Skip to main content
. 2022 Jan 15;2022:3549238. doi: 10.1155/2022/3549238

Table 2.

Comparison of the performance with clustering and regression algorithms.

Systolic blood pressure (mmHg) Diastolic blood pressure (mmHg)
Learner/performance Cluster Count of data per cluster MAE RMSE r MAE RMSE r
Random forest regression Cluster1 6282 3.407 5.830 3.250 5.698
Cluster2 6276 3.468 5.724 3.038 5.136
Cluster3 3355 3.521 5.586 2.813 5.408
Cluster4 8300 3.396 5.500 2.870 4.852
Cluster5 2390 2.434 4.567 2.677 4.879
Total 26,603 3.344 5.557 2.974 5.191

Gradient boosting regression Cluster1 6282 2.644 5.841 0.96 2.486 5.648 0.98
Cluster2 6276 2.781 5.694 0.93 2.468 5.232 0.96
Cluster3 3355 2.533 6.123 0.76 2.003 5.491 0.80
Cluster4 8300 2.610 5.522 0.85 2.161 4.675 0.95
Cluster5 2390 1.643 4.709 0.85 1.504 4.467 0.95
Total 26,603 2.561 5.635 0.88 2.231 5.012 0.94

Multilayer perceptron regression Cluster1 6282 5.230 8.244 4.896 7.262
Cluster2 6276 5.340 8.754 5.263 8.956
Cluster3 3355 6.235 9.523 6.094 8.852
Cluster4 8300 7.261 11.920 6.288 9.003
Cluster5 2390 4.326 8.156 4.160 6.875
Total 26,603 5.937 9.664 5.501 8.370