Skip to main content
. 2022 Jan 15;2022:3549238. doi: 10.1155/2022/3549238

Table 5.

Comparison with other works.

Machine-learning comparison (DBP) Machine-learning comparison (SBP)
Studies Method MAE RMSE r MAE RMSE r
Our proposed method Clustering and gradient boosting regression 2.23 5.01 0.94 2.56 5.63 0.88
Our proposed method Gradient boosting regression without clustering 6.27 10.22 0.71 6.36 10.39 0.67
[16] SVM 6.34 12.38
[9] Adaboosting 5.35 0.48 11.17 0.59
[17] MLR 2.82 0.97 2.83 0.96
[27] LSTM and perceptron 6.49 7.86
[11] Multisensor features 4.54 0.90 6.13 0.84
[13] PPG + CNN-regression 3.45 0.89 5.73 0.93
[18] PTT + PIR + nonlinear regression 3.18 0.88 4.09 0.91
[28] 3.27 0.87 4.46 0.93
[29] (PPG + ECG) 4.44 0.84 4.71 0.89
[30] SVM 3.36 0.82 11.86 0.69
[31] MLP 4.96 0.70 5.46 0.87
[32] ECG: wrist and foot PPG: Finger 4.4 6.0
[33] ANN with 15 hidden neurons Not mentioned 3.03
[34] PTT and PIR, regression-MARS 4.86 0.93 7.83 0.95
[25] AutoML (TPOT) 4.19 6.52
[12] ANN 2.21 ± 2.09 3.80 ± 3.46
[26] DNN 6.88 9.43
[35] Res-LSTM 4.61 0.74 7.10 0.96
[36] LSTM-based autoencoder 4.05 2.41