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A B S T R A C T

The outbreak of COVID-19 dramatically impacts the global economy. Mass COVID-19 vaccination is widely
regarded as the most promising way to fight against the pandemic and help return to normal. Many
governments have authorized certain types of vaccines for mass vaccination by establishing appointment
platforms. Mass vaccination poses a vital challenge to decision-makers responsible for scheduling a large
number of appointments. This paper studies a vaccination site selection, appointment acceptance, appointment
assignment, and scheduling problem for mass vaccination in response to COVID-19. An optimal solution
to the problem determines the open vaccination sites, the set of accepted appointments, the assignment of
accepted appointments to open vaccination sites, and the vaccination sequence at each site. The objective
is to simultaneously minimize 1) the fixed cost for operating vaccination sites; 2) the traveling distance of
vaccine recipients; 3) the appointment rejection cost; and 4) the vaccination tardiness cost. We formulate
the problem as a mixed-integer linear program (MILP). Given the NP-hardness of the problem, we then
develop an exact logic-based Benders decomposition (LBBD) method and a matheuristic method (MH) to solve
practical-sized problem instances. We conduct numerical experiments on small- to large-sized instances to
demonstrate the performance of the proposed model and solution methods. Computational results indicate
that the proposed methods provide optimal solutions to small-sized instances and near-optimal solutions to
large ones. In particular, the developed matheuristic can efficiently solve practical-sized instances with up to
500 appointments and 50 vaccination sites. We discuss managerial implications drawn from our results for the
mass COVID-19 vaccination appointment scheduling, which help decision-makers make critical decisions.
1. Introduction

The world has suffered from the Corona Virus Disease 2019 (COVID-
19) since its outbreak in December 2019. More than 240 million
infected cases have been reported, with nearly five million deaths
confirmed (Worldometer, 2021). The COVID-19 pandemic has also re-
sulted in vital global economic losses and significantly impacted social
activities and livelihoods. Governments implement policies including
massive testing, strict social distancing, and lockdowns to prevent the
spread of the virus. In the high infectiousness and long incubation
periods without apparent symptoms, it is imperative to implement
vaccines, which the world is longing for. By November 2021, over
260 vaccines are in development, some of which have been approved
by governments. Milken Institute and FirstPerson (2021) Many coun-
tries and regions have initiated mass vaccination programs and open
channels through which residents can make vaccination appointments
online. More than 220 million residents have been vaccinated, includ-
ing 79.6% of the adults (Centers for Disease Control and Prevention,
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2021). The UK has vaccinated 73% of its population (Our World in
Data, 2021). However, data shows that till the beginning of October
2021, only 3.5% of people in low-income countries have received
COVID-19 vaccine (Our World in Data, 2021). In those countries, the
mass vaccination programs are still in the early stages due to the
limited supply of the vaccine. Consequently, early vaccination will not
be available for everyone.

The conflict between demand and capacity has caused some mess in
the appointment scheduling program. Dai (2021) has pointed out that
the traditional vaccine sign-up model performs poorly for COVID-19
vaccination appointment scheduling, as many people keep refreshing
the websites hoping to get appointments. To coordinate the situation,
governments choose to firstly deliver the vaccines to people with higher
urgency and priority. The Arizona Department of Health Services has
published the COVID-19 vaccine prioritization, which divides the vac-
cination program into three phases. The first phase, from December
2020 to spring of 2021, is allocated for people with high priorities,
vailable online 22 January 2022
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including healthcare workers & healthcare support occupations, emer-
gency medical service workers, and people in long-term care facility
staff & residents (Arizona Department of Health Services, 2021). There-
fore, group appointments are made through appointment platforms by
companies, organizations, or communities, which are geographically
dispersed. When making the appointment, the individual (usually the
administrator) who makes the appointment must specify the following
information: (1) the number of personnel that needs vaccination; (2)
the time window for vaccination during the day.

Decision-makers must make several critical decisions to establish a
mass vaccination program, including which vaccination site to open,
which vaccination appointment to accept or reject, how to assign the
accepted vaccination appointments to opened vaccination sites, and the
service time of each appointment at each site. These decisions are made
under the consideration of several critical factors. First, due to the lim-
ited budget, vaccination sites must be well launched and operated, such
that a high resource utilization rate and a cost-effective plan can be
achieved. Second, the storage and handling of COVID-19 vaccines have
stringent requirements on temperature, venue, and other conditions.
COVID-19 vaccines need to be stored or transported in cold chains and
be placed in specific containers with a low temperature around 2 ◦C
o 8 ◦C. Some even require temperature below −60 ◦C (Wang et al.,

2020a). These requirements indicate that the number of facilities that
can be selected as vaccination sites is limited. Third, decision-makers
must provide vaccine recipients with good service, including a moder-
ate travel distance to get vaccinated and an accurate service time that
meets recipients’ expected time window. Thus, the mass vaccination
program consists of complex optimization problems with potentially
conflicting objectives. For example, Suzhou, a big city with more than
ten million residents in Jiangsu Province, China, has launched 179
COVID-19 vaccination sites, 44 of which are to be opened according
to the situation (Suzhou Municipal People’s Government, 2021). The
operation of these vaccination sites occupies resources, e.g., venue,
facilities, healthcare workers, and other staff. More vaccination sites
lead to high operation costs and low resource utilization. At the same
time, more vaccination sites indicate a high capacity level by providing
vaccine recipients with easily accessible vaccination sites and short
waiting times. On the contrary, decision-makers can save costs through
opening fewer vaccination sites, which results in a long travel distance
of vaccine recipients, a higher probability of appointment rejection, and
service tardiness. Therefore, we are motivated by the above practical
considerations and aims to provide complete and effective solutions
with a tradeoff between the operational cost and the service level.

This paper investigates the mass COVID-19 vaccination appointment
scheduling (MCVAS) problem, which jointly determines the vaccina-
tion site selection, vaccination appointment acceptance or rejection,
vaccination appointment assignment to opened vaccination sites, and
the service schedule at each vaccination site. The objective is to simul-
taneously minimize four components, i.e., the fixed cost for opening
a vaccination site, total travel distance of vaccine recipients, total
appointment rejection cost, and total tardiness cost. The research aims
to provide a good balance between cost-effectiveness and service level.
The focus is to generalize the classic appointment scheduling problem
by considering multiple vaccination sites and a fixed cost for opening
a vaccination site. It also extends the scheduling and location problem
by considering appointment rejection. We formulate the problem as a
mixed-integer linear programming (MILP) model adapted from similar
scheduling problems. Due to the strong NP-hardness of the problem,
we then develop an exact logic-based Benders decomposition (LBBD)
method to solve it efficiently. The LBBD method decomposes the orig-
inal problem into a master problem (MP) and a subproblem (SP). The
MP deals with the vaccination site selection, appointment acceptance,
and assignment decisions. Once a feasible solution to the MP is ob-
tained, the corresponding SP determines the vaccination sequences at
2

each vaccination site. Benders cuts are iteratively generated and added
to the MP. To tackle practical-sized instances with hundreds of ap-
pointments and dozens of vaccination sites, we propose a matheuristic
method (MH) based on predetermined sequences of the appointments.
Excessive computational experiments are conducted to evaluate the
performances of the model and algorithms. Sensitivity analyses give
quantitative insights into the effects of different cost components in the
objective. Based on the computational results, we provide some man-
agerial implications for the mass COVID-19 vaccination appointment
scheduling decision-making.

The remainder of this paper is organized as follows. Section 2
overviews literature related to the proposed problem. Section 3 de-
scribes the problem in detail and presents the MILP model. The exact
LBBD method and the matheurisitc are developed in Section 4. Sec-
tion 5 conducts the computational study, analyzes the results, and
performs sensitivity analysis. Managerial implications are presented in
Section 6. Section 7 summarizes the paper with conclusions.

2. Literature review

This paper is an attempt to apply operational research methods
to promote mass vaccination scheduling in the COVID-19 pandemic.
The studied problem is closely related to several research streams,
including the vaccine supply chain management, appointment schedul-
ing problem, parallel machine scheduling problem with rejection, and
the scheduling and location (ScheLoc) problem. We next review these
related topics and indicate how they differ from the current study.

2.1. Operational research methods applied in pandemics

Operational research (OR) methods play important roles in decision-
making processes against pandemics, including severity assessment,
demand forecasting, facility location, supply chain management, re-
source scheduling, among others. Bennett et al. (2012) outlined the
roles that OR analysis played in the health policy in England. Among
the three areas, the health protection issue focused on threats to public
health, and the authors took influenza, the ‘‘Swine Flu" pandemic, and
the infectious Creutzfeldt–Jakob Disease as examples to show that OR
was critical in modeling and assessment. More potential contributions
that OR could make were also reflected in the paper. Nagurney (2021)
considered the challenges in labor shortage in supply chains due to the
COVID-19 pandemic. A supply chain optimization model was proposed
with a profit-maximization objective. The model defined labor as a
critical variable and considered both fixed and elastic demand cases.
Illustrative examples were presented to show the impacts of labor avail-
ability in supply chains. Zhao et al. (2021) focused on the infectious
waste management in pandemics considering uncertain generation. A
scenario-based bi-objective robust optimization model was formulated
to simultaneously determine the location of waste management fa-
cilities and the routing of waste collection and transportation. The
objective functions contained both cost and risk minimization. Three
multi-objective approaches were proposed for the problem, and a real-
life case study in the COVID-19 pandemic was conducted. Several
models are built to describe the spread of viruses and the effectiveness
of various anti-epidemic measures. Among them, the SEIR model is one
of the most important and widely used ones (Albani et al., 2021; Foy
et al., 2021). The SEIR model divides people into four states, that is
susceptible (S), exposed (E), infected (I), and recovered (R). The states
of people may change dynamically with the spread of the epidemic, the
measures of governments, and the treatments by medical workers. Jiao
et al. (2020) presented an SEIR model for the transmission of COVID-
19 pandemic and considered the infectivity of incubation period and
homestead-isolation on the susceptible. The paper suggested the imple-
mentation of strict isolation to curb the propagation of the COVID-19

virus.



Computers and Operations Research 141 (2022) 105704C. Zhang et al.
2.2. Vaccine supply chain management

Vaccines are crucial to stop the spread of the virus, relieve social
anxiety, and recover global economies. From the view of operations
research, many researchers focus on the supply chain management
concerning the vaccine transportation and distribution, the vaccina-
tion site location, and the prioritization of vaccine recipients. Hovav
and Tsadikovich (2015) considered the inventory management and
distribution of influenza vaccines in a multi-echelon healthcare supply
chain. A mixed-integer programming (MIP) model considering recipient
priorities was formulated to minimize the total costs. A case study of
the vaccination program in Israel was presented to show the practical
value of the paper. Lim et al. (2016) studied the vaccination outreach
location selection problem in low and middle income countries. They
proposed four coverage models to maximize the number of vaccinated
residents. Li et al. (2020) studied the location-inventory problem for
vaccination. A multi-objective mixed-integer nonlinear programming
model was proposed to minimize the average travel distances, maxi-
mize the number of open vaccination stations, and minimize the total
cost, simultaneously. The model was simplified to obtain an MILP
using a two-stage strategy, solved by an 𝜖-constraint method. Albani
et al. (2021) proposed a SEIR-like model to describe infection severity
levels to evaluate the impacts of vaccination delay. They considered
time-dependent parameters and control strategies to make the model
accurate and realistic. The results showed that vaccination delay would
severely affect mortality, hospitalization, and recovery projections.
Georgiadis and Georgiadis (2021) built a novel framework for the
optimal planning of both the vaccine supply chain management and the
daily vaccine implementations in vaccination centers. An MILP model
with cost minimization was proposed to determine the vaccine delivery,
inventory control, and daily vaccination schedules. A decomposition-
based approach was employed to solve large-scale problems, and a case
study of Greek COVID-19 vaccine supply chain management was con-
ducted. The paper also designed an MILP-based replanning algorithm
to deal with potential disturbances such as no show.

However, the literature on vaccine supply chain management rarely
addresses the appointment scheduling problem, a critical optimization
problem in vaccination programs.

2.3. Appointment scheduling

Appointment scheduling and management is a common challenge
in many industries, such as truck appointments at marine terminals
(Huynh, 2009), production systems (Elhafsi, 2002), project schedul-
ing (Bendavid and Golany, 2011), and machine scheduling (Elmaghraby
et al., 2005). The presented review of appointment scheduling focuses
on healthcare industries to coordinate the conflict between limited
medical resources and the seemingly endless demands.

The appointment scheduling studies in the medical field focus
on single service provider settings, e.g., a healthcare service center.
De Vuyst et al. (2014) studied the healthcare appointment scheduling
problem where a single physician treated patients in a fixed-length
session. The authors applied discrete-time setting and Lindley’s re-
cursion to design an efficient algorithm for schedule evaluation, in
which patient waiting time and physician idle time were considered.
Feldman et al. (2014) investigated an appointment scheduling problem
considering patients’ time preferences and a single service provider.
The no-show behavior, indicating that patients with appointments fail
to appear, was also considered in the problem. They presented static
and dynamic programs to maximize the expected daily profit, which
was the difference between revenue and service costs. The dynamic
model considered the status of appointments and was solved by a
policy improvement heuristic. Alizadeh Foroutan et al. (2020) studied
a non-emergency outpatient appointment scheduling problem with a
single machine and limited staff. An MILP model was proposed to min-
3

imize the penalties of patients’ undesirable days, patients’ undesirable
hours, machine idle time, and doctor switches. A genetic algorithm
was designed, which showed superiority to the MILP model through
computational experiments.

The literature on the appointment scheduling problem with multiple
service providers is limited. Zhou et al. (2020) focused on the optimiza-
tion of patient-and-physician matching and appointment scheduling in
specialty care to minimize the matching and operational costs. A two-
stage formulation was proposed for the problem. The first stage was the
patient–physician assignments, while the second one was about each
service provider’s classic appointment scheduling problems. The sample
average approximation (SAA) method and an improved Benders decom-
position method were designed for the problem. No-show consideration
was also incorporated in the paper. Shnits et al. (2020) investigated
appointment scheduling in the healthcare system with parallel servers
and pre-sequenced patients. The probability of no-shows was consid-
ered. The objective is to minimize the end of the day and increase
resource utilization under service quality requirements. A stochastic
formulation was proposed, which considers the probability of no-shows
and stochastically distributed service time. A deterministic MILP model
was first formulated to approximate the problem. Then, a sequential
multi-server numerical-based algorithm was developed to overcome
the dimensionality limitations of the MILP. Soltani et al. (2019) con-
sidered an appointment scheduling problem with multiple identical
providers. The problem, taking stochastic service times and customer
no-shows into consideration, was modeled as a time-inhomogeneous
discrete-time Markov chain process to minimize the weighted sum of
customers’ waiting time, providers’ idle time, and overtime. A load-
based appointment scheduling heuristic was proposed to quickly find
optimal or near-optimal schedules based on some optimal conditions.
Machine learning techniques were employed to build the efficient and
straightforward heuristic, learning from an extensive database of in-
stances. The methods were evaluated through a real-world experiment
at a local legal counseling center with 3919 appointments.

To sum up, the literature on appointment scheduling problems
focuses on a single location, such as a hospital. There is a lack of
flexibility for assigning personnel to different sites to reduce potential
operational costs. However, in vaccination operations, it is essential
to assign personnel to different vaccination sites to guarantee service
quality, reduce operational costs, and avoid the potential risk of cross
infections. Besides, classic appointment scheduling problems do not
allow an appointment to be rejected. However, during the early stage
of mass COVID-19 vaccination, the vast demand can hardly be met,
and decision-makers must decide which appointment to reject based on
prioritization rules. We next review the stream of research on parallel
machine scheduling problems with rejection.

2.4. Parallel machine scheduling with rejection

The parallel machine scheduling (PMS) problem is well studied. In
classic PMS problems, a set of jobs are assigned to multiple locations to
be processed sequentially. The objectives that are commonly considered
include the minimization of makespan (Li et al., 2011; Vallada and
Ruiz, 2011), total completion time (Bülbül and Şen, 2016; Shim and
Kim, 2007), earliness and/or tardiness (Bektur and Sara, 2019), and
cost-related performance measures (Ji et al., 2013). Parallel machine
scheduling with rejection was first studied in Bartal et al. (2000)
where jobs might be rejected with a penalty cost in a classic PMS
problem. Dósa and He (2006) investigated the problem where a set
of jobs were to be processed while no machine was initially available.
When a job popped up, the decision-makers needed to choose whether
to reject it, process it on existing machines without preemption, or
purchase a new machine to process it. The objective was to minimize
makespan, machine purchasing costs, and rejection penalty costs. A
two-phase online algorithm was proposed to solve the small job cases
in which the size of a job was no more than the purchasing cost

of a machine. Ou et al. (2015) studied a classic PMS problem with
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job rejection to minimize the sum of makespan and rejection penalty.
Several optimal properties were presented, and a heuristic with a worst-
case bound was developed. Zhong and Ou (2017) studied the parallel
machine scheduling problem with job rejection to minimize makespan
and total penalty cost. A bound of maximum total processing time of
the rejected jobs was predefined in the problem. Due to the strong NP-
hardness of the problem, a 2-approximation heuristic algorithm was
introduced based on some optimal properties, and a polynomial-time
approximation scheme was proposed.

Most literature on PMS problems with job rejection assumes the
machines are in the same location. In our problem, the number and
locations of vaccination sites are neither fixed nor given but determined
by decision-makers. However, we identify another research area re-
lated to our research which handles machine locations and scheduling
simultaneously, denoted as the ScheLoc problem.

2.5. Scheduling and location problems

The ScheLoc problem combines the facility location problem and
job scheduling problem and has gained more attention in operation
research in recent years. ScheLoc problem was first studied by Hennes
and Hamacher (2002) where a single machine was to be located in
a network. Single machine ScheLoc problem was also investigated
in Elvikis et al. (2009), Kalsch and Drezner (2010), Akbarinasaji and
Mckendall (2017). The problem was then extended to parallel machine
ScheLoc problem and attracted many researchers. Heßler and Deghdak
(2017) introduced the discrete parallel machine makespan (DPMM)
ScehLoc problem in which multiple machines could be located to a
finite set of candidate locations. The objective was to minimize the
makespan. They proposed an integer programming formulation, four
lower bounds, and several clustering heuristics improved by local
search procedures. Wang et al. (2020b) studied the DPMM ScheLoc
problem and built an MILP formulation based on the network-flow
problem. They proposed two formulation-based heuristics to solve
small-scale instances. For large-scale instances, a polynomial location–
density–longest processing time (LDL) algorithm was developed. The
proposed heuristics were verified to be competitive through computa-
tional experiments. Liu et al. (2019) considered the stochastic parallel
machine ScheLoc problem with uncertain job processing times. A two-
stage stochastic programming formulation was proposed to minimize
the weighted sum of the location cost and the expectation of the total
completion time. They developed an SAA method, a scenario-based
heuristic, and a genetic algorithm for the problem.

2.6. Logic-based benders decomposition and its applications

Benders decomposition method (Benders, 1962) is effective in solv-
ing large-scale MIP problems. Its basic idea is to decompose the original
problem into a relaxed master problem (MP) and a linear subproblem
(SP). The classic Benders decomposition (CBD) applies an iterative
manner between MP and SP. Benders cuts are generated by solving the
SP and are added to the MP in the subsequent iterations to obtain better
solutions. The algorithm terminates when the global optimal solution
is obtained or the time limit is reached. Hooker and Ottosson (2003)
introduced the LBBD method, which generalizes the CBD by allowing
the SP to take any form, instead of a linear program. LBBD has shown
its superiority in various problems, including order acceptance and
scheduling and operating room scheduling. Next, we briefly review the
successful application of LBBD on these problems. (Roshanaei et al.,
2020) investigated the balanced DORS that considered two levels of
balancing decisions. The problem was first formulated as a mixed-
integer nonlinear program and then adapted into three variants by
various reformulation-linearization techniques. A uni- and a bi-level
LBBD were developed to solve the models. (Guo et al., 2021) extended
the DORS by considering stochastic surgery durations. The problem was
4

modeled as a two-stage stochastic integer program and was reformu-
lated via sample average approximation. The objective was to minimize
the total operational and expected cancellation costs computed by
subtracting the patient scheduling benefits from the sum of the surgical
suite opening cost, the operating room opening cost, the postponement
penalty cost, and the expected cancellation cost. Several decomposition
schemes were developed for the problem. The first approach was a two-
stage decomposition using classic Benders cuts and LBBD cuts. As an
alternative to the two-stage one, a three-stage decomposition approach
was proposed in which the subproblems were solved by a two-stage
decomposition method.

Another successful application of LBBD comes from the order ac-
ceptance and scheduling (OAS) problem. (Naderi and Roshanaei, 2020)
studied the OAS problem on identical parallel machines that simultane-
ously optimized the order acceptance, assignment, and scheduling. An
MILP model was formulated and further enhanced by pre-processing
techniques, valid inequalities, and dominance rules. The objective was
to maximize the total profit, i.e., the difference between the rev-
enue of accepted orders and the total tardiness cost. Based on the
model structure, a CBD, an LBBD, and a Branch-Relax-and-Check (BRC)
were proposed, respectively. The BRC, compared to the LBBD, was
novel in that it incorporated temporary Benders cuts and designed
problem-specific SP relaxations.

Some other recent applications include quay crane scheduling prob-
lem (Sun et al., 2019), home care scheduling (Grenouilleau et al.,
2020), and supply chain network design (Naderi et al., 2020).

The novelty of this paper is multifold. First, we study a new MCVAS
problem that jointly optimizes the number of vaccination sites to open,
the locations of the opened vaccination sites, the accepted appoint-
ments, the assignments of appointments to open vaccination sites, and
the schedule of vaccination service at each site. The formulated model
is novel as none of the existing ones can directly apply to our problem.
Second, the proposed model and algorithm can efficiently provide so-
lutions to practical COVID-19 vaccination programs. Third, we conduct
numerical experiments and sensitivity analysis to draw managerial
implications. Moreover, we can adjust the weights of different cost
components in the objective function to better suit real-world situations
or the decision-makers’ preferences, making it applicable to different
scenarios.

3. Problem description and formulation

In this section, we describe the problem formally at first and then
propose the linear ordering formulation adapted from similar schedul-
ing problems.

3.1. Problem description

Suppose that during the mass COVID-19 vaccination, decision-
makers have launched an appointment platform through which vaccine
recipients can make appointments for vaccination. Due to the limited
capacity of vaccine supply, personnel like healthcare workers are prior-
itized to be vaccinated. In this case, the platform receives appointments
by groups. Each group is characterized by its number of recipients,
geographical location, and self-imposed vaccination time window. The
accepted appointments must be assigned to one of the available vacci-
nation sites. Several critical decisions must be made, including which
vaccination site to open, which appointment to accept, which site to
assign the accepted appointments to, and each appointment’s time slot.

Given a set 𝐾 = {1, 2,… , 𝑙} of qualified vaccination sites, each
of which has a fixed operating cost 𝑐𝑘 (𝑘 ∈ 𝐾) once opened, a
specific geographical location with a coordinate (𝑋𝑘, 𝑌𝑘), and a specific
workload limit 𝑄. A set 𝐽 = {1, 2,… , 𝑛} of appointments are made. Each
appointment 𝑗 (𝑗 ∈ 𝐽 ) is characterized with a non-negative processing
time 𝑝𝑗 which is positively correlated to the number of vaccine recipi-
ents in the group, and a time window (𝑒 , 𝑙 ) indicating the earliest start
𝑗 𝑗
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Fig. 1. Illustrative example.
time and latest completion time. We consider half-soft time windows
where 𝑙𝑗 can be violated with a penalty cost 𝑞𝑗 and the tardiness 𝑇𝑗 . 𝑞𝑗
is regarded as the weight of appointment 𝑗 and is positively related to
the population. The service start time 𝑒𝑗 must be met, since otherwise,
the vaccine recipients can hardly arrive at the site, which may cause a
no-show, bringing unnecessary medical and human resource waste. Due
to the workload limitation at each vaccination site, the appointments
may sometimes be rejected or re-arranged to some other workdays.
If an appointment 𝑗 is rejected, a rejection cost 𝑟𝑗 is incurred. The
distance of the vaccine recipient group 𝑗 and the vaccination site 𝑘 is
𝑑𝑗𝑘. Let 𝑆𝑗 be the service start time of appointment 𝑗, its tardiness can
be computed as 𝑇𝑗 = 𝑚𝑎𝑥(𝑆𝑗 + 𝑝𝑗 − 𝑙𝑗 , 0). The objective of the mass
COVID-19 vaccination appointment scheduling problem is to minimize
the weighted sum of total fixed costs for opening vaccination sites, total
travel distance of vaccination recipients, total rejection costs, and total
weighted tardiness costs.

3.2. Illustrative example

To better understand the problem, we present an illustrative exam-
ple of 20 appointments and five vaccination sites that are randomly
dispersed on the planar in Fig. 1. The mass COVID-19 vaccination
appointment scheduling platform is the information collecting and pro-
cessing center where the decision-making will determine the optimal
solutions based on the input information. The input information covers
the capacity and the geographical location of vaccination sites, the ge-
ographical location of recipients, the number of vaccine recipients, and
the self-imposed time window. After the decision-making process, the
output gives the solutions of the selected vaccination sites, the accepted
appointments, the assignments, and the schedules at each vaccination
site. The solution shows that all 20 appointments are accepted, and
three of the five vaccination sites are selected. The schedules at the
selected vaccination sites are also reported in the figure.

3.3. Linear ordering formulation

We formulate our problem as an MILP model based on linear order-
ing formulation, which performs well in scheduling problems (E. Dyer
and Wolsey, 1990). To this end, we define the following variables:

𝑤𝑘 equal to 1 if vaccination site 𝑘 is open;
𝑣𝑗𝑘 equal to 1 if appointment 𝑗 is assigned to the

vaccination site 𝑘;
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𝑥𝑖𝑗 equal to 1 if appointment 𝑖 precedes appointment 𝑗;
𝑧𝑗 equal to 1 if appointment 𝑗 is rejected;
𝑆𝑗 service start time of appointment 𝑗;
𝑇𝑗 Tardiness of appointment 𝑗.

The studied MCVAS problem can be formulated using the linear order-
ing (LO) model presented as follows:

min 𝜃1𝑓1 + 𝜃2𝑓2 + 𝜃3𝑓3 + 𝜃4𝑓4 (1)
s.t.

𝑓1 =
∑

𝑘∈𝐾
𝑐𝑘𝑤𝑘 (2)

𝑓2 =
∑

𝑗∈𝐽

∑

𝑘∈𝐾
𝑞𝑗𝑑𝑗𝑘𝑣𝑗𝑘 (3)

𝑓3 =
∑

𝑗∈𝐽
𝑟𝑗𝑧𝑗 (4)

𝑓4 =
∑

𝑗∈𝐽
𝑞𝑗𝑇𝑗 (5)

∑

𝑘∈𝐾
𝑣𝑗𝑘 + 𝑧𝑗 = 1 ∀ 𝑗 ∈ 𝐽 (6)

𝑣𝑗𝑘 ≤ 𝑤𝑘 ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 (7)
∑

𝑗∈𝐽
𝑝𝑗𝑣𝑗𝑘 ≤ 𝑄 ∀𝑘 ∈ 𝐾 (8)

𝑆𝑗 ≥ 𝑒𝑗 (1 − 𝑧𝑗 ) ∀ 𝑗 ∈ 𝐽 (9)

𝑆𝑗 ≥ 𝑆𝑖 + 𝑝𝑖 − 𝐿(3 − 𝑥𝑖𝑗 − 𝑣𝑗𝑘 − 𝑣𝑖𝑘) ∀ 𝑖, 𝑗 ∈ 𝐽 , 𝑖 < 𝑗, 𝑘 ∈ 𝐾 (10)

𝑆𝑖 ≥ 𝑆𝑗 + 𝑝𝑗 − 𝐿(2 + 𝑥𝑖𝑗 − 𝑣𝑗𝑘 − 𝑣𝑖𝑘) ∀ 𝑖, 𝑗 ∈ 𝐽 , 𝑖 < 𝑗, 𝑘 ∈ 𝐾 (11)

𝑇𝑗 ≥ 𝑆𝑗 + 𝑝𝑗 − 𝑙𝑗 ∀𝑗 ∈ 𝐽 (12)

𝑇𝑗 ≥ 0 ∀𝑗 ∈ 𝐽 (13)

𝑤𝑘 ∈ {0, 1} ∀ 𝑘 ∈ 𝐾 (14)

𝑧𝑗 ∈ {0, 1} ∀ 𝑗 ∈ 𝐽 (15)

𝑣𝑗𝑘 ∈ {0, 1} ∀ 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 (16)

𝑥𝑖𝑗 ∈ {0, 1} ∀ 𝑖, 𝑗 ∈ 𝐽 , 𝑖 < 𝑗, (17)

where 𝐿 is a large enough positive number and 𝜃1, 𝜃2, 𝜃3, and 𝜃4 are the
weights of the four components in the objective function (1) which aims
at minimizing the weighted sum of four different objectives elaborated
below. Objective (2) represents the total operational costs for opening
vaccination sites. Objective (3) is the total costs related to the traveling
distance of all the vaccination recipients in each group. Objective (4)
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is the total rejection costs of the rejected appointments. Objective (5)
is the total weighted tardiness penalty costs.

Constraints (6) ensure that each appointment is either accepted
and assigned to a vaccination site or rejected. Constraints (7) indicate
that an appointment can only be assigned to an open vaccination site.
Constraints (8) correspond to the working time limit constraints at
each vaccination site, indicating that the total processing time of the
appointments assigned to each site cannot exceed the upper bound 𝑄.
Constraints (9) state that the service start time of appointment 𝑗 is no
early than its earliest start time 𝑒𝑗 . Constraints (10) and (11) are the
processing sequences constraints, indicating that if appointment 𝑗 is
erved after appointment 𝑖 at the same vaccination site, the service start
ime of appointment 𝑗 must be greater than or equal to the completion
ime of appointment 𝑖. In real-world vaccination sites, social distance
olicy is strictly obeyed. The recipients cannot enter the vaccination
one until the former appointed group finishes the vaccination. It is
lso significant to avoid potential cross-infection. Constraints (12) and
13) compute the tardiness of each appointment. If the completion time
ompletes before the due date, no tardiness is incurred. Otherwise, if
he due date is violated, the tardiness will be counted by the difference
etween the service completion time and the due date. Constraints
14)–(17) are the variable domains.

.4. Dominance rules and valid inequalities

We next propose some dominance rules (DR) and valid inequalities
o improve the formulation.
DR 1: Appointment 𝑗 must be rejected if 𝜃2𝑞𝑗𝑑∗𝑗 + 𝜃4 max(𝑒𝑗 + 𝑝𝑗 −

𝑗 , 0) ≥ 𝜃3𝑟𝑗 , where 𝑑∗𝑗 = min𝑘∈𝐾 𝑑𝑗𝑘.

roof. We consider a solution in which appointment 𝑗 satisfying the
bove condition is accepted. We only need to show that the objective
alue increases by removing appointment 𝑗. To this end, let us reject 𝑗,
nd keep other appointments unchanged. The objective function value
ill increase by the weighted rejection cost 𝜃3𝑟𝑗 , and at the same time
ecrease at least 𝜃2𝑞𝑗𝑑∗𝑗 + 𝜃4 max(𝑒𝑗 + 𝑝𝑗 − 𝑙𝑗 , 0), in which the first part
s the weighted distance cost and the second is the lower bound of the
otal tardiness penalty cost. Therefore, if 𝜃2𝑞𝑗𝑑∗𝑗 +𝜃4 max(𝑒𝑗 +𝑝𝑗 − 𝑙𝑗 , 0) ≥
3𝑟𝑗 stands for appointment 𝑗, the total cost will decrease when 𝑗 is
ejected. Therefore, it is beneficial to reject 𝑗. □

DR 2: Appointment 𝑗 dominates 𝑖 if 𝑝𝑗 ≤ 𝑝𝑖, 𝑒𝑗 ≤ 𝑒𝑖, 𝑙𝑗 ≥ 𝑙𝑖, 𝑟𝑗 ≥ 𝑟𝑖,
nd 𝑑𝑗𝑘 ≥ 𝑑𝑖𝑘,∀𝑘 ∈ 𝐾.

roof. This dominance rule indicates that if appointment 𝑗 is rejected,
ppointment 𝑖 will definitely be rejected, i.e., 𝑧𝑗 ≤ 𝑧𝑖 if they satisfy
he above mentioned conditions. To prove the validity of DR 2, we
rove that if appointment 𝑖 is accepted and appointment 𝑗 is rejected
n a solution, we can obtain a better solution if we reject 𝑖 and assign
ppointment 𝑗 to the position of 𝑖. First, we consider the situation in
hich appointment 𝑖 is accepted and assigned to vaccination site 𝑘,
hile appointment 𝑗 is rejected. We assume that the finishing time of

he appointments before appointment 𝑖, in an optimal solution, is 𝑇 −,
hich means that the start time of appointment 𝑖 is 𝑆𝑖 = max(𝑇 −, 𝑒𝑖).
hus, the objective value related to appointment 𝑖, i.e., 𝐹𝑖, can be
resented as:

𝑖 = 𝜃1𝑐𝑘𝑤𝑘 + 𝜃2𝑞𝑖𝑑𝑖𝑘 + 𝜃3𝑟𝑗 + 𝜃4 max(𝑆𝑖 + 𝑝𝑖 − 𝑙𝑖, 0) (18)

Then we consider another situation in which appointment 𝑗 is
accepted and assigned to vaccination site 𝑘, while appointment 𝑖 is
ejected. We schedule appointment 𝑗 to exactly the position of ap-
ointment 𝑖 in the first solution and keep all the other appointments
nchanged. Similarly, we can compute 𝐹𝑗 as:

𝑗 = 𝜃1𝑐𝑘𝑤𝑘 + 𝜃2𝑞𝑗𝑑𝑗𝑘 + 𝜃3𝑟𝑖 + 𝜃4 max(𝑆𝑗 + 𝑝𝑗 − 𝑙𝑗 , 0) (19)
6

d

he difference between 𝐹𝑖 and 𝐹𝑗 as:

𝑗 − 𝐹𝑖 = 𝜃2(𝑞𝑗𝑑𝑗𝑘 − 𝑞𝑖𝑑𝑖𝑘) + 𝜃3(𝑟𝑖 − 𝑟𝑗 )

+ 𝜃4(max(𝑆𝑗 + 𝑝𝑗 − 𝑙𝑗 , 0) − max(𝑆𝑖 + 𝑝𝑖 − 𝑙𝑖, 0)) (20)

As appointment 𝑖 and 𝑗 satisfy the conditions in DR 2 and both the
two appointments share the same 𝑇 −, we can obtain that 𝑆𝑗 ≤ 𝑆𝑖. We
ext prove 𝐹𝑗 − 𝐹𝑖 ≤ 0 with two cases:
Case 1: 𝑆𝑗 + 𝑝𝑗 − 𝑙𝑗 ≤ 0, 𝑆𝑖 + 𝑝𝑖 − 𝑙𝑖 > 0. Then equality (20) can be

ransformed into:

𝑗 − 𝐹𝑖 = 𝜃2(𝑞𝑗𝑑𝑗𝑘 − 𝑞𝑖𝑑𝑖𝑘) + 𝜃3(𝑟𝑖 − 𝑟𝑗 ) − 𝜃4(𝑆𝑖 + 𝑝𝑖 − 𝑙𝑖) < 0 (21)

Case 2: 𝑆𝑗 + 𝑝𝑗 − 𝑙𝑗 > 0, 𝑆𝑖 + 𝑝𝑖 − 𝑙𝑖 > 0. Then equality (20) can be
ransformed into:

𝑗 − 𝐹𝑖 = 𝜃2(𝑞𝑗𝑑𝑗𝑘 − 𝑞𝑖𝑑𝑖𝑘) + 𝜃3(𝑟𝑖 − 𝑟𝑗 )

+ 𝜃4(𝑆𝑗 − 𝑆𝑖 + 𝑝𝑗 − 𝑝𝑖 + 𝑙𝑖 − 𝑙𝑗 ) ≤ 0 (22)

Therefore, we can conclude that dominance rule DR 2 is valid. □

Based on the above two dominance rules, we can add the following
alid inequalities to the model.

𝑗 = 1 ∀𝑗 ∈ 𝐽 , 𝜃2𝑞𝑗 min
𝑘∈𝐾

𝑑𝑗𝑘 + 𝜃4 max(𝑒𝑗 + 𝑝𝑗 − 𝑙𝑗 , 0) ≥ 𝜃3𝑟𝑗

(23)

𝑗 ≤ 𝑧𝑖 ∀𝑖, 𝑗 ∈ 𝐽 , 𝑝𝑗 ≤ 𝑝𝑖, 𝑞𝑗 ≤ 𝑞𝑖, 𝑒𝑗 ≤ 𝑒𝑖, 𝑙𝑗 ≥ 𝑙𝑖, 𝑟𝑗 ≥ 𝑟𝑖, 𝑑𝑗𝑘 ≤ 𝑑𝑖𝑘(𝑘 ∈ 𝐾).

(24)

. Solution methods

The proposed MCVAS problem comprises a facility location problem
nd a multi-provider appointment scheduling problem with rejection.
he facility location problem is proved to be NP-hard (Korupolu et al.,
000). The appointment scheduling problem can also be classified as
P-hard as a similar simplified single machine scheduling problem with

ejection has already been proved to be NP-hard (Zhang et al., 2009).
hat means that our problem is also NP-hard. We propose an exact
lgorithm based on logic-based Benders decomposition (LBBD) to solve
he problem.

.1. Logic-based benders decomposition

The proposed LBBD method decomposes the original MCVAS prob-
em into an MP and a series of SPs. The MP tackles the vaccination site
ocation, the appointment acceptance, and the assignment of accepted
ppointments to the vaccination sites. The SPs, based on the solutions
f the MP, determine the appointment sequencing decisions at each
accination site. The logic-based Benders cuts are generated by solving
he SPs and are incorporated into the MP in the next iteration. This
rocedure is repeated until the optimal solution is obtained or the
ime limit is reached. Next, we present the MP, SP, and Benders cuts,
espectively.

.1.1. Master problem
The MP is a relaxation of the original problem by fixing certain vari-

bles. Among the four objectives, we fix the total weighted tardiness by
efining 𝛹 as the lower bound of the total weighted tardiness of all the
ccepted appointments. Thus, the MP can be formulated as follows:

min 𝜃1𝑓1 + 𝜃2𝑓2 + 𝜃3𝑓3 + 𝜃4𝛹 (25)
.t.

(2)–(4), (6)–(8), (14)–(16), (23), (24), and to

𝐶𝑈𝑇𝑆. (26)

he objective function of MP is the minimization of the former three
bjectives and the lower bound approximation of total weighted tar-

iness. Cuts (26) are added to MP iteratively to improve the value of
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𝛹 . However, the lower bound is considerably weak, leading to lower
computational efficiency. Next, we propose several valid inequalities to
improve the lower bound of total weighted tardiness and computational
efficiency.

4.1.2. Strengthen the MP
We define 𝛷𝑘 as the total weighted tardiness of appointments at

vaccination site 𝑘, i.e., 𝛷𝑘 =
∑

𝑗∈𝐽 𝑣𝑗𝑘𝑞𝑗𝑇𝑗 ,∀𝑘 ∈ 𝐾. Then, we can add
he following inequalities to help the MP obtain a better lower bound.

≥
∑

𝑘∈𝐾
𝛷𝑘 (27)

≥
∑

𝑗∈𝐽
𝑞𝑗𝑇𝑗 (28)

𝑘 ≥
(

min
𝑗∈𝐽

𝑞𝑗

)

(

∑

𝑗∈𝐽
𝑝𝑗𝑣𝑗𝑘 + min

𝑗∈𝐽
(𝑒𝑗 ) − max

𝑗∈𝐽
(𝑙𝑗 )

)

∀𝑘 ∈ 𝐾 (29)

𝑇𝑗 ≥ 𝑒𝑗 + 𝑝𝑗 − 𝑙𝑗 ∀𝑗 ∈ 𝐽 (30)

𝛷𝑘 ≥ 0 ∀𝑘 ∈ 𝐾 (31)

𝑇𝑗 ≥ 0 ∀𝑗 ∈ 𝐽 . (32)

Constraint (27) indicates that the total weighted tardiness is no
less than the sum of weighted tardiness generated at each vaccination
site. Constraint (28) means that the total weighted tardiness is at least
the sum of weighted tardiness of all appointments. Inequalities (29)
indicate that the total weighted tardiness generated at vaccination site
𝑘 is at least the minimum potential weighted tardiness of the last-
served appointment. We assume that the appointment has the minimum
weight min𝑗∈𝐽 𝑞𝑗 , the minimum start time min𝑗∈𝐽 𝑒𝑗 , and the largest
due date max𝑗∈𝐽 𝑙𝑗 . Inequalities (30) ensure that if an appointment 𝑗
is assigned to vaccination site 𝑘, its tardiness is at least the total of its
earliest start time and processing time, and minus its completion due
date. The SP can be formulated and solved as follows upon solving the
MP.

4.1.3. Subproblems
After the MP is solved, the value of variables 𝑤𝑘, 𝑧𝑗 , and 𝑣𝑗𝑘

(𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾), indicating the vaccination site selection, appoint-
ment acceptance, and appointment–vaccination site assignments, are
all fixed. Therefore, the SP is several single machine scheduling prob-
lems dealing with the vaccination sequences of assigned appointments
with time windows to minimize the total weighted tardiness at each
open vaccination site. We define a subset 𝐽𝑘 of the appointments that
are assigned to vaccination site 𝑘, i.e., 𝐽𝑘 = {𝑗|𝑣𝑗𝑘 = 1,∀𝑗 ∈ 𝐽}. We
define a binary sequencing variable 𝑦𝑖𝑗 (𝑖, 𝑗 ∈ 𝐽𝑘) taking value 1 if
vaccine recipients of appointment 𝑗 are vaccinated immediately after
the recipients of appointment 𝑖. Then, the SP for vaccination site 𝑘
(𝑆𝑃𝑘) can be formulated as follows:

𝑆𝑃𝑘 ∶ min
∑

𝑗∈𝐽𝑘

𝑞𝑗𝑇𝑗 (33)

s.t.

𝑦𝑖𝑗 + 𝑦𝑗𝑖 ≤ 1 ∀𝑖, 𝑗 ∈ 𝐽𝑘 (34)

𝑆𝑗 ≥ 𝑆𝑖 + 𝑝𝑖 − 𝐿(1 − 𝑦𝑖𝑗 ) ∀𝑖, 𝑗 ∈ 𝐽𝑘 (35)

𝑆𝑗 ≥ 𝑒𝑗 (1 − 𝑧𝑗 ) ∀𝑗 ∈ 𝐽𝑘 (36)

𝑇𝑗 ≥ 𝑆𝑗 + 𝑝𝑗 − 𝑙𝑗 ∀𝑗 ∈ 𝐽𝑘 (37)

𝑇𝑗 ≥ 0 ∀𝑗 ∈ 𝐽𝑘 (38)

𝑦𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝐽𝑘. (39)

The objective (33) minimizes the total weighted tardiness of all
the accepted appointments that are assigned to the vaccination site 𝑘.
Constraints (34) avoid an appointment 𝑗 being the predecessor and suc-
cessor of another one simultaneously. Constraints (35) and (36) are the
vaccination completion time constraints for two adjacent appointments,
7

c

indicating that the start time of an appointment can neither be early
than the completion time of its predecessor nor be early than its own
earliest start time. Constraints (37) compute tardiness of each assigned
appointments.

The single machine scheduling problem with release time and due
date to minimize total weighted tardiness is denoted as 1|𝑒𝑗 |

∑

𝑞𝑗𝑇𝑗
according to the standard three-field notation method by Graham et al.
(1979). The 1|𝑒𝑗 |

∑

𝑞𝑗𝑇𝑗 problem is NP-hard (Pinedo and Rammouz,
1988) and has been investigated by many researchers using different
approaches (França et al., 2001; Cheng et al., 2005; Cordone and
Hosteins, 2019). Among the exact algorithms for the 1|𝑒𝑗 |

∑

𝑞𝑗𝑇𝑗 prob-
lem, the dynamic programming (DP) method proposed by Tanaka and
Fujikuma (2012) is proved to be efficient. The DP algorithm has been
successfully applied in other problems in Tanaka and Sato (2013),
Tanaka and Araki (2013), and Şen and Bülbül (2015). We apply the
DP to optimally solve the 𝑆𝑃𝑘, which is exactly a 1|𝑒𝑗 |

∑

𝑞𝑗𝑇𝑗 problem.
Once a solution to the SP is obtained, Benders cuts are generated.

4.1.4. Benders cuts
After the 𝑆𝑃𝑘 is solved, the value of the total tardiness generated at

each opened vaccination site 𝑘 ∈ 𝐾 is fixed, denoted by 𝛷∗
𝑘. We propose

a generic Benders optimality cut, which is shown as follows:

𝛷𝑘 ≥ 𝛷∗
𝑘

(

∑

𝑗∈𝐽𝑘

𝑣𝑗𝑘 − |𝐽𝑘| + 1

)

∀𝑘 ∈ 𝐾. (40)

Cuts (40) indicate that in subsequent iterations, if the same set of
appointments 𝐽𝑘, probably among other appointments, are assigned to
vaccination site 𝑘, the total tardiness at vaccination site 𝑘 is at least 𝛷∗

𝑘.
Note that if any appointment 𝑗′ in set 𝐽𝑘 changes, i.e., ∃𝑗′ ∈ 𝐽𝑘, 𝑣𝑗′𝑘 = 0,
in the following iterations, the cuts (40) become non-binding. The cuts
(40) are dynamically generated and added to the MP to drive the MP
and SP converges to optimality. The process terminates if the optimal
solution is captured or the time limit is reached.

Theorem 1. Optimality cut (40) is valid.

Proof. Let the set 𝐽𝑘 contains all the appointments assigned to vac-
ination site 𝑘, i.e., 𝐽𝑘 = {𝑗|𝑣𝑗𝑘 = 1,∀𝑗 ∈ 𝐽}. Let set 𝐽ℎ

𝑘 be the set
containing all the appointments that are assigned to vaccination site 𝑘
in the subsequent iteration ℎ. Thus, we consider two cases.

Case 1: 𝐽ℎ
𝑘 ∩𝐽𝑘 = 𝐽𝑘. This case means that in subsequent iteration

ℎ, all the appointments in set 𝐽𝑘 are assigned to vaccination site 𝑘,
i.e., ∑

𝑗∈𝐽𝑘 𝑣𝑗𝑘 = |𝐽𝑘|. By adding this into cut (40) we can obtain
𝑘 ≥ 𝛷∗

𝑘, which indicates that the cut is valid.
Case 2: 𝐽ℎ

𝑘 ∩ 𝐽𝑘 ≠ 𝐽𝑘. This case means that at least one appoint-
ent 𝑗∗ ∈ 𝐽𝑘 is removed in the set 𝐽ℎ

𝑘 , i.e., 𝑣𝑗∗𝑘 = 0. Therefore we
an obtain ∑

𝑗∈𝐽𝑘 𝑣𝑗𝑘 < |𝐽𝑘|. Thus the right side of cut (40) becomes
on-positive and we can obtain 𝛷𝑘 ≥ 0 based on constraint (31). This
ndicate that the cut (40) will not remove new feasible solutions in the
ubsequent iterations.

To conclude, the cut will limit the total tardiness 𝛷𝑘 to at least 𝛷∗
𝑘

hen the same set of appointments as 𝐽𝑘 are assigned to vaccination
ite 𝑘 in the subsequent iterations and will not remove new feasible
olutions. Thus the cut (40) is valid. The cut (40) is similar with some
xisting papers e.g., scheduling problem by Zhang et al. (2021) and
AS problem by Naderi and Roshanaei (2020).

.1.5. Outline of the LBBD method
The LBBD method first formulates the MP by relaxing the binary

equencing variables 𝑥𝑖𝑗 . Then the MP is solved by a branch-&-cut
B&C) method using a single search tree with the implementation of
ranch and check. At each node where a feasible solution to the MP
s identified, the corresponding SP is solved with given appointment
ssignments. The solution to the SP is then used to generate Benders

uts, which are added to the MP. The MP branching process continues
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with added Benders cuts. This procedure is repeated until an optimal
solution is obtained or a time limit is reached. The outline of the LBBD
method is shown in Algorithm 1.

Algorithm 1 LBBD method for the MCVAS problem
1. Formulate the MP presented in Section 4.1.1
2. Strengthen the MP using inequalities introduced in Section 4.1.2
3. Solve MP with the B&C procedure in a single search tree, during
the branching process:
4. If an integer solution to MP is obtained, do
5. Get the value 𝑣𝑗𝑘 and the set 𝐽𝑘 of appointments assigned to 𝑘
6. Solve the 𝑆𝑃𝑘 for each 𝐽𝑘 using the DP introduced in
Section 4.1.3
7. Generate Benders cuts (40)
8. Add the cuts (40) to the MP, and go to Step 3
9. End if
10. Output the best obtained solution

4.2. A matheuristic with predetermined sequences

This subsection proposes a matheuristic (MH) based on predeter-
mined appointment sequences for the studied MCVAS problem. The
basic idea of a matheuristic is to combine mathematical programming
models with heuristic methods (Maniezzo et al., 2010). This kind of
hybridization enables a matheuristic to obtain near-optimal solutions
efficiently by capturing the property and characteristics of a prob-
lem, which is essential in solving large-scale optimization problems.
Matheuristics have been successfully applied for solving complex com-
binatorial optimization problems, including flow-shop scheduling (Ta
et al., 2015), knapsack problem (Lahyani et al., 2019), vehicle rout-
ing problem (Wang et al., 2017), and parallel machine scheduling
problem (Fanjul-Peyro et al., 2017; Dang et al., 2020).

For the studied MCVAS, we observe that the main difficulty of the
model comes from the scheduling part, i.e., sequencing appointments at
each vaccination site. This corresponds to solving a series of strongly
NP-hard 1|𝑒𝑗 |

∑

𝑞𝑗𝑇𝑗 problems. To reduce the complexity of the MC-
AS problem yet retain most information (constraints), we develop a
atheuristic MH for the MCVAS problem. The MH first sequence all

ppointments at each vaccination site using some priority rules. Then
n approximate MILP model is solved with predetermined appointment
ervice sequences. We have performed preliminary experiments to
elect the best sequencing rules. The tested rules include sequencing
he appointments using the earliest start time first rule, earliest due
ate first rule, longest processing time first rule, minimum (𝑙𝑗 − 𝑒𝑗 − 𝑝𝑗)
irst rule, and minimum (𝑙𝑗 + 𝑒𝑗) rule. Preliminary results show that
equencing appointments using the small value of (𝑙𝑗+𝑒𝑗) first rule leads

to a better solution. Thus we use this rule to sort all appointments.
We define a set 𝐴 of appointments, which contains all appointments

in 𝐽 while the appointments in it are sorted in non-decreasing order
of (𝑙𝑗 + 𝑒𝑗). Let 𝑆′

𝑗𝑘 be the service start time of appointment 𝑗 ∈
𝐴 at vaccination site 𝑘. The approximate MILP model (AP) can be
formulated as follows:

min 𝜃1𝑓1 + 𝜃2𝑓2 + 𝜃3𝑓3 + 𝜃4𝑓4 (41)
s.t.

(2)–(8), (12)–(16), (23), (24), and to

𝑆𝑗 ≥ 𝑆′
𝑗𝑘 − 𝐿(1 − 𝑣𝑗𝑘) ∀ 𝑗 ∈ 𝐴, 𝑘 ∈ 𝐾 (42)

𝑆′
𝑗𝑘 ≥ 𝑒𝑗𝑣𝑗𝑘 ∀ 𝑗 ∈ 𝐴, 𝑘 ∈ 𝐾 (43)

𝑆′
𝑗𝑘 ≥ 𝑆′

𝑗−1,𝑘 + 𝑝𝑗−1𝑣𝑗−1,𝑘 ∀ 𝑗 ∈ 𝐴, 𝑘 ∈ 𝐾. (44)

onstraints (42) indicate that the start time of appointment 𝑗 is at least
he start time at vaccination site 𝑘 if it is assigned to it. Constraints
43) make sure that the start time of appointment 𝑗 at vaccination
ite 𝑘 is no early than the earliest start time 𝑒𝑗 if the appointment is
ccepted and assigned to vaccination site 𝑘. Constraints (44) provide
8

he sequencing rule of two successive appointments by the predefined
equences. Specifically, the start time of appointment 𝑗 at vaccination
ite 𝑘 is greater than or equal to the sum of the start time and processing
ime of its predetermined predecessor 𝑗 − 1, if 𝑗 − 1 is assigned to the
ame vaccination site. If appointment 𝑗 − 1 is not assigned, the start
ime of 𝑗 on vaccination site 𝑘 is the start time of 𝑗−1. That means that

the recipients of an appointment have to wait to complete the former
appointment before entering the vaccination zone and starting to be
vaccinated. By defining constraints (44), we can omit the sequencing
variable 𝑥𝑖𝑗 and the corresponding constraints in the LO model.

MH solves the above model to obtain near-optimal solutions to the
original MCVAS problem. These solutions are then improved by solving
a series of 1|𝑒𝑗 |

∑

𝑞𝑗𝑇𝑗 problems, one for each vaccination site, using
he DP of Tanaka and Fujikuma (2012). The detailed steps of the MH
s presented in Algorithm 2.

Algorithm 2 MH method for the MCVAS problem
1. Define a set 𝐴 of appointments, where 𝐴 = 𝐽
2. Sort the appointments in 𝐴 in non-decreasing order of (𝑙𝑗 + 𝑒𝑗 )
3. Formulate the approximate model AP with the set 𝐴
4. Solve the model AP using an off-the-shelf solver
5. Get the value of 𝑤𝑘, 𝑣𝑗𝑘, 𝑧𝑗 , and 𝐽𝑘 = {𝑗|𝑤𝑘 = 1, 𝑣𝑗𝑘 = 1}
6. For each 𝐽𝑘 ≠ ∅, do
7. Solve 1|𝑒𝑗 |

∑

𝑞𝑗𝑇𝑗 problem
8. Get the value of 𝑇𝑗
9. End for
10. Output the best obtained solution

5. Computational study

In this section, we conduct numerical experiments to evaluate the
performances of the proposed model, the exact LBBD method, and
the matheuristic MH. We next detail the data generation schemes in
Section 5.1. We then report the computational results on small- to large-
sized instances with up to 100 appointments and 20 vaccination sites
in Sections 5.2–5.4. We further test practical-sized instances with up to
500 appointments and 50 vaccination sites in Section 5.5. Finally, we
perform sensitivity analysis on different cost components and provide
some insights.

All the models and algorithms are coded in C++ linked with CPLEX
12.10. For each run, the optimization process terminates when the
optimal solution is obtained, i.e., the upper bound equals the lower
bound, or the time limit is reached, which is set to be 3600 s in this
paper. All experiments were run on a computer with an Intel Xeon CPU
E5-2690 v3 at 2.60 GHz with 32 GB RAM.

5.1. Data generation

We generate 56 instances with up to 500 appointments and 50
vaccination sites. Each group may involve tens of even hundreds of
individual recipients. Therefore, in our problem, 500 appointments may
include tens of thousands of recipients. The 56 instances are divided
into two groups. The first group contains 40 instances with up to
100 appointments and 20 vaccination sites, i.e., 𝑛 = {10, 20,… , 100}
nd 𝑙 = {5, 10, 15, 20}. The second group contains practical-sized in-
tances with up to 500 appointments and 50 vaccination sites, i.e., 𝑛 =
{200, 300, 400, 500} and 𝑙 = {20, 30, 40, 50}. For each combination of the
number of 𝑛 and 𝑙, we generate one instance, totaling 56 instances. The
parameters are generated as follows. The coordinates of the vaccination
site and the vaccine recipients are randomly generated in a 200 × 200
plane, with the unit of 100 m. The travel distance 𝑑𝑗𝑘 from recipient
𝑗 to vaccination site 𝑘 is calculated using the euclidean distance 𝑑𝑗𝑘 =
⌊√

(𝑋𝑗 −𝑋𝑘)2 + (𝑌𝑗 − 𝑌𝑘)2
⌋

. The service duration 𝑝𝑗 of appointment 𝑗
is randomly generated from the set 𝑝𝑗 = {30, 40,… , 120}. The fixed
cost 𝑐𝑘 for opening a vaccination site is randomly generated from 𝑐𝑘 =
{400, 410,… , 600}. The maximum working time of vaccination sites is
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Table 1
Computational results for small-sized instances.

Instances Gap (%) Time (s)

No. n l LO MH LBBD LO MH LBBD

1

10

5 0.00 0.00 0.00 0.16 0.06 0.06
2 10 0.00 2.01 0.00 0.17 0.05 0.25
3 15 0.00 0.00 0.00 0.16 0.08 0.09
4 20 0.00 0.00 0.00 0.34 0.14 0.14

5

20

5 0.00 2.41 0.00 1.62 0.23 0.25
6 10 0.00 1.33 0.00 1.36 0.12 0.22
7 15 0.00 0.00 0.00 0.30 0.11 0.09
8 20 0.00 0.00 0.00 2.85 0.22 0.53

9

30

5 0.00 0.00 0.00 35.18 0.72 0.56
10 10 0.00 0.00 0.00 2.93 0.31 0.23
11 15 0.00 0.00 0.00 710.80 12.18 17.27
12 20 1.84 0.00 0.00 3600.08 10.26 40.95

13

40

5 0.00 0.01 0.00 211.71 1.75 3.17
14 10 0.55 0.37 0.00 3600.07 50.40 20.40
15 15 0.00 0.37 0.00 354.81 13.10 4.43
16 20 0.54 0.38 0.00 3600.14 26.10 9.94

Average (opt) 0.18 (13) 0.43 (9) 0.00 (16) 757.67 7.24 6.16
set to 𝑄 = 600, with a unit of minutes. We define two parameters 𝑐𝑒𝑛𝑡𝑒𝑟𝑗
nd 𝑤𝑖𝑑𝑡ℎ𝑗 for each appointment 𝑗, the time window (𝑒𝑗 , 𝑙𝑗 ) is generated

as follows:

𝑐𝑒𝑛𝑡𝑒𝑟𝑗 randomly generated [0, 𝑄 − 𝑝𝑗 ]

𝑤𝑖𝑑𝑡ℎ𝑗 randomly generated 𝑄 ∗ [1∕8, 1∕4]

𝑒𝑗 𝑚𝑎𝑥 (𝑐𝑒𝑛𝑡𝑒𝑟𝑗 −𝑤𝑖𝑑𝑡ℎ𝑗∕2, 0)

𝑙𝑗 𝑚𝑖𝑛 (𝑐𝑒𝑛𝑡𝑒𝑟𝑗 +𝑤𝑖𝑑𝑡ℎ𝑗∕2 + 𝑝𝑗 , 𝑄).

Each appointment 𝑗 is associated with a specific weight 𝑞𝑗 which
is dependent on its service duration. The weight 𝑞𝑗 for appointment

is set using formula (45). The rejection cost 𝑟𝑗 is set to 𝑟𝑗 = 100 ∗
𝑞𝑗 + 100,∀𝑗 ∈ 𝐽 . Without loss of generality, we set the weights of the
objectives 𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 = 1.

𝑞𝑗 =

⎧

⎪

⎨

⎪

⎩

1, 30 ≤ 𝑝𝑗 ≤ 50,

2, 51 ≤ 𝑝𝑗 ≤ 80,

3, 81 ≤ 𝑝𝑗 ≤ 120.

∀𝑗 ∈ 𝐽 (45)

5.2. Computational results for small-sized instances

To better analyze the results, we divide the first group of in-
stances into three subsets according to instance sizes: (i) small-sized
instances with 𝑛 = {10, 20, 30, 40}; (ii) medium-sized instances with
𝑛 = {50, 60, 70}; and (iii) large-sized instances with 𝑛 = {80, 90, 100}.
We first show the results of the small-sized instances in Table 1. The
first three columns show the serial number of the instance, the number
of appointments, and the number of vaccination sites, respectively. The
bracket (𝑜𝑝𝑡) in the last row indicates the number of optimally solved
instances. The relative optimality gaps and computation times obtained
by the model and solution methods are then reported for each method.
The 𝐺𝑎𝑝(%) is calculated as follows:

𝐺𝑎𝑝 (%) = 𝑈𝐵 − 𝐿𝐵
𝑈𝐵

× 100 (46)

where UB and LB are the upper and lower bounds, respectively. Since
MH cannot provide lower bounds, it uses the best lower bounds of
LO and LBBD to calculate its average gap with the upper bounds it
obtained.

From Table 1, we can find that all the models and solution methods
perform well for small-sized instances. Among them, LBBD optimally
solves all 16 small-sized instances, better than LO and MH. LO obtains
13 optimal solutions and obtains an average gap of 0.18%. MH is
comparatively inferior as it solves only nine instances to optimality,
and the average gap of MH is 0.43%. In terms of computational
9

efficiency, MH is competitive with LBBD. They solve each small-sized
instance in at most 50.4 s, and the average computation time is less
than eight seconds. LO is much slower than LBBD and MH, with an
average computation time of 757.67 s. It can be observed in Table 1
that the average computation time increases when the instances get
larger, which generally applies for all three methods. For example,
the average computation time of LO is 0.21s for instances with ten
appointments. At the same time, it increases to 1087.25 s when the
number of appointments is 30 and further increases to 1941.68 s for
instances with 40 appointments. When the number of appointments is
ten, the average computation time of both MH and LBBD is shorter
than 0.2 s, but they increase to an average of 22.84 and 9.48 s for the
40-appointment instances, respectively. In summary, LBBD outperforms
LO and MH as it obtains more optimal solutions in a shorter time.
MH is inferior to LO in solution quality but performs better than it in
computational efficiency.

5.3. Computational results for medium-sized instances

Table 2 shows the computational results for medium-sized instances.
LBBD solves eight of the 12 medium-sized instances optimally. While
LO only obtains one optimal solution, none is solved optimally by MH.
The average gap of MH is 0.84%, being second to that of LBBD (0.42%),
and is better than that of LO (2.03%). The average computation time
of MH is 523.72 s, which is a significant advantage over both LBBD
and LO. That indicates that MH is good at finding high-efficiency near-
optimal solutions, even though its performance in obtaining optimal
solutions is not as good as LBBD. The average computation time of
LBBD and LO are 1786.38 and 3436.48 s, respectively.

5.4. Computational results for large-sized instances

The computational results for large-sized instances are reported
in Table 3. The table shows that the large-sized instances are more
difficult to solve for all the model and solution methods. MH and
LBBD are competitive in solution quality and computational efficiency.
MH obtains an average gap of 2.09% and an average computation
time of 2567.25 s, while LBBD is 2.37% and 2561.98 s, respectively.
However, LBBD solves more instances to optimality than MH (4 VS 1).
LO solves no instance optimally, and both the average gap (3.26%) and
the average computation time (3600.28) are inferior to the other two
approaches.
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Table 2
Computational results for medium-sized instances.

Instances Gap (%) Time (s)

No. n l LO MH LBBD LO MH LBBD

17

50

5 1.66 0.68 0.00 3600.05 40.23 2363.46
18 10 2.49 0.13 0.00 3600.10 116.75 787.68
19 15 3.19 0.67 0.62 3600.13 876.27 3600.10
20 20 1.64 0.04 0.00 3600.16 63.37 666.44

21

60

5 1.32 1.54 1.28 3600.07 48.61 3600.05
22 10 0.46 0.71 0.00 3600.10 28.24 2095.51
23 15 5.60 1.69 1.82 3600.14 3600.05 3600.07
24 20 2.89 0.14 0.00 3600.18 950.11 560.84

25

70

5 1.56 0.93 1.27 3600.10 53.13 3600.05
26 10 0.87 0.49 0.00 3600.14 276.57 311.57
27 15 2.71 2.09 0.00 3600.16 187.51 236.95
28 20 0.00 0.95 0.00 1636.40 43.77 13.85

Average (opt) 2.01 (1) 0.84 (0) 0.42 (8) 3436.48 523.72 1786.38
Table 3
Computational results for large-sized instances.

Instances Gap (%) Time (s)

No. n l LO MH LBBD LO MH LBBD

29

80

5 0.18 0.15 0.00 3600.11 9.69 141.37
30 10 5.33 4.52 4.65 3600.13 3600.04 3600.04
31 15 3.67 1.67 2.52 3600.25 3600.21 3600.10
32 20 3.00 0.42 0.66 3600.38 3600.13 3600.10

33

90

5 0.29 0.02 0.00 3600.11 11.34 127.81
34 10 3.51 2.29 1.98 3600.25 3600.04 3600.05
35 15 8.62 6.73 8.17 3600.30 3600.05 3600.08
36 20 5.10 4.58 3.79 3600.35 3600.05 3600.19

37

100

5 0.14 0.00 0.00 3600.11 23.88 45.01
38 10 2.30 2.30 2.48 3600.35 3600.10 3600.11
39 15 0.88 0.01 0.00 3600.39 1961.31 1628.84
40 20 6.07 2.40 4.23 3600.58 3600.10 3600.08

Average (opt) 3.26 (0) 2.09 (1) 2.37 (4) 3600.28 2567.25 2561.98
o
s
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5.5. Computational results for practical-sized instances

In this subsection, We further explore the performances of LO, MH,
and LBBD on the practical-sized instances with up to 500 appointments
and 50 vaccination sites. The results are shown in Table 4. The symbol
‘‘–’’ indicates that the approach obtains no feasible solution. From the
table, we can find that LO fails to solve six of the eight instances with
400 and 500 appointments, while MH and LBBD can provide feasible
solutions for all the practical-sized instances. None of the instances is
optimally solved by all three approaches. However, MH outperforms
LBBD and LO, with the lowest average gap of 5.77%. The average
gap of LBBD is 9.83%. Both LBBD and MH have obvious advantages
compared with LO. Generally, the performance of LO decreases when
the instances become large. For example, the average gap of LO is
22.68% for instances with 200 appointments, but it turns to be 45.54%
when the instances have 300 appointments. LO does not solve half of
the 400-appointment instances and all the 500-appointment instances.
For both MH and LBBD, the increase of the number of vaccination sites
makes gaps grow simultaneously. For instances with 400 appointments,
the gap of MH grows from 0.80% to 16.62% when the number of
vaccinations increases from 20 to 50. At the same time, the gap of
LBBD grows from 1.04% to 18.77%. To conclude, the MH has a
better performance than LO and LBBD for practical-sized instances with
hundreds of appointments and dozens of vaccination sites.

In summary, we obtain the following observations through analyz-
ing the numerical results.

1. The MCVAS problem investigated in this paper is complicated
as the LO formulation fails to provide satisfactory solutions efficiently.
Though it obtains 13 out of 16 optimal solutions for small-sized in-
stances, the average computational time is about 100 times longer than
that by MH and LBBD.
10

a

2. The LBBD algorithm performs best on the instances in the first
group with up to 100 appointments. In the 40 instances, LBBD obtains
28 optimal solutions, far more than that obtained by MH and LO (10
and 14, respectively). LBBD is also time-saving compared with LO.

3. The MH applies a simple but effective heuristic idea, which shows
some advantages in solving large-sized instances. The MH first solves a
series of 1|𝑒𝑗 |

∑

𝑞𝑗𝑇𝑗 problems to obtain the predetermined sequences
f appointments at each site. Then a simplified approximated model is
olved to provide near-optimal solutions. The computational results on
arge- and practical-sized instances show that it outperforms LO and
BBD in both average optimality gap and computation time.

.6. Sensitivity analysis

In this subsection, we make some sensitivity analyses to compare the
ffects of each cost component in our problem. For each experiment,
e choose one cost component and change its weight to {0, 2, 3, 5},

espectively, while fixing the other three weights by one. 𝜃𝑖 = 0 (𝑖 =
, 2, 3, 4) means that the specific cost component is not considered in the
bjective function. We select seven instances in the small- and medium-
ized subsets with appointments 𝑛 = {10, 20,… , 70} and with five
accination sites. The first five columns are the weight value, the ob-
ective function value (Obj), the LB, the average gap, and computation
ime, respectively. To better observe the effects, we output the value
f the total fixed location cost, the total weighted distance cost, the
otal rejection cost, and the total weighted tardiness of each solution,
nd denote them as FLC, DC, RC, and TC in the tables, respectively.
e also count the number of accepted appointments, the number of

elected vaccination sites, and the number of optimal solutions and
enote them as AA, SVS, and OPT. The solutions are obtained by LBBD

nd compared with the original solution where all the weights are equal
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Table 4
Computational results for practical-sized instances.

Instances Gap (%) Time (s)

No. n l LO MH LBBD LO MH LBBD

1

200

20 13.40 4.24 4.77 3601.77 3600.30 3600.21
2 30 30.49 6.41 13.13 3602.78 3600.53 3600.36
3 40 14.71 7.65 11.94 3603.73 3600.39 3600.47
4 50 32.11 8.68 21.90 3605.62 3600.32 3600.44

5

300

20 48.01 3.26 4.31 3603.40 3600.36 3600.30
6 30 16.03 4.07 3.86 3606.17 3600.53 3600.43
7 40 30.62 9.03 19.07 3606.45 3600.86 3608.41
8 50 87.50 9.12 19.48 3610.97 3600.75 3600.32

9

400

20 – 0.80 1.04 – 3600.50 3600.22
10 30 45.37 2.83 4.96 3611.31 3600.92 3601.36
11 40 – 5.95 10.15 – 3601.06 3600.60
12 50 89.29 16.62 18.77 3615.42 3601.11 3601.95

13

500

20 – 1.01 1.59 – 3600.88 3607.73
14 30 – 2.28 4.15 – 3600.99 3600.38
15 40 – 5.10 7.61 – 3601.36 3617.77
16 50 – 5.21 10.50 – 3601.50 3605.73

Average – 5.77 9.83 – 3600.77 3602.92
Table 5
Effects of fixed location cost.
𝜃1 Obj LB Gap (%) Time (s) FLC DC RC TC AA SVS OPT

0 5866.86 5823.78 0.43 2057.22 2388.57 2656.86 3142.86 67.14 31.57 4.86 3.00
1 7972.00 7924.67 0.36 1366.80 1947.14 2649.14 3342.86 32.86 31.00 4.00 5.00
2 9829.86 9768.53 0.40 1543.97 1641.43 2324.14 4128.57 94.29 28.86 3.43 4.00
3 11311.43 11271.56 0.23 1326.74 1315.71 1820.00 5485.71 58.57 24.71 2.86 6.00
5 12629.86 12629.86 0.00 2.92 117.14 215.57 11828.57 0.00 3.71 0.29 7.00
a
s
t
s
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to one. Note that the values in each table are the average of the seven
instances solutions.

5.6.1. Fixed location cost
From Table 5, we can conclude that with the increase of 𝜃1, the cost

aid on opening new vaccination sites gets much higher. The average
umber of vaccination sites decreases from 4.86 to 0.29 when the
alue of 𝜃1 increases from 0 to 5. At the same time, the number of
ccepted appointments decreases from 31.57 to 3.71. We see that most
ppointments are rejected when the value of 𝜃1 is large. In extreme
ituations with high fixed location costs, rejecting appointments seems
ore cost-saving than accepting them. Accepting means more fixed

ocation costs, distance costs, and potentially tardiness costs. From this
erspective, the problem becomes easier to solve as we find that the
PT increases from three to seven, and the average gap decreases from
.43% to 0. The result shows that the fixed location cost is an essential
actor in the vaccination appointment scheduling problem.

.6.2. Distance cost
Table 6 shows the computational results when weight 𝜃2 increases

from zero to five. A similar trend as it is in Table 5 can be observed.
However, we can find that when distance cost is not considered, more
vaccination sites are opened, and more recipients are accepted, result-
ing in lower rejection costs and tardiness costs. Meanwhile, the distance
cost is so high that it is nearly three times when 𝜃2 = 1. This means that
some recipients might be assigned to vaccination sites that are very
far away from them, which may cause dissatisfaction. When 𝜃2 = 5,
only a tiny portion of the appointments are accepted. High distance
costs indicate the difficulty of traveling during the pandemic. In that
case, the mass COVID-19 vaccination program will have a high risk of
failure. This suggests that the program should be initiated with good
transportation accessibility, and vaccination sites should be established
at places that are not very geographically far from the appointments.

5.6.3. Rejection cost
The weight 𝜃3 is special compared with the former two. It is simply

to understand that all appointments will be rejected if rejection cost is
11

t

not considered in the objective function. Thus, when 𝜃3 = 0, we add
𝑧𝑗 = 0,∀𝑗 ∈ 𝐽 to the model and remove the DR 1 and the working
time limit of vaccination sites to make sure that no appointment is
rejected. The computational results reported in Table 7 show that the
other three cost components are substantial. For example, the total
tardiness penalty cost is 6118.57 when 𝜃3 = 0 but it decreases to
32.86 when 𝜃3 = 1 and appointment rejection is allowed. When the
weight 𝜃3 of rejection cost gets higher, it becomes harder to reject any
appointments. This might reflect the reality that the governments are
desperate to complete the vaccination for all the citizens to accelerate
the recovery of the regional economy. However, the increase in the
rejection cost makes the problem much harder to solve. Table 7 shows
that when 𝜃3 increases from one to two, the computation time sharply
increases from 1366.80 s to 2057.28 s, and the average gap increases
from 0.36 to around 0.70%. For the four cost components, the total
rejection costs decrease while the other components increase because
more appointments are accepted, and more vaccination sites are open.

5.6.4. Tardiness cost
The last cost component is the total weighted tardiness, indicat-

ing the timeliness of the vaccination appointment scheduling. From
Table 8, we can find that when 𝜃4 = 0, the problem becomes much
easier to solve as all the seven instances are solved to optimality within
one second. The reason might be that when 𝜃4 = 0, the problem
is simplified to a location–allocation problem with rejection, whose
computational complexity is much lower than our MCVAS problem.
When 𝜃4 increases from one to five, the tardiness penalty cost decreases,
nd the average gap slightly increases. In general, the solutions are
table when tardiness penalty cost is considered, which means that
he factor of tardiness has already been well considered in the original
olution.

. Case study

In this section, we conduct a case study based on the data from

he mass COVID-19 vaccination program in Yiwu, a city in Zhejiang
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Table 6
Effects of distance cost.
𝜃2 Obj LB Gap (%) Time (s) FLC DC RC TC AA SVS OPT

0 4708.57 4685.72 0.30 1087.02 1985.71 7065.14 2714.29 8.57 33.00 4.14 5.00
1 7972.00 7924.67 0.36 1366.80 1947.14 2649.14 3342.86 32.86 31.00 4.00 5.00
2 10130.57 10130.57 0.00 73.92 1742.86 1756.71 4842.86 31.43 26.14 3.57 7.00
3 11429.29 11429.29 0.00 0.71 1218.57 846.43 7642.86 28.57 16.57 2.57 7.00
5 12432.86 12432.86 0.00 0.12 608.57 175.43 10928.57 18.57 5.71 1.14 7.00
Table 7
Effects of rejection cost.
𝜃3 Obj LB Gap (%) Time (s) FLC DC RC TC AA SVS OPT

0 12608.00 6796.42 25.85 2058.23 2030.00 4459.43 0.00 6118.57 40.00 4.14 3.00
1 7972.00 7924.67 0.36 1366.80 1947.14 2649.14 3342.86 32.86 31.00 4.00 5.00
2 10909.43 10784.38 0.70 2057.28 2030.00 3162.29 2814.29 88.57 32.86 4.14 3.00
3 13735.29 13528.40 0.96 2057.30 2030.00 3263.86 2742.86 212.86 33.00 4.14 3.00
5 19153.29 18967.50 0.59 2057.30 2030.00 3367.57 2728.57 112.86 33.00 4.14 3.00
Table 8
Effects of tardiness cost.
𝜃4 Obj LB Gap (%) Time (s) FLC DC RC TC AA SVS OPT

0 7687.86 7687.86 0.00 0.29 1947.14 2483.57 3257.14 934.29 31.14 4.00 7.00
1 7972.00 7924.67 0.36 1366.80 1947.14 2649.14 3342.86 32.86 31.00 4.00 5.00
2 8018.14 7924.33 0.72 1211.24 1947.14 2653.86 3371.43 22.86 30.86 4.00 5.00
3 8025.71 7932.80 0.72 1313.60 1947.14 2648.57 3357.14 24.29 30.86 4.00 5.00
5 8061.14 7934.20 0.97 1370.28 1947.14 2749.71 3314.29 10.00 30.86 4.00 5.00
Table 9
Basic information of vaccination sites.

No. Longitude Latitude 𝑐𝑘 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑄

1 120.1309 29.359996 500

3000 600
2 120.0598 29.323416 390
3 120.083114 29.317479 320
4 120.089429 29.292797 310
5 120.176447 29.337946 420

Province, China. Yiwu is making full efforts to improve the vaccination
rate as quickly as possible. Many temporary vaccination sites have been
built, and communities and companies can make appointments. We
focus on five of the 14 subdistricts and choose 63 main communities
to form the case. Note that the basic data is mainly found on the
government website of Yiwu (Yiwu Municipal People’s Government,
2021), and we further generated some necessary parameters based on
real situations to make the case applicable to our study.

6.1. Data source

The locations of the vaccination sites and communities are visu-
alized in Fig. 2. Tables 9 and 10 report the longitude and latitude
of the vaccination sites and communities, along with some necessary
parameters. All the vaccination sites are well-equipped with all the
required facilities and equipment for the COVID-19 vaccination im-
plementation and are operated by medical workers and volunteers.
Therefore, the fixed opening cost 𝑐𝑘 of each vaccination site 𝑘 is set 𝑐𝑘 ∈
{300, 310,… , 500} (×102 RMB). The processing time of appointment 𝑗
is computed using the number of recipients divided by the number of
recipients that can be vaccinated per minute. With multiple vaccination
stations launched in each vaccination site, the capacity of each site is
about 3000 recipients per day, which means that they can vaccinate
five recipients per minute on average. The number of recipients in each
appointment, denoted as 𝑁𝑟𝑒𝑝, ranges from the interval [100, 500], thus
𝑝𝑗 = 𝑁𝑟𝑒𝑝∕5 and 𝑞𝑗 = 𝑁𝑟𝑒𝑝∕100, both rounding to the nearest integer.
Based on Basciftci et al. (2021) and Guo et al. (2021), the rejection cost
is set to be 6 (×102 CNY) per recipient, i.e., 𝑟 = 30 ∗ 𝑝 .
12

𝑗 𝑗
6.2. Results

LBBD solves the case with a time limit of 3600 s, and the result is
illustrated in Fig. 3. The figure shows that 62 out of 63 appointments
are accepted and assigned to the vaccination sites. Only appointment
No. 62 is rejected due to the working time capacity and will be arranged
to another working day, incurring a rejection cost of 1980. The result
shows a balance between cost-saving and time accuracy. Based on the
schedule in Fig. 3, we can inform the recipients of specific information,
including the assigned vaccination site and the due arrival time.

7. Managerial implications

Our model provides an executable plan for decision-makers during
the mass COVID-19 vaccination. An optimal solution of our model helps
decision-makers by providing suggestions on: (1) which vaccination
site to open; (2) which appointment to accept or reject; (3) which
appointment is assigned to each opened vaccination site; and (4) the
service time of each appointment at its assigned vaccination site.
The above decisions are made under a well-defined objective, which
properly considers the operational cost for opening a vaccination site,
the acceptance or rejection of an appointment, the travel distance of
vaccine recipients, and the tardiness of vaccination service. Based on
the previous sections’ numerical results and sensitivity analysis, we
next present some practical tips in establishing and operating the mass
vaccination appointment scheduling program.

First, the ambition of the mass COVID-19 vaccination programs are
to vaccinate as many recipients as possible, to assign the recipients
to nearby vaccination stations, and to vaccinate the recipients within
the time slot they appointed. The conflicts among the government’s
ambition, the recipients’ demand, and the limited capacity call for a
tradeoff between the operational cost and service level. The operational
cost refers to the cost for opening a vaccination site. At the same
time, the service level is determined by minimizing the total travel
distance, the appointment rejection cost, and the service tardiness cost.
The four components to be optimized in the objective function allow
decision-makers to obtain solutions that meet the requirements of all
interests. Also, the sensitivity analysis shows that our model can suit

the decision-makers’ preferences by adjusting the weights of different



Computers and Operations Research 141 (2022) 105704C. Zhang et al.
Fig. 2. Locations of communities and vaccination sites.
Table 10
Basic information of communities.

No. Longitude Latitude 𝑝𝑗 𝑒𝑗 𝑙𝑗 No. Longitude Latitude 𝑝𝑗 𝑒𝑗 𝑙𝑗
1 120.144174 29.338651 64 70 220 33 120.078602 29.313952 26 460 540
2 120.123052 29.368453 23 130 210 34 120.086661 29.312234 40 400 480
3 120.124009 29.354498 75 320 470 35 120.093797 29.310586 68 240 320
4 120.115728 29.356476 44 380 460 36 120.088409 29.32694 66 440 520
5 120.109493 29.343224 21 280 430 37 120.091995 29.314104 35 360 460
6 120.128893 29.35232 29 110 260 38 120.095416 29.316186 74 0 70
7 120.114935 29.336798 75 250 350 39 120.095173 29.325738 60 370 520
8 120.137664 29.333303 30 0 130 40 120.104255 29.325556 25 340 430
9 120.098654 29.334356 36 70 150 41 120.08708 29.337057 21 400 470
10 120.102587 29.332072 46 270 390 42 120.116269 29.305538 63 450 520
11 120.115061 29.368522 34 40 190 43 120.134751 29.319296 62 170 320
12 120.111206 29.349361 74 250 340 44 120.111573 29.304353 51 140 240
13 120.119539 29.377651 45 70 220 45 120.095265 29.30536 74 430 550
14 120.054922 29.348419 53 420 490 46 120.056229 29.278145 34 430 550
15 120.036689 29.321656 62 290 360 47 120.077538 29.27389 61 450 570
16 120.040614 29.307743 75 270 420 48 120.136689 29.322096 23 120 270
17 120.072154 29.334468 72 80 160 49 120.126944 29.31555 62 420 570
18 120.057826 29.360957 43 310 410 50 120.145746 29.309051 47 380 460
19 120.063177 29.345607 55 160 280 51 120.064853 29.275351 53 390 470
20 120.069617 29.35121 69 430 550 52 120.102939 29.310325 21 240 390
21 120.05154 29.328273 44 190 280 53 120.108698 29.308391 29 240 320
22 120.062172 29.326834 41 140 240 54 120.081039 29.290155 34 420 540
23 120.0562 29.320191 50 250 320 55 120.06776 29.265219 42 290 440
24 120.066757 29.332415 43 0 50 56 120.085405 29.292966 38 490 590
25 120.0769 29.32799 44 190 310 57 120.094257 29.293371 20 220 340
26 120.049016 29.308078 66 290 360 58 120.182548 29.333045 34 80 150
27 120.073904 29.316033 64 390 470 59 120.174238 29.357449 32 180 260
28 120.070172 29.320239 36 160 230 60 120.169032 29.335254 55 190 310
29 120.078043 29.300721 68 210 330 61 120.177667 29.344364 61 340 420
30 120.076118 29.301525 27 50 200 62 120.173353 29.351007 66 130 220
31 120.070974 29.31053 70 0 140 63 120.185392 29.324978 73 30 130
32 120.077813 29.311684 37 310 400
cost components. For example, if decision-makers focus on the cost-
effectiveness of the vaccination program, they tend to allocate a more
significant weight to the cost of opening a vaccination site. In this case,
the model would care more about the cost component, and an optimal
13
solution may enable fewer vaccination sites to open. This may lead
to a longer travel distance of vaccine recipients, a higher possibility
of appointment rejection, and service tardiness. Thus, it is essential
to consider the total travel distance, rejection cost, and tardiness in
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Fig. 3. Result of the case study.
the objective function to balance the cost and service level, such that
decision-makers can make flexible decisions by varying the weights of
different components.

It is beneficial to optimize the total weighted travel distance of
vaccine recipients. First, the model tends to open vaccination sites
close to vaccine recipients. Second, a short travel distance of recip-
ients reduces the potential risk of cross-infection during epidemics.
Third, a short travel distance of recipients improves the service level
by providing an excellent vaccinating experience. However, always
allocating recipients to their nearest vaccination site may lead to a
long waiting time (tardiness) due to the uneven distribution of the
vaccination population.

To avoid a long wait and work overload, we introduce two cost
components in the objective, i.e., to minimize the rejection cost compo-
nent and the total weighted tardiness component. We expect to accept
as many appointments as possible to finish the vaccination program.
However, due to the limited vaccine supply and vaccination capacity
at each site, it is impractical to accept all appointments. In this case,
the model must determine which appointment to accept and which to
reject and reassign to other dates and arrange the service sequences
based on the vaccine recipients’ time windows. These considerations
may improve the service level of the vaccination program.

The vaccination appointment scheduling problem is a complicated
combinatorial optimization problem. The developed LBBD finds opti-
mal or near-optimal solutions for instances with up to 100 appoint-
ments in acceptable computation time. The proposed matheuristic MH
is applicable to solve practical-sized instances with hundreds of ap-
pointments and dozens of vaccination sites. Therefore, our work pro-
vides a systematic solution for mass vaccination programs with the
developed model and algorithms.

8. Conclusions

This study investigated a mass vaccination problem during pan-
demics or epidemics. Given the limited capacity of vaccine supply,
certain personnel such as healthcare workers and education faculties
have high priority in vaccination. We identify an appointment schedul-
ing problem in vaccinating a large population, denoted as the MCVAS
problem. The problem jointly optimizes the vaccination site selection
decisions, appointment selection decisions, appointment assignment
decisions, and appointment sequencing decisions. The objective is to
minimize the weighted sum of the total costs for operating vaccination
sites, total travel distance of vaccine recipients, rejection costs, and
penalty costs incurred by service tardiness. We formally describe and
14
formulate the problem into an MILP. We then develop an exact logic-
based Benders decomposition (LBBD) method for the problem. The
LBBD method decomposes the MCVAS problem into a master problem
(MP) concerning vaccination site selection, appointment acceptance,
appointment assignment decisions, and a subproblem (SP) dealing with
the sequencing of appointments at each vaccination site. The MP is then
solved using a B&C method with the branch and check implementation.
During the branching process of the B&C, Benders cuts are iteratively
generated and added to MP upon finding a feasible solution to the MP.
The branching process continues with added Benders cuts until the op-
timal solution is identified. We further develop a matheuristic method
(MH) based on predetermined sequences to tackle practical-sized in-
stances. The MH first defines a new set that contains all appointments
sorted in a given rule. Then an approximate MILP model AP is for-
mulated using the newly-defined set. The AP model is solved using
an off-the-shelf solver to provide near-optimal solutions, which are
further improved by solving a series of single machine scheduling
problems with release date and tardiness minimization. We conducted
numerical experiments on instances with up to 500 appointments and
50 vaccination sites. In instances with up to 100 appointments and 20
vaccination sites, the LBBD method generally outperforms LO and MH
in providing more optimal solutions. The LBBD method and MH are
superior to the LO model in providing a smaller relative optimality gap
in a shorter computation time. In particular, MH is time-efficient in
solving these instances in general. Results on practical-sized instances
with up to 500 appointments and 20 vaccination sites indicate that MH
and LBBD are superior to LO with lower average gaps. Primarily, MH
obtains an average gap of 5.64% on these instances. We conducted a
sensitivity analysis to evaluate the effects of the four cost components.
The result provides valuable managerial insights for practitioners. We
further draw managerial implications from the result of the numerical
experiments.

The mass vaccination appointment scheduling problem is an inter-
esting topic that deserves further study. We indicate a few research
perspectives. First, the problem can be extended to cover multiple
periods, such that a more integrated plan can be achieved. In this case,
the problem becomes more complex, and efficient algorithms should
be developed to handle practical-sized instances. Second, the service
duration of each appointment is often uncertain. Thus, it is essential
to generalize the problem to consider service time uncertainty. One
possible method is to formulate the problem as a two-stage stochastic
program. The first stage determines the vaccination site selection,
the appointment selection, and the appointment assignment without

exactly knowing the service duration. The second stage sequences the
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appointments with the realization of the random service duration. Then
the sample average approximation or L-shaped methods may be applied
to solve the stochastic counterpart of the MCVAS problem.
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