development of restrictive cardiomyopathy in patients who have under-gone radiation 

therapy. Nevertheless, a history of HF is less common in patients with cancer who have 

under-gone chest radiation therapy and develop AF than in the general AF population251. 

Some studies even concluded that the risk of AF is not overall higher in this patient 

population than in the general population. As with VT, radiation therapy is now being tested 

as a non-invasive ablative strategy for AF treatment252.

Management and prevention.—The principles and goals of the management of 

AF in patients with cancer are generally the same as those in the general population 

(Supplementary Table 7), albeit with some important differences (FIG. 3). The first goal 

is to control heart rates with a lenient target with the use of β-blockers, Ca2+ channel 

blockers and digoxin. If this strategy does not suffice and patients remain symptomatic, for 

example, with palpitations, dyspnoea and effort intolerance, antiarrhythmic drugs can be 

used. In patients with cancer who are actively receiving cancer therapy, various drug–drug 

interactions can be a complicating factor for any such interventions. This complication 

particularly exists for multitargeted TKIs.

An illustrative example in this regard is ibrutinib, which can increase the plasma levels 

of amiodarone, carvedilol, digoxin, diltiazem and verapamil253. Conversely, amiodarone 

and the calcium-channel blockers diltiazem and verapamil can increase the plasma levels 

of ibrutinib severalfold by interfering with the hepatic metabolism of ibrutinib through 

inhibition of cytochrome P450 3A4 (CYP3A4)253. Therefore, the β-blockers atenolol 

and metoprolol should be used as first-line agents253. Class Ib (mexiletine) and class Ic 
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(flecainide and propafenone) drugs and sotalol might be valid choices for antiarrhythmic 

drug therapy, depending on cardiovascular comorbidities. If needed in patients with HF, 

amiodarone and digoxin should be used very carefully (as substrates of P-glycoprotein, 

which is inhibited by ibrutinib; amiodarone is also an inhibitor of P-glycoprotein and a 

major CYP3A substrate); dronedarone should not be used (as a moderate CYP3A4 inhibitor 

and a major CYP3A4 substrate). More than two thirds of patients with AF who are 

receiving ibrutinib might not experience long-term success with cardioversion, suggesting 

that antiarrhythmic therapy should be started even when cardioversion is considered239. The 

role of ablation in patients with cancer and AF is currently not defined, especially as a 

first-line therapy to avoid potentially fatal drug–drug interactions. If at all possible, ibrutinib 

therapy should not be discontinued but instead the dose should be reduced because no 

significant difference in the rate of AF resolution with the two strategies has been observed, 

whereas ibrutinib therapy discontinuation leads to a significantly (about twofold) higher risk 

of cancer progression239. A systematic review did not find a relationship between ibrutinib 

dose and the occurrence of either AF or bleeding235.

Anticoagulation therapy in patients with cancer can be problematic in general and especially 

in patients receiving ibrutinib because they are predisposed to bleeding (60% incidence 

in single-group studies, 44% in randomized clinical trials, with high-grade haemorrhage 

in up to 7% of patients)254. Ibrutinib has a unique antiplatelet effect, inhibiting mainly 

von Willebrand factor and collagen-mediated platelet activation (in addition to fibrinogen-

activated platelet activation), which could be very effective in the setting of atherosclerotic 

plaque rupture255,256. Importantly, these activation pathways are distinct from those 

inhibited by aspirin (cyclooxygenase) and thienopyridines (ADP receptor), and combination 

therapy would lead to a profoundly additive effect and bleeding risk; therefore, this strategy 

is not recommended. The combination of any antiplatelet agent with anticoagulation therapy 

increases the risk of bleeding by default. In terms of drug–drug interactions, the adverse 

potential is not deemed very high for the combination of ibrutinib and warfarin, which 

together with the option of warfarin reversal has favoured the use of warfarin in patients 

receiving ibrutinib therapy241. However, wide fluctuations in the international normalized 

ratio can be seen in patients receiving ibrutinib and warfarin, and although warfarin was 

allowed initially in clinical trials, the trial criteria were later amended to exclude patients 

receiving warfarin because of excessive bleeding events256. Low-molecular-weight heparin 

has therefore often been a preferred choice for anticoagulation in these patients (especially 

in those with normal renal function). Nevertheless, the costs and discomfort of the injections 

remain major disadvantages of using low-molecular-weight heparin, especially considering 

the chronicity of this treatment. Direct oral anticoagulants have emerged as an attractive 

alternative, even in patients with cancer and AF257–262. Given the inhibitory action on 

P-glycoprotein, ibrutinib has the potential to increase the serum levels of all direct oral 

anticoagulants, especially dabigatran and edoxaban and, to a lesser degree, apixaban and 

rivaroxaban263. Indeed, no grade 3 bleeding events were noted in 18 patients who developed 

AF with ibrutinib therapy, seven of whom were treated with apixaban264. Anticoagulation 

therapy in patients receiving ibrutinib should be for the duration of the increased risk of AF, 

which is certainly for the duration of ibrutinib therapy. However, these patients might be at 

high risk of AF regardless of receiving ibrutinib233,238. For patients with malignancies in 

Herrmann Page 24

Nat Rev Cardiol. Author manuscript; available in PMC 2022 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



general, an approach that is based on the stage within the continuum of cancer care might be 

advisable (BOX 5).

Importantly, when choosing the anticoagulation strategy, the CHA2DS2-VASc score seems 

to perform the same in patients with cancer as in patients without cancer for those 

with baseline AF265–267. However, the CHA2DS2-VASc score does not account for cancer-

induced hypercoagulability and does not perform as well for patients who newly develop AF 

during cancer therapy268–270. With regard to bleeding risk prediction, differences in patients 

with cancer are also not included in the HAS-BLED score and, for this reason, this score 

might not perform ideally in patients with cancer either265. These difficulties might explain 

why, at least in the USA, patients with cancer take medications for anticoagulation at a much 

lower rate than patients without cancer, despite deriving the same benefit271. Intriguingly, 

involvement of a cardiologist markedly improved this management aspect271.

In terms of primary prevention, how to identify patients with cancer at high risk of AF 

accurately and whether they should be prophylactically treated with antiarrhythmic drugs is 

currently unknown. These are pertinent questions especially for those patients with cancer 

whose treatment course can be greatly affected in a negative manner by the development of 

AF (for example, those undergoing bone marrow transplantation or CAR T cell therapy or 

responders to long-term therapy with ibrutinib).

Conclusions

Cancer therapy has evolved remarkably over the decades, from chemical therapeutics to 

targeted molecular therapies and, most recently, immunotherapies. With these developments, 

the cardiovascular toxicity profile of cancer therapeutics is broadening. Although familiarity 

with the old concepts and management recommendations has to remain, one has to be 

attentive to new concepts and discoveries in cardio-oncology. This multidisciplinary area 

will gain importance in the years to come, with the ageing of the general population and 

the consequent increase in the incidence and prevalence of both cancer and cardiovascular 

diseases. Although this Review focuses on the active therapy phase in patients with cancer, 

the continuum of care should not be forgotten. Some patients will need to be evaluated 

before and continued to be followed up for cardiovascular risks after exposure to the 

therapies discussed in this Review. In addition to cardiotoxicity, vascular toxicity and 

arrhythmias associated with cancer therapies are important topic areas for every cardiologist 

to know given the potential for fatal outcomes. Finally, in view of the improving survival 

rates in patients with cancer, how cardiovascular diseases and cardiovascular toxicities of 

cancer therapies are managed in these patients will become increasingly important.
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Key points

• Cancer therapy has evolved from the administration of chemical compounds 

and radiation therapy to the use of targeted agents and immunotherapies.

• Along with these developments, the cardiovascular toxicity spectrum of 

cancer therapies has been changing but cardiac toxicity remains of greatest 

concern.

• Inflammatory and immune mechanisms have to be taken into account when 

considering cardiotoxicity in patients receiving immune checkpoint inhibitor 

or chimeric antigen receptor T cell therapies.

• With the newer cancer therapies, atrial fibrillation is emerging as the most 

relevant and practically challenging arrhythmia in patients with cancer.

• Corrected QT interval prolongation, ventricular arrhythmias and cardiac arrest 

can also occur with many of the newer targeted agents.
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Box 1 |

Proposal for a pathophysiology-based classification of cancer therapy-
related cardiomyopathies

A decline in cardiac function in patients with cancer can occur as a consequence of direct 

toxic effects of cancer therapies on the myocardium (primary or type I cardiomyopathy) 

or secondary to other alterations that translate into a reduction in cardiac function 

(secondary or type II cardiomyopathy). Non-toxic or non-reactive primary inflammatory 

myocarditis is a unique subtype of cancer therapy-related cardiomyopathy (type III), and 

requires immunosuppressive treatment. In type II scenarios, treatment of the underlying 

or contributing abnormality (such as coronary or valvular heart disease) is crucial to 

the restoration of cardiac function, whereas for type I scenarios, heart failure therapy is 

essential. The table shows the cancer therapies that have been associated with each type 

of cardiomyopathy, as well as the diagnosis and management strategies.

Characteristic Cancer therapy-related cardiomyopathy

Type I Type II Type III

Definition Direct impairing effect 
on the myocardium

Indirect impairing 
effect on the 
myocardium

Impairing effect owing 
to myocarditis

Risk with cancer therapy 

Doxorubicin Yes Yes Yes (toxic or reactive)

Cyclophosphamide Yes Yes Yes (toxic or reactive)

5-Fluorouracil Yes Yes NR

HER2 (ERBB2) 
inhibitors

Yes Unclear NR

VEGF inhibitors Yes (TKIs) Yes Unclear

ICIs Possible Possible Yes (immunomediated)

Radiation therapy Yes (at high dose) Yes Yes (toxic or reactive)

Diagnosis 

Imaging Echocardiography, 
cardiac MRI, MUGA 
scan

(Stress) 
echocardiography, 
(stress) cardiac MRI, 
nuclear stress test, CT 
coronary angiography, 
vasoreactivity studies

Cardiac MRI, PET, 
echocardiography

Biomarkers Cardiac troponins, 
natriuretic peptides 
(especially long term)

Thyroid function 
studies, cytokines, 
catecholamines ECG 
abnormalities (e.g. 
ST-segment shifts, T-
wave inversions)

Cardiac troponins, 
natriuretic peptides, 
ECG abnormalities 
(e.g. heart block, 
ectopy)

Management 

Treatment Stop cancer therapy, 
β-blocker(carvedilol), 
ACE inhibitor, ARB, 
spironolactone

Stop cancer therapy, 
therapy directed at 
the underlying cause 
(e.g. correction of 
myocardial ischaemia 
or valve disease)

Stop cancer therapy; 
for ICI therapy, 
anti-inflammatory and 
immunosuppressive 
therapy, supportive 
care as needed (e.g. 
ECMO)
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Characteristic Cancer therapy-related cardiomyopathy

Type I Type II Type III

Prevention Screening for and 
optimal treatment 
of comorbidities, 
exercise; for 
anthracyclines, 
cardiovascular 
medications 
(carvedilol or 
nebivolol, ACE 
inhibitor, ARB or 
spironolactone, statins, 
dexrazoxane)

Screening for and 
optimal treatment 
of predisposing 
conditions, dose 
and type of 
administration; for 
radiation therapy, 
dose reduction (e.g. 
shielding, positioning 
or proton beam)

Screening for and 
optimal treatment 
of comorbidities 
(efficacy not proven), 
early detection with 
biomarkers

ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; ECG, electrocardiogram; ECMO, 

extracorporeal membrane oxygenation; ICI, immune checkpoint inhibitor; MUGA, multigated acquisition; NR, 

not reported; PET, positron emission tomography; TKI, tyrosine kinase inhibitor; VEGF, vascular endothelial 

growth factor.
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Box 2 |

Targeted cancer therapies

ALK inhibitors

ALK is an oncogene encoding a protein involved in cell growth. Mutated forms of the 

ALK gene and protein have been found, for instance, in non-small-cell lung cancer and 

anaplastic large-cell lymphoma, in which ALK inhibitors are used.

BRAF inhibitors

The serine/threonine-protein kinase BRAF is a member of the RAF family and a 

downstream target of RAS in the mitogen-activated protein kinase (MAPK) signalling 

pathway. Activating mutations in BRAF have been described in a few cancers, such as 

V600E in melanoma and non-small-cell lung cancer. BRAF inhibitors can be combined 

with MAPK/ERK kinase (MEK) inhibitors to extend the time to resistance and the 

tumour and survival responses.

CDK inhibitors

Cyclin-dependent kinases (CDKs) phosphorylate and thereby regulate the activity of 

proteins that are important for progression through the cell cycle and cell division. CDK4 

and CDK6 inhibitors are used to interrupt this action and thereby the proliferation of 

cancer cells, which are more likely to have disturbances in CDK4 and CDK6, such as 

hormone receptor-positive breast cancer cells.

EGFR and HER2 inhibitors

The four main members of the human epidermal growth factor receptor (EGFR) family, 

EGFR (also known as HER1), HER2 (also known as ERBB2), ERBB3 (also known 

as HER3) and ERBB4 (also known as HER4), regulate the growth, survival and 

differentiation of various cells via multiple intracellular signal transduction pathways 

after ligand-mediated association of two receptors (dimerization). HER2-directed therapy 

is extremely important in breast oncology and includes drugs that inhibit the extracellular 

domains (pertuzumab and trastuzumab) or the intracellular tyrosine kinase domain 

(lapatinib) of the receptor. Inhibitors targeting the tyrosine kinase domain of EGFR (such 

as erlotinib) are used in lung oncology.

HDAC inhibitors

Histone deacetylase (HDAC) inhibitors interfere with the actions of HDACs, which are 

enzymes involved in the remodelling of chromatin and have an important role in the 

epigenetic regulation of gene expression and the regulation of the activity of non-histone 

proteins through hypoacetylation. These drugs are approved by the FDA for use in T cell 

lymphoma and myeloma.

MEK inhibitors

The classic MAPK signalling pathway is important for cell growth and division. This 

pathway is activated, for example, by growth factors such as EGF, and entails the 

sequential activation of RAS, RAF, MAPK/ERK1 (MEK1), MEK2, ERK1 and ERK2. 
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Aberrant activation occurs through gain-of-function mutations in RAS and RAF gene 

family members, which are among the most frequently mutated genes in human cancer. 

MEK inhibitors lock non-phosphorylated MEK1 and MEK2 into a catalytically inactive 

state that is not related to the ATP-binding pocket of the proteins, which reduces the risk 

of off-target effects. These drugs are used primarily in patients with melanoma.

MET

MET is a receptor tyrosine kinase that, after binding with its ligand, hepatocyte 

growth factor, activates the MAPK and other intracellular signalling pathways involved 

in cell proliferation, motility, migration and invasion. Overactivation of MET via 

mutation, amplification or protein overexpression has been documented in various human 

malignancies. MET inhibitors interfere with the tyrosine kinase activity of MET and are 

approved for use in patients with thyroid, renal cell or hepatocellular cancer.

mTOR inhibitors

Mechanistic target of rapamycin (mTOR) is a protein kinase that forms two types 

of mTOR complexes (mTORC). mTORC1 suppresses catabolic processes (such as 

autophagy) and activates anabolic pathways (such as protein synthesis), thereby 

supporting cell growth. mTOR inhibitors inhibit mTORC1, thereby shifting cancer cell 

metabolism to a status unfavourable for cell growth. These drugs are prescribed for 

patients with renal cell cancer or breast cancer.

Topoisomerase inhibitors

As polymerases separate DNA strands for transcription of gene information or 

duplication, the remaining portions of the DNA strands become more densely coiled. 

Topoisomerases cleave and relax hypercoiled DNA segments and subsequently reattach 

the cleaved ends. On the basis of their cleaving either one or both strands of 

DNA, topoisomerases are designated as type I or type II, respectively, and so 

are their inhibitors. Topoisomerase inhibition leads to the formation of irreversible 

covalent crosslinks between topoisomerases and DNA, thereby stalling DNA expression, 

duplication and integrity.

VEGF inhibitors

Vascular endothelial growth factors (VEGFs) have an important role in the formation 

of new vessels (angiogenesis), thereby supporting tumour growth and metastasis. VEGF 

inhibitors interfere with this aspect of tumour growth and bind to VEGFA (bevacizumab), 

trap VEGF subtypes (aflibercept), bind to VEGF receptor 2 (VEGFR2) (ramucirumab) 

or inhibit VEGFR2 tyrosine kinase activity (pazopanib, sorafenib and sunitinib). These 

agents are indicated for patients with renal cell cancer or thyroid cancer.
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Box 3 |

CAR T cell therapy

T cells are normally activated when the T cell receptor (TCR) recognizes an antigen 

that is presented in conjunction with MHC class I or class II complexes. By contrast, 

engineered chimeric antigen receptors (CARs) recognize the antigen in a manner 

similar to that of an antibody, in an MHC-unrestricted manner. CARs consist of 

an extracellular antigen-recognition domain (most commonly a monoclonal antibody 

single-chain variable region that targets a tumour-associated antigen) linked to a T 

cell signalling transmembrane domain (such as an intracellular fragment of the TCR 

CD3ζ chain in ‘first-generation’ CARs) that anchors the chimeric receptor in the cell 

membrane and activates the T cell when the extracellular portion recognizes the target 

cell expressing the specific antigen, thereby linking recognition to activation. Activation 

is mediated by the intracellular fraction, which stimulates T cell proliferation, cytokine 

secretion and cytolysis to eliminate the target cell. Therefore, expression of engineered 

CARs on T cells allows for the control of T cell targeting of tumour cells with high 

degree of specificity. To generate CAR T cells, T cells are harvested from the patient 

(or from an allogeneic donor) and are transfected with a gene-therapy vector (such as a 

lentivirus) encoding the CAR construct.

The first CAR T cell strategy that was developed targeted melanoma-associated antigen 

3 (MAGEA3), the first human tumour-associated antigen to be specifically recognized by 

CD8+ T cells. Another asset in favour of this approach was the expression of MAGEA3 

in a wide variety of neoplasms, particularly melanoma and non-small-cell lung cancer, 

but not in normal tissues except the testes and placenta (where this antigen is not 

presented to CD4+ T cells and CD8+ T cells).

HER2 (also known as ERBB2 or neu) was chosen early on as another promising tumour-

associated antigen target for CAR T cells. The hope was for the broader application 

of this approach as a therapeutic strategy for all cancers expressing HER2, including 

breast, gastric, colon, renal and ovarian cancer. By contrast, CD19 was chosen as a target 

for CAR T cell therapy because its expression is confined to B cells and the levels 

are much higher than those of any other markers in B cell leukaemias and lymphomas. 

Furthermore, any potential depletion of B cells that might arise as a consequence of 

the anti-CD19 CAR T cell therapy was thought to be beneficial to avoid any potential 

antibody response to the engineered CAR T cells.
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Box 4 |

Immune checkpoint inhibitors

T cell activation is modulated not only by co-stimulation but also co-inhibition pathways 

to prevent an excessive immune response. These pathways can be exploited by tumour 

cells to escape immune-mediated destruction. Immune checkpoint inhibitors (ICIs) are 

molecules that target T cell inhibition pathways, such as the cytotoxic T lymphocyte 

antigen 4 (CTLA4) and programmed cell death 1 (PD1) pathways, thereby reversing the 

immune tolerance of the T cells towards tumour cells and promoting T cell antitumour 

activity.

CTLA4, the first target used for clinical ICI therapy, interacts with the same surface 

molecules on antigen-presenting cells that interact with the co-stimulatory signal CD28: 

CD80 and CD86. CTLA4 directly competes with CD28 for the binding sites, but with 

much higher affinity. In contrast to the signalling of CD28 promoting T cell activation, 

CTLA4 signalling blocks the T cell response. CTLA4 is stored in intracellular vesicles 

in the T cell, which are transported to the cell surface on antigen-driven engagement 

of the T cell receptor. This relocation usually occurs within 2 days of T cell activation 

and affects both CD4+ T cells and CD8+ T cells in the lymphatic tissues. Therefore, 

antibodies interfering with CTLA4 are directed to T cells that interact with antigen-

presenting cells in lymphoid organs in the early stage of the adaptive immune response 

and, most of all, to T helper cells. In addition, CTLA4 is constitutively expressed and has 

a vital role in regulatory T cells. Therefore, CTLA4 inhibition has a profoundly negative 

effect on this anti-inflammatory T cell population.

The immune checkpoint that became the second and more prevalent target for clinical 

therapy is the PD1–PD1 ligand 1 (PDL1) system. This pathway is a negative regulator 

of T cell activity in peripheral tissues, including tumours. PD1 is expressed in all 

inflammatory cells, including monocytes, dendritic cells, natural killer cells, B cells and 

T cells. In the tumour, PD1 is expressed in activated tumour-infiltrating (mainly CD4+) 

T cells. In addition, PD1 is highly expressed on regulatory T cells, which also tend to 

infiltrate tumours densely. PDL1, which triggers the inhibitory signal in these immune 

cells on binding to PD1, is expressed by various tissue and cancer cells, as well as by 

tumour-infiltrating macrophages. Antigen-presenting cells also express PDL2, another 

ligand for PD1 with functions overlapping those of PDL1.
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Box 5 |

Anticoagulation strategies in patients with cancer and atrial fibrillation

In the absence of clinical trial data, safety concerns guide decision-making regarding the 

anticoagulation regimen for patients with cancer and atrial fibrillation, assuming that all 

strategies have equal efficacy to prevent thromboembolism. On the basis of the factors 

outlined in the table, a reasonable approach would be to use either vitamin K antagonists 

(VKAs) or non-vitamin K antagonist oral anticoagulants (NOACs) before and after active 

cancer therapy, when steady-state conditions are reached (that is, no major changes in 

drug regimen, renal and liver function, and blood counts and coagulation status are 

expected). During active cancer therapy, low-molecular-weight heparin (LMWH) might 

be the preferred choice.

Anticoagulant 
regimen

Preferred 
timing 
with 
respect to 
cancer 
therapy

Drugs and 
dosing

Reversibility Drug-drug 
interactions

Reduced 
renal 
function

Reduced 
liver 
function

Cost Comments

VKAs Before 
and after

Coumadin, 
dosing 
according to 
INR

Vitamin K, 
fresh frozen 
plasma or 
prothrombin 
complex 
concentrate

+++ Preferred if 
severe end-
stage renal 
disease 
without 
haemodialysis

Not required Low Inconvenience 
owing to the need 
for recurrent INR 
checks

LMWH During Enoxaparin 1 
mg/kg 
subcutaneously 
twice daily; 
dalteparin 200 
U/kg 
subcutaneously 
daily

Protamine 
(but unlike 
with 
unfractionated 
heparin, it 
does not 
completely 
abolish the 
anti-factor Xa 
activity of 
LMWH)

+ Caution if 
eGFR <30 
ml/min; 
monitor 
factor Xa 
levels

Not required High Heparin-induced 
thrombocytopenia; 
discomfort with 
injections; 
challenging long-
term treatment

NOACs Before 
and after

Rivaroxaban 
20 mg orally 
daily; 
endoxaban 60 
mg orally 
daily; 
dabigatran 150 
mg orally 
twice daily; 
apixaban 5 mg 
orally twice 
daily

Idarucizumab 
(Praxbind) for 
dabigatran; 
andexanet 
alfa 
(Andexxa), if 
available, for 
apixaban or 
rivaroxaban; 
or four-factor 
prothrombin 
complex 
concentrate 
for all other 
NOACs

+++ Reduce 
rivaroxaban 
dosage to 15 
mg daily; 
reduce 
endoxaban 
dosage to 30 
mg daily if 
eGFR is 15–
50 ml/min; 
reduce 
dabigatran 
dosage to 75 
mg twice 
daily if eGFR 
is 15–30 ml/
min; reduce 
apixaban 
dosage to 2.5 
mg twice 
daily if serum 
creatinine 
level is ≥1.5 
mg/dl and 
either age ≥80 
years or 

Not 
recommended 
with 
moderate-to-
severe 
(rivaroxaban 
and 
endoxaban) 
or severe 
(apixaban) 
liver 
dysfunction 
(Child-Pugh 
class B/C and 
class C)

High Lack of ample 
experience and 
publications in 
patients with 
cancer; concerns 
for use in patients 
with 
gastrointestinal 
(and 
genitourinary) 
tract lesions
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Anticoagulant 
regimen

Preferred 
timing 
with 
respect to 
cancer 
therapy

Drugs and 
dosing

Reversibility Drug-drug 
interactions

Reduced 
renal 
function

Reduced 
liver 
function

Cost Comments

weight ≤60 
kg

egFR, estimated glomerular filtration rate; INR, international normalized ratio.
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Fig. 1 |. Outline of cardiovascular toxic effects associated with cancer therapies.
Numerous cancer therapies have been associated with adverse effects and complications 

across the entirety of the cardiovascular system. As illustrated, some therapies have a very 

confined and others have a very broad cardiovascular toxicity profile. Classic chemical 

compounds are shown in blue, targeted therapies are shown in pink, immunotherapies 

are shown in purple and radiation therapy is shown in green. CAR, chimeric antigen 

receptor; HDAC, histone deacetylase; MEK, MAPK/ERK kinase; mTOR, mechanistic target 

of rapamycin; VEGF, vascular endothelial growth factor.
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Fig. 2 |. Timeline of cancer therapy development.
The timeline presents landmarks in the development of cancer therapeutics. Three main eras 

can be distinguished on the basis of the type of agent: classic chemical compounds (shown 

in blue), targeted therapies (shown in pink) and immunotherapies (shown in purple). ACT, 

adoptive T cell therapy; ALL, acute lymphoblastic leukaemia; BCG, bacillus Calmette–

Guérin; CAR, chimeric antigen receptor; CDK, cyclin-dependent kinase; CTLA4, cytotoxic 

T lymphocyte antigen 4; HDAC, histone deacetylase; HL, Hodgkin lymphoma; HPV, human 

papillomavirus; ICI, immune checkpoint inhibitor; MART1, melanoma antigen recognized 

by T cells 1; mTOR, mechanistic target of rapamycin; NHL, non-Hodgkin lymphoma; PD1, 

programmed cell death 1; TCR, T cell receptor.
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Fig. 3 |. Main elements in the treatment of patients with cancer and atrial fibrillation.
In patients with cancer, predisposing conditions for atrial fibrillation should be identified 

and addressed if possible. These include common risk factors for atrial fibrillation such 

as old age (>60 years), valvular heart disease, hypertension, obstructive sleep apnoea, 

chronic kidney disease, diabetes mellitus and smoking. Cancer therapies that have been 

associated with the risk of atrial fibrillation are listed in TABLE 4 and include chemical 

compounds such as melphalan, targeted agents such as the tyrosine kinase inhibitor (TKI) 

ibrutinib and immunotherapies that increase inflammation and cytokine production such 

as immune checkpoint inhibitor and chimeric antigen receptor (CAR) T cell therapies. 

Various other factors are important in patients with cancer, including metabolic (such as 

hyperthyroidism) and electrolyte abnormalities, autonomic nervous system stimulation (pain 
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or stress), cardiac infiltration or pericarditis and/or pericardial effusion. These predisposing 

factors can contribute to morbidity and death in patients with cancer. Atrial fibrillation 

symptoms include palpitations, chest discomfort and dyspnoea. Atrial fibrillation can lead 

to thromboembolism, myocardial ischaemia and heart failure. To reduce symptoms and 

the risk of complications, the decisions have to be made whether interventions should 

be pursued and what they should be. However, risk scores to guide decisions regarding 

anticoagulation have not been validated for patients with cancer. Similarly, results from 

landmark randomized clinical trials (RCTs) involving patients with atrial fibrillation cannot 

be easily translated to patients with cancer. ACE, angiotensin-converting enzyme; ARB, 

angiotensin-receptor blocker; LAA, left atrial appendage; NOAC, non-vitamin K antagonist 

oral anticoagulant; VKA, vitamin K antagonist.
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