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Abstract

Traumatic Brain Injury (TBI) is highly prevalent, affecting ~1% of the U.S. population, with 

lifetime economic costs estimated to be over $75 billion. In the U.S., there are about 50,000 deaths 

annually related to TBI, and many others are permanently disabled. However, it is currently 

unknown which individuals will develop persistent disability following TBI and what brain 

mechanisms underlie these distinct populations. The pathophysiologic causes for those are most 

likely multifactorial. Electroencephalogram (EEG) has been used as a promising quantitative 

measure for TBI diagnosis and prognosis. The recent rise of advanced data science approaches 

such as machine learning and deep learning holds promise to further analyze EEG data, looking 

for EEG biomarkers of neurological disease, including TBI. In this work, we investigated various 

machine learning approaches on our unique 24-hour recording dataset of a mouse TBI model, 

in order to look for an optimal scheme in classification of TBI and control subjects. The epoch 

lengths were 1 and 2 minutes. The results were promising with accuracy of ~80–90% when 

appropriate features and parameters were used using a small number of subjects (5 shams and 
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4 TBIs). We are thus confident that, with more data and studies, we would be able to detect 

TBI accurately, not only via long-term recordings but also in practical scenarios, with EEG data 

obtained from simple wearables in the daily life.
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I. Introduction

Traumatic brain injury (TBI) is defined as an alteration in brain functioning or brain 

pathology initiated by external impacts, such as blunt trauma, penetrating objects, or blast 

waves. TBI results in physical brain damage, including tearing injuries of white matter, 

hematomas, or cerebral edema [1, 2]. Consequently, it leads to a cascade of metabolic events 

which can cause a secondary brain damage possibly due to the generation of free radicals, 

inflammatory responses, calcium-mediated damage, mitochondrial dysfunction, to name a 

few. Expenses on TBI are high in part due to the chronic and persistent symptoms following 

TBI, one of the most prominent of which are sleep-wake disturbances, which can last weeks 

to years after a single TBI [3]. Sleep disturbances may consequently lead to cognitive 

impairment, increased disability, and delayed functional recovery [3].

TBI can be categorized into mild, moderate, or severe levels based on Glasgow Coma 

Scale (GCS), Loss of Consciousness (LOC), Post-traumatic amnesia (PTA) [4] which are 

qualitative tests rather than quantitative measures. Previous studies on mild TBI (mTBI) 

primarily focused on spectral power and feature-driven approaches such as cross-frequency 

coupling using quantitative electroencephalogram (EEG) analyses [5, 6] within different 

sleep stages [5, 7].

EEG reflects cortical neuronal activity, thus providing an indication of the neuronal changes 

in the brain with high temporal resolution. To date, quantitative EEG (qEEG) analysis 

has been a well-established approach for analyzing neural data for many years. The 

American Academy of Neurology (AAN) defines qEEG as the mathematical processing 

of digital EEG to highlight specific waveform components, to transform EEG into a 

format or domain that elucidates relevant information, or to associate numerical results 

with EEG data for subsequent review or comparison [8]. Quantitative EEG has been used 

in analysis and classification of various EEG tasks such sleep staging, motor imagery, 

visually evoked potentials, and detection tasks such as emotion, seizure and drowsiness. 

Quantitative EEG analysis has also been widely used to study changes in neural data 

in the field of neurological disorders, such as attention deficit hyperactivity disorder 

(ADHD) [9], Alzheimer’s disease [10], Parkinson’s disease [11], to name a few. Recently, 

machine learning algorithms have been successfully implemented in the same domains 

for improved performance [12], leveraging some of their prominent advantages such as 

ability to automatically extract features, lesser need for labeled data and handling of multi-

dimensional data. EEG analysis using machine learning-based approaches is thus being 

considered as a promising technique for various brain-computer interface applications [13]. 
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For TBI, machine learning has been used for studies of mTBI using different modalities 

such as EEG [14], fMRI [15], and resting state functional network connectivity [16].

Among animal models used for studies of TBI, a compelling mouse model of mTBI, lateral 

fluid percussion injury (FPI), demonstrates very similar behavioural deficits and pathology 

to those found in humans suffering from mTBI, including sleep disturbances [5, 17]. Our 

team has been conducting studies using this model, yielding promising results. In this paper, 

we study EEG data acquired from the above-mentioned FPI model of mTBI to explore 

performance of various widely-used rule-based machine learning algorithms as well as 

convolutional neural networks (CNNs). Different sleep stages, epoch lengths, features and 

neural network hyper-parameters have been explored to obtain the best results.

I. Methods

A. Mouse Data in Use

Animal data were acquired as previously published [5, 6]. Mice were 10-week old, 

25 g, male C57BL/6J mice (Jackson Laboratory). They were housed in a laboratory 

space maintained at ambient temperature of 23±1°C with a relative humidity of 25±5% 

and automatically controlled with 12-hour light/12-hour dark cycles and an illumination 

intensity of ~100 lx. The animals had access to food and water. All experiments were carried 

out in accordance with the guidelines provided by the National Institutes of Health in the 

Guide for the Care and Use of Laboratory Animals and approved by the local IACUC 

committee.

B. Fluid Percussion Injury (FPI) and EEG/EMG Sleep-Wake Recordings

Animals were divided into two groups: TBI and sham. FPI along with EEG/EMG 

implantation in mice (n=12) was performed as described previously [5]. Once the hub 

was FPI-induced and monitored till the stage of toe pinch withdrawal reflex, a 20-ms pulse 

of saline was delivered onto the dura with the pressure level in between 1.4 and 2.1 atm 

[18, 19]. Shams underwent the same procedure with an exception of fluid pulse and later 

returned to the home cage. Mice were then connected to recording cables after five days 

of recovery period. Once the animal adapted, measurement was initiated after 24 hours. In 

order to maintain stable sleep/wake activity across days baseline sleep was analyzed on the 

first and fifth days after the 7-day recovery period [6]. The procedure is shown in Fig. 1.

The 24-hour recording datasets obtained at a sampling rate of 256 Hz for each animal were 

analyzed for sleep staging by an experienced and blinded scorer to divide into 4-second 

epochs of wake (W), non-rapid eye movement (NREM) and rapid eye movement (REM) 

as previously described [6]. Table I shows number of 1 min and 2 min non-overlapping 

wake and sleep epochs extracted from each mouse. When EEG data are considered without 

bifurcating into sleep and wake stages, the number of epochs remains same for all mice 

which are, 1,440 and 720 epochs for 1 min and 2 min epoch lengths, respectively.
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C. Algorithms Used and Assessment

For analysis, 1 min and 2 min non-overlapping wake intervals were extracted from each 

EEG file. Each epoch was then filtered into different frequency sub-bands: theta (4 – 7.5 

Hz), alpha (8 – 12 Hz), sigma (13 – 16 Hz), beta (16.5 – 25 Hz) and gamma (30 – 35 

Hz) using a 6th order Butterworth bandpass digital filter. Average power in each sub-band 

is calculated for each epoch by calculating power using 256×60 point, 1-D Discrete Fourier 

Transform (DFT) and taking its mean, which acts as the feature for the rule-based machine 

learning models. There is need for normalization when the comparison is made across 

different frequency bands since the power amplitude of frequency specific activity decreases 

with increase in frequency. Therefore, any slight change in the activity at higher frequencies 

is overpowered by the activities in the lower frequency bands and cannot be visualized. 

Fig. 2. represents three of the six features of mice used in training dataset for one trial 

when 2 min non-overlapping wake epochs were considered. These plots help us visualize the 

separability between the TBI and sham groups and the need for decibel normalization which 

is given by

dB = 10 × log10 activity
baseline (1)

The epochs are then feature-normalized to zero mean and unit standard deviation before 

they are fed to the machine learning algorithms. All normalization parameters calculated 

for training dataset were used for testing dataset. Python 3.7 along with machine learning 

tool: scikit-learn was used to implement and test the algorithms. Classification accuracy for 

‘K-nearest neighbor’ (KNN) is reported for three values of ‘K’. The ‘Neural network’ is 

designed with two hidden layers containing 5 nodes each and ‘Support vector machine’ 

(SVM) uses Radial basis function (rbf) kernel function. All classification accuracy is 

reported in percentage (%) given by

Accuracy = True positives+True negatives
Total observations × 100 (2)

Machine learning algorithms used are supervised learning algorithms where the target 

label is already known to the algorithm. ‘Decision tree’ builds tree-structured models 

incrementally, as it breaks down the training dataset into smaller subsets. ‘Random forest’ 

takes the majority vote of several decision trees’ prediction which are trained on different 

parts of the same dataset. ‘Support vector machine’ creates a hyperplane separating the 

classes by mapping data to a high dimensional feature space. ‘K-nearest neighbor’ algorithm 

uses similarities in the features to predict the values of the new datapoints based on majority 

vote of its neighbors with the object being assigned to the class most common among its 

K-nearest neighbors.

While previously mentioned methods rely on supervised hand-made features to describe 

data points, there are models designed to take temporal dynamics of the signal into account 

in a higher resolution. Convolutional Neural Networks (CNN) achieve this by a stack of 

convolutions, each fed to the next layer. This results in an automatic feature extraction 
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module trained through back-propagation. These networks typically embed pooling layers 

between two consecutive convolutions and end with a couple of dense layers and finally 

a classifying softmax layer. This ease of training and accuracy come at the cost of high 

data dependency. Fig. 3 demonstrates our CNN architecture used in this work which has a 

standard setting. Initially, a feature extraction layer slides over the raw signal and computes 

aforementioned 5 average frequency bands. These features are being fed to two layers of 

conv1d-pool pairs ending with a dense layer and a softmax layer. We used 16 kernels 

of length 4 for convolutions and strides of 2 for max poolings. The ending dense layer 

had 40 nodes. Categorical cross entropy cost function trained with Adam optimizer is 

leveraged under L1 regularization. During CNN hyperparameter tuning, we tried different 

combinations of kernel lengths (2 to 10), kernel size (2 to 50) and dense layers dimension 

(10 to 100) in scaled grid search. We also tested architecture with different numbers of 

convolution layers (up to 6) and noticed that performance is mostly sensitive to the kernel 

size more than others.

II. Results and Discussion

In this section, we present and discuss the results obtained in various scenarios considered 

for analysis. First, the amount of data which can be accessed by the ML models plays a 

significant role in the performance of the algorithms due to their inherent working. It is 

evidenced through several studies that mTBI mice undergo disturbed sleep patterns [20] due 

to which, they experience inability to stay awake for long bouts of time. Here, fewer bouts 

of continuous wake epochs were extracted from 24-hour recordings in TBI mice. On the 

other hand, numbers of sleep epochs were considerably higher in mTBI mice compared to 

the control group. The number of 1 min and 2 min non-overlapping wake and sleep epochs 

extracted from each mouse is shown in Table 1. As seen, there is a significant difference in 

the number of epochs fed to the rule-based ML algorithms in different sleep stages which 

results in varied classification accuracy.

Classification accuracies for different sleep stages are shown in Figs. 4 and 5 for 1 min and 

2 min epoch lengths, respectively. It can be seen that the accuracy obtained while using only 

sleep epochs is low. From Table 1, we can also hypothesize that this may be due to the 

extremely low number of data points (it is the number of epochs here) that the ML algorithm 

is trained on. It may also be due to the oversimplification of different sleep stages into one 

category as “sleep epochs” in our analysis. EEG in different stages of sleep is extremely 

complex and unique in its own ways which are characterized by different range of dominant 

frequencies. As a result, combining NREM containing N1, N2 and N3 stages and REM 

stage into one category and the use of different sub-band power to classify sleep EEG is 

not an ideal case for analysis. However, owing to its automatic feature selection capability 

accounting for the temporal dynamics of the EEG signals, CNN outperforms rule-based ML 

algorithms.

On the contrary, there are considerably more data points for training during wake stage 

analysis and therefore, ML models perform better than they do in those cases using sleep 

stage data. With this, the results obtained for rule-based methods and CNN are comparable. 

It should be noted that the highest accuracy for 2-min wake stage analysis is obtained by 
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using KNN with ‘K’ value 7, outperforming CNN, which can be explained due to the data 

extensive approach of CNN models. More detailed analysis on wake stage can be found in 

our previous work [20]. Overall, the highest classification accuracy of 92.03% was obtained 

by CNN when the entire EEG signal (both wake and sleep stages) was used with 1-min 

non-overlapping epochs for the analysis without extraction of various sleep stages. This 

reiterates the fact that CNN is a data-driven model and usually performs best when there is 

large amount of data present to train them. It can be observed that for almost all rule-based 

methods shown in Figs. 4 and 5, the accuracy obtained for the 2-min epoch length is higher. 

Hence, a careful selection of various parameters such as epoch lengths, features, and others, 

has to be made while using these ML algorithms.

III. Conclusions

In conclusion, we have successfully demonstrated the use of various machine learning 

algorithms to classify mTBI data obtained from the mouse model. Rule-based algorithms 

of decision trees (DT), random forest (RF), neural network (NN), support vector machine 

(SVM) and K-nearest neighbors (KNN) as well as convolutional neural network (CNN) 

were conducted to analyze and then compare performance among cases of using only wake 

data, only sleep data and total data with 1-min and 2-min epoch lengths using average power 

in different frequency sub-bands as features. The use of CNNs for both sleep and wake data 

yielded the highest accuracy, indicating a promising method for accurate identification of 

the relevant brain-based biomarkers in TBI. Combining with other studies of intervention 

using both animal and human data, this would pave the way to enable appropriate treatment 

options and allow objective assessment of response to treatment of TBI, which is imperative 

to addressing this significant socioeconomic problem.
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Fig. 1. 
Experimental procedure for data acquisition.
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Fig. 2. 
Feature representation for training dataset (a) without applying decibel normalization (b) 

with decibel normalization.
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Fig. 3. 
The CNN architecture.
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Fig. 4. 
Cross-validation accuracy of various classifiers using 1 min epoch lengths of different sleep 

stages.
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Fig. 5. 
Cross-validation accuracy of various classifiers using 2 min epoch lengths of different sleep 

stages.
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TABLE I.

Number of non-overlapping epochs in different stages for each mice

Mice Wake Sleep

1min 2min 1min 2min

Sham_102 736 352 325 103

Sham_103 637 275 473 192

Sham_104 922 427 324 140

Sham_107 684 316 500 177

Sham_108 780 364 359 118

TBI_102 901 429 326 120

TBI_103 271 81 737 340

TBI_104 207 61 457 162

TBI_106 458 181 664 289
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