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Psoriasis is a chronic inflammatory skin disorder mediated by the immune response that affects a large number of people.
According to latest worldwide statistics, 125 million individuals are suffering from psoriasis. Deep learning techniques have
demonstrated success in the prediction of skin diseases and can also lead to the classification of different types of psoriasis. Hence,
we propose a deep learning-based application for effective classification of five types of psoriasis namely, plaque, guttate, inverse,
pustular, and erythrodermic as well as the prediction of normal skin. We used 172 images of normal skin from the BFL NTU
dataset and 301 images of psoriasis from the Dermnet dataset.,e input sample images underwent image preprocessing including
data augmentation, enhancement, and segmentation which was followed by color, texture, and shape feature extraction. Two deep
learning algorithms of convolutional neural network (CNN) and long short-term memory (LSTM) were applied with the
classification models being trained with 80% of the images. ,e reported accuracies of CNN and LSTM are 84.2% and 72.3%,
respectively. A paired sample T-test exhibited significant differences between the accuracies generated by the two deep learning
algorithms with a p< 0.001. ,e accuracies reported from this study demonstrate potential of this deep learning application to be
applied to other areas of dermatology for better prediction.

1. Introduction

,eskin is important for regulating the body’s temperature and
protects against fungal infection, germs, allergies, and viruses
[1]. However, many individuals suffer from skin disorders that
stem from various causes. ,e most common skin disorders
include eczema, alopecia, ringworm, and psoriasis [2]. Itchy
scaly patches which are red in color andmost commonly occur
on knees and elbows represent the symptoms of psoriasis.
Psoriasis is a persistent skin disorder that cannot be passed
from one person to another and has no treatment [3].
According to the International Federation of Psoriasis Asso-
ciations (IFPA), psoriasis affects 125 million people globally, or
around 2% to 3% of the global population [3]. It starts when the
autoimmune system of the body begins to attack skin cells,
disrupting their regular life and development cycle. Normally, a

skin cell develops over a period of 28 to 30 days;, however, in
case of psoriasis, this cycle is disturbed and accelerated leading
to development of skin cells on the skin surface in 7 days [4].
,ese excess skin cells develop dense, itchy, swollen, red spots
in psoriasis lesions which ultimately spread to several parts of
the body. ,e size of these lesions might range from tiny areas
to the full body. ,e most prevalent forms of psoriasis are
pustular, guttate, inverse, plaque, and erythrodermic psoriasis
[5].,ese tend to exert a substantial detrimental influence on a
person’s quality of life and are often compared to a heart
ailment because they induce depression and are thought to
increase the suicide rate by 30% [6]. Dermatologists usually use
general observation and biopsies for diagnosis of the correct
type of psoriasis. However, the ambiguity surrounding the
number of tests required for satisfactory diagnosis regarding
the adequate type of psoriasis represent the limitations of the
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available diagnostic procedures. Hence, there exist immense
opportunities for researching new methods in relation to
classification and diagnosis of the five types of psoriasis, in-
cluding pustular, guttate, inverse, plaque, and erythrodermic
[7].

Machine learning and deep learning approaches have
demonstrated success in the prediction and categorization of
a wide range of illnesses. Deep learning involves the use of
several computer techniques and reflects the ability to learn
and adapt. For diagnostic purposes, machine learning and
deep learning technologies have been used in a variety of
medical fields. ,ey have shown accuracy in the diagnosis of
brain tumors, alopecia areata, Alzheimer’s illness, breast
cancer, blinding diseases, and renal disease [8–13].

Various deep learning approaches have been used in
dermatology to predict and classify skin problems with high
accuracy. For categorizing skin images for the identification of
skin lesions, such asmalignantmelanoma, basal cell carcinoma,
actinic keratosis, squamous cell carcinoma, and psoriasis, skin
analysis algorithms have been developed employing Mask
RCNN, transfer learning, and CNN frameworks [14–20]. All of
these methods entail the classification of a single kind of skin
condition. Furthermore, to the best of our knowledge, none of
the deep learning algorithms have been used to classify the five
kinds of psoriasis: pustular, guttate, inverse, plaque, and
erythrodermic psoriasis.

Hence, in this paper, we propose a deep learning technique
for the classification of different types of psoriasis as previous
methods have not carried out classification of different types of
psoriasis and have used a single deep learning technique.
Moreover, previous state-of-the-art works have used different
datasets as compared to the datasets that we have used, and we
have achieved higher accuracies. Our research motivation and
proposal exhibit the practical application of deep learning
approaches for distinguishing and classification of five different
types of psoriasis including pustular, guttate, inverse, plaque,
and erythrodermic. ,e results from our study also demon-
strate the future potential of this deep learning application to be
applied to further skin disorders and make dermatological
diagnosis more accurate.

2. Related Works

Researches have used deep learning approaches for predicting
and classifying skin lesions including melanoma and psoriasis.
A smart home system was proposed coupled with sensors and
artificial intelligence for evaluating skin disorders. ,e system
used normal and melanocytic skin lesion images and applied
CNN to achieve an accuracy of 82.4% [15]. In another study,
extraction and identification of skin melanoma from dermo-
scopy images was proposed with the help of VGG-SegNet
scheme.,e technique used CNN, and the results exhibited an
accuracy of 97.16% [16]. In a similar study, skin lesion, in
particular, malignant melanoma recognition method was in-
troduced using mask region-based convolutional neural net-
work (RCNN) and transfer learning-based approach. ,ree
datasets including ISBI2016, ISB12017, and HAM1000 were
used for validation and presented accuracies of 96.3%, 94.8%,
and 88.5%, respectively [14].

Other systems have used multiclass classification along
with moth flame optimization for skin lesion segmentation. A
system was developed with a fully automated approach with a
CNN model. Method employed HAM1000 dataset, which
included seven different types of cancerous lesions, including
basal cell carcinoma, dermatofibroma malignancy, malignant
melanocytic, benign melanomas, melanocytic lesions, and
actinic keratosis, among others. Classification was carried out
using a CNN model, which was 90.67% accurate [17]. In
another study, machine learning and deep learning techniques
for skin lesion classification and diagnosis were reviewed. It was
concluded that although, machine learning techniques such as
k-nearest neighbor (KNN), support vector machine (SVM), k-
means clustering, and Näıve Bayes methods have been used for
skin lesion classification, deep learning approaches such as
CNN tend to outperform machine learning methods [18].

Researchers have also used image augmentation techniques
for the identification of skin lesions, in particular, melanoma. A
skin analysis system was proposed employing the synthetic
minority oversampling technique (SMOTE) and used the deep
CNN-based SqueezeNet model for classifying malignant skin
melanoma, atypical nevus, and common nevus from a publicly
available dataset, PH2. ,e results of the study exhibited an
accuracy of 92.18% [19]. In another system, a psoriasis as-
sessment system was proposed using algorithms including
KNN, random forest (RF), deep neural network (DNN), Näıve
Bayes, and SVM.A total of 80 psoriasis patch images were used,
and the results demonstrated the highest accuracies of 98.6%
and 92.6% achieved via RF and KNN, respectively [20]. In a
similar study, Dash et al. [21] proposed a CNN model for the
detection of psoriasis. A total of 5241 images of psoriasis lesions
were used, and the findings of the study exhibited an accuracy
of 94.80%. In another study, psoriasis skin image analysis was
carried out with machine learning methods of KNN, SVM, RF,
and CNN. A total of 90 images of psoriasis skin lesions were
used, and the results demonstrated the highest accuracy of 95%,
and 17% being achieved by CNN [22].

,e literature review summarized in Table 1 shows that no
work has been done for the identification of the five different
types of psoriasis, including pustular, guttate, inverse, plaque,
and erythrodermic. Previously, machine learning and deep
learning algorithms have been used to analyze skin images from
publicly accessible datasets. However, no work has been done
using the Dermnet and Nanyang Technological University
(NTU) databases that we employed in our proposed research to
classify five kinds of psoriasis. Furthermore, no study on pso-
riasis categorization using both CNN and LSTM deep learning
approaches has been done. As a result, using CNN and LSTM as
deep learning techniques, we present an innovative application
for classifying five distinct forms of psoriasis, including pustular,
guttate, inverse, plaque, and erythrodermic.

3. Materials and Methods

3.1. Image-Based Datasets

3.1.1. Normal Skin. A total of 172 images of different areas of
body including hands, feet, back, chest, and legs have been
collected from the NTU dataset. In particular, the Biometrics
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and Forensics Lab (BFL) NTU dataset was used. ,e BFL
NTU dataset consists of skin images from different parts of
the human body including hands, chest, back, inner forearm,
inner thigh, and lower leg [23]. ,e BFL NTU dataset is a
publicly available dataset with a normalization procedure
applied so that the aspect ratio and size of each image are the
same [23]. Figure 1 illustrates a sample image of normal skin
used from the BFL NTU dataset.

3.1.2. Psoriasis. A total of 301 images pertaining to five types
of psoriasis have been obtained from the Dermnet dataset.
,e Dermnet dataset consists of 23 types of dermatological
disorders, including plaque, guttate, inverse, pustular, and
erythrodermic psoriasis. Other types of skin diseases com-
prise that of alopecia areata, poison ivy, and eczema [24].
Figure 1 represents few of the images of each of the five types
of psoriasis that we used in this study.

(1) Plaque psoriasis. A total of 99 images of plaque psoriasis
were retrieved from the Dermnet dataset [24]. Plaque
psoriasis tends to appear on the skin surface in the form of
thick and red patches [25]. Figure 1 represents a sample
input image of plaque psoriasis used in this study.

(2) Guttate Psoriasis. A total of 96 gutatte psoriasis images
were collected from the Dermnet dataset and used in this
study. Guttate psoriasis is a form of skin infection that
appears on the skin surface in tear-drop shaped red and itchy
patches [26]. Figure 1 represents a sample input image of
guttate psoriasis used in this study.

(3) Inverse Psoriasis. Inverse psoriasis also referred to as
hidden psoriasis is a form of psoriasis that tends to infect the
skin folds, areas where one skin region rubs against another
skin region [27]. In this study, we used a total of 25 images of
inverse psoriasis retrieved from the Dermnet dataset. Fig-
ure 1 represents a sample input image of inverse psoriasis
used in this study.

(4) Pustular Psoriasis. A total of 48 images of pustular
psoriasis were used from the Dermnet dataset. White bumps
filled with pus within or around red scaly patches are
representative of pustular psoriasis [28]. Figure 1 represents
a sample input image pustular psoriasis used in this study.

(5) Erythrodermic Psoriasis. A total of 33 images of eryth-
rodermic psoriasis were retrieved from the Dermnet dataset
and used in this study. Being one of severe types of psoriasis,
erythrodermic psoriasis involves inflammation with peeling
rashes that burn considerably [29]. Figure 1 represents a
sample input image of erythrodermic psoriasis used in this
study.

3.2. Proposed Deep Learning Technique with CNN and LSTM.
,e Pandas Python Library used in this study comprises of
the Dataframe function that aids in organizing the sample
input images and eliminates unwanted rows and columns.
,e code has been written with Python using a Linux
workstation involving the use of the TensorFlow package.
Two deep learning approaches, convolutional neural net-
work (CNN) and long short-termmemory (LSTM), are used
to produce the classification methodology. Figure 2 depicts
the flow process of the proposed deep learning approach. It
begins with normal skin and the five kinds of psoriasis,
including plaque, inverse, guttate, pustular, and eryth-
rodermic psoriasis, as input example images. Following that,
an image enhancement procedure is used to remove dis-
tortion from the sample images. After the images are en-
hanced, they undergo segmentation after which the images
are divided in training and testing samples. Empirical studies
have demonstrated that more accurate and robust results can
be acquired via 20% to 30% of the data being used for testing
and 70% to 80% for training [30]. As a result, 80% of the
input sample images are used to train the classification
model, while the remaining 20% are used for validation and
testing. ,e categorization of an image into guttate psoriasis
(class 0), inverse psoriasis (class 1), erythrodermic psoriasis
(class 2), normal skin (class 3), plaque psoriasis (class 4), and
pustular psoriasis (class 5) represents the outcome of the
proposed deep learning approach.

3.3. Preprocessing of Image

3.3.1. Cleaning and Preparation of Dataset. Images retrieved
from the BFL NTU and Dermnet datasets were cleaned by
opening each image in order to identify that if it is clearly
exhibiting the particular diseased part or not and then select
the most authenticated images.

Table 1: An overview of previously published cutting-edge research.

Year Method Skin disorder Accuracy
2021 CNN [16] Melanoma 97.16%

2021 RCNN [14] Melanoma 96.3% (ISBI2016), 94.8% (ISBI2017),
88.5% (HAM1000)

2021 CNN [17] Dermatofibroma, benign keratosis, basal cell carcinoma, melanoma,
melanocytic nevi, actinic keratosis, and vascular 90.67%

2021 CNN [19] Melanoma 92.18%

2021 RF and KNN
[20] Psoriasis 98.6% (RF) and 92.6% (KNN)

2019 CNN [21] Psoriasis 94.80%
2018 CNN [15] Melanoma 82.4%
2018 CNN [22] Psoriasis 95.17%
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3.3.2. Data Augmentation. In this study, data augmentation
was executed by rotating each image to 15°, shifting height and
width and horizontally flipping the image. We restricted our
data augmentation up to some range, in particular 200 to 400
images, so that we could get similar number of images in each
class. Data augmentation was done in order to overcome bi-
asness issues; hence, we increased the size of our data and
applied deep learning techniques on it. Figure 3 exhibits the
number of images for each class following data augmentation.

3.3.3. Image Enhancement and Image Segmentation.
Image enhancement is a technique involving improvement of
the input images with overall enhancement of contrast,

brightness, and pixel luminance values [31]. ,e sklearn.pre-
processing package, which is part of scikit-image processing,
contains a number of image enhancing algorithms. To improve
the sample input images in this research, the image en-
hancement method of histogram equalization was used. His-
togram equalization (HE) improves low-contrast sections of an
image, resulting in images with increased overall contrast [32].
,eHE approach is used in this work to transformRGB images
into equivalent hue-saturation-value (HSV) image format. In
addition, image segmentation was carried out using the edge
detection approach. ,e edge detection technique involves
identifying edges within an image and following change in the
intensity values, and hence, this results in a segmented image
[33]. ,e resize function is used in this study to resize input

Start

Images of 6 types of Psoriasis (Plaque, Inverse, Guttate, 
Pustular and Erythrodermic) and normal skin

Image Enhancement and segmentation

Training Sample Testing Sample

Pre-trained Model VGG-19 (CNN) LSTM (Long Short Term Memory) Model

Classification of 6 different classes

End

Figure 2: Flow process of the proposed classification technique.

Dataset

Normal Skin

172 Images

Plaque 
Psoriasis

99 Images

Guttate 
Psoriasis

96 Images

Inverse 
Psoriasis

25 Images

Pustular 
Psoriasis

48 Images

Erythrodermic 
Psoriasis

33 Images

Figure 1: Images of normal skin and five kinds of psoriasis, including plaque, guttae, inverse, pustular, and erythrodermic, are shown in the
examples.
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sample images to a 64× 64 resolution. Moreover, the anti-
aliasing technique included in Python’s scikit-image processing
package is also employed. In particular, the multisample
antialiasing (MSAA) technique is used being denoted as true so
that the rough edges in the input images are smoothened.

3.4. Splitting Dataset. Following image preprocessing, the
data are separated into three portions in an 8 :1 :1 ratio,
training, validation, and testing.Within this percentage, 80%
of the images are used to train classification models, with the
remaining 10% used for validation and testing. As shown in
Table 2, 1468 training images of all five classes of psoriasis
are used while 182 images are used for validation and 188
images are used for testing the classification models.

3.5. VGG-19 Pretrained CNN Model. A large network visual
geometry group (VGG-19) pretrained CNN model consisting
of 19 neural layers is used in this study. ,e VGG-19 is a deep
CNNmodel used to classify images, and the arrangement of the
layers are shown in Figure 4 [34]. ,e purpose of max-pooling
is to down sample the expression of the inputs in order to
minimize their computational sizes. Hence, max-pooling is
responsible for decreasing the volume size. A pretrained CNN
model was used in this study as for image classification,
pretrained CNN models are available, and there was no need
for training the model from scratch.

3.5.1. Architecture of VGG-19 Pretrained CNN Model.
Figure 4 exhibits the architecture of VGG-19 pretrained CNN
model. ,emodel represents that training is done layer by layer
in which, convolutional layers with different filter sizes are
present with some pooling layers which are responsible for
reducing the volume for each next layer. Following the com-
bination of pooling and convolution layers, a fully connected

(FC) layer is formedwith 4096 units alongwith a softmax output
layer. Moreover, in this study, the VGG-19 pretrained CNN
model is incorporated with some trainable layers in order to
make the model work more accurately and efficiently.,ere are
four convolution layers in the classification model, and a max-
pooling process is preceded by each convolution layer. Such four
convolution layers are used to diagnose the five psoriasis types
through the extraction of features from the input sample images.

3.6. LSTM Model. As compared to the pretrained CNN
model used, an LSTM model was trained from scratch as
only time series-based pretrained LSTM models are avail-
able, and we required an image classification model in this
study. In model training of LSTM, we have used 3× 64 input
layers in order to train the model. ,e LSTM model com-
prises of internal systems called gates that control the in-
formation flow. ,roughout training of the classification
models, the gates can interpret what data are important [35].
,ese gates involve sigmoid triggers and tanh activation
function as well. Both of these were used in this study, with
sigmoid squishing around 0 and 1 values, whereas tanh
squishes values between −1 and 1 [35]. Sigmoid is used for
output layer calculation, while tanh is used for hidden layers
because of marginally smaller scale as compared to sigmoid.
Its derivative range is also slightly bigger than sigmoid which
is ideal for steady gradients [35]. Other gates in LSTM we
have used are as follows:

(i) Forget gate to decide which information should be
thrown away

(ii) Input gate to update the state of each cell
(iii) Cell state is multiplied by the forget vector point-

wise
(iv) Output gate determines the next hidden state

Dataset

Normal Skin 276 Images

Plaque 
Psoriasis 395 Images

Inverse 
Psoriasis 223 Images

Guttate 
Psoriasis 383 Images

Pustular 
Psoriasis 300 Images

Erythrodermic 
Psoriasis 261 Images

Total 1838 
Images 

Figure 3: Dataset following data augmentation.
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3.7. Extraction of Features. Each input sample image is used
to extract attributes, such as color, texture, and shape for our
research. ,e cv2 and skimage Python libraries were used to
extract color, texture, and shape data in this investigation.

3.7.1. Color Feature. ,is study uses the NumPy array
function to turn the images into a list of RGB color pixel
values. In order to get the average of the three colors (red,
green, and blue), the cv2 package is used. Initially, the blue
color channel’s mean value is determined, followed by the
mean values for the green and red color channels. As part of
Python’s cv2 module, the NumPy array is able to hold RGB
images in reverse order; hence, each value corresponds to a
different color channel.

3.7.2. Texture Feature. Python’s skimage and cv2 libraries
have been loaded into this research in order to take use of the
image processing capabilities of scikit. Using local binary
patterns (LBPs), texture descriptors have been used to
compute the local representation of a texture feature. ,e
LBP operator integrates statistical and structural models of
texture analysis, which have been traditionally considered
distinct [36]. Microprimitives and associated statistical
placement criterions have been used to define texture. A
supplementary measure of local image contrast may be used
in conjunction with the primitives if desired. ,is contrast
quantifies the strength of the primitives [36]. Each pixel in
the image is compared to the surrounding pixels in order to

build the local representation that finally extracts the texture
feature. ,e threshold values are multiplied by the weights
assigned to the relevant pixels, and the total is calculated to
generate an LBP code for the neighborhood pixels. Figure 5
demonstrates how the contrast measure is generated from
the input images. Averaging the grey levels below and above
the central pixel is done by subtracting the average values.
Two-dimensional LBP and contrast distributions are most
suitable for the texture feature extraction of images.

3.7.3. Shape Feature. ,ese images were used to extract
shape information using the Hu moment shape descriptor.
A Python package called OpenCV has been used to import
the Hu moment shape descriptor. ,e Hu moment shape
descriptor is represented by equations (1) and (2), where S

denotes the calculated Hu moment and δ represents the
normalized central moment. ,e central moment is taken
into account while calculating Humoments because it assists
in the movement of the image’s center region towards the
centroid area. Images may be analyzed using Hu moments,
which measure the contour of the sample input image, and
this results in a NumPy array of the images. In addition, the
flatten function aids in the creation of the form feature
vector by flattening the NumPy array.

S � δo + δ1, (1)

S � (δo − δ1)
2

+ 4δ2. (2)
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Figure 4: Architecture of the VGG-19 pretrained CNN model.

Table 2: Number of training, testing, and validation images.

Serial number Classes Training images Validation images Testing images
1. Normal skin 220 27 29
2. Plaque psoriasis 316 39 40
3. Inverse psoriasis 178 22 23
4. Guttate psoriasis 306 38 39
5. Pustular psoriasis 240 30 30
6. Erythrodermic psoriasis 208 26 27

Total 1468 182 188
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3.8. Mathematical Operations of CNN and LSTM. Table 3
elaborates the mathematical operations of CNN and LSTM.

3.9. SPSS Analysis. IBM SPSS Statistics for Windows,
Version 22.0 of the Statistical Package for Social Sciences
(SPSS). Both CNN and LSTM accuracies produced by IBM
Corp. were tested using the paired sampled T-test at
Armonk, NY. Both CNN and LSTM had a total of 30 ac-
curacy samples.

4. Results and Analysis

4.1. Evaluation of CNN Model. Figure 6 demonstrates the
training and validation of the CNN model, and it can be
concluded that model accuracy at the time of training was
higher at each epoch, whereas during validation, it decreases,
and at some intervals, the model accuracy goes quite low.
,e values of the model accuracy per epoch ranges in be-
tween 95% and 100% at the time of training, while at the time
of validation, the value lies in between 65% and 80%.

Figure 7 exhibits CNN model loss versus epoch. ,is
model loss exhibits how well the model is doing in each
epoch. It can be observed that as the epoch increases, the
validation loss increases while the training loss is quite low.
By observing both the graphs simultaneously, it can be
observed that when the model accuracy was decreasing the
model loss was high, whereas when the model accuracy was
increasing, model loss was decreasing. Hence, this dem-
onstrates that model accuracy and model loss are inversely
related as represented in equation (3).

,e training of the CNN model was stopped at 100
epochs for model accuracy and 35 epochs for model loss.
,e reason to stop training at these values of epochs was
the same computation of model accuracy and model loss
values. ,is means that at 100 epochs and beyond, the
same model accuracy value was being computed. Simi-
larly, at 35 epochs and beyond, the same value of model
loss was being generated. Furthermore, drop-out layer
regularization was used for avoiding over-fitting and fine
tuning the CNN model. Also, in order to measure the loss
in the CNN model, the binary cross-entropy loss function
was used.

model accuray of CNN∝
1

model loss of CNN
. (3)

4.2. Model Evaluation of LSTM. Figure 8 demonstrates the
training and validation of the LSTM model, and it can be
concluded that model accuracy at the time of training was
higher at each epoch as compared to validation. ,e graph
also shows a rise in training and validation, as can be seen.
Up to the 40th epoch, the model accuracy values for training
and validation are almost identical, but after that, training
gains an advantage over validation in terms of accuracy. ,e
graph ranges are in between 20% and 100% for training and
20% and 70% for validation.

Figure 9 represents LSTMmodel loss and epoch. In both
training and validation, it can be observed that model loss is
decreasing which also reflects that model accuracy, and
model loss have an inverse relationship as expressed by
equation (4).

LSTM model training was stopped at 100 epochs for
model accuracy and 35 epochs for model loss. ,e reason to
stop training at these values of epochs was the same com-
putation of model accuracy and model loss values. ,is
means that at 100 epochs and beyond, the same model
accuracy value was being generated. Similarly, at 35 epochs
and beyond, the same value of model loss was being gen-
erated. Furthermore, drop-out layer regularization was used
for avoiding over-fitting and fine tuning the LSTM model.
Also, in order to measure the loss in the LSTM model, the
binary cross-entropy loss function was used.

Model accuray of LSTM∝
1

Model loss of LSTM
. (4)

4.3. Performance Evaluation. In the evaluation of CNN and
LSTM, confusion matrices have been employed. Confusion
matrix shown in Figure 10 shows the expected results for
each of the six groups. A total of six classifications of
psoriasis have been indicated by the numbers 0, 1, 2, 3, 4, and
5, which are guttate, inverse, erythrodermic, normal, plaque,
and pustular. True positive is when the classifier correctly
predicts the positive class, whereas true negative (TN) in-
dicates correct prediction of the negative class by the clas-
sifier. False positive (FP) is when the classifiers incorrectly
predict the positive class while false negative (FN) represents
incorrect prediction of the negative class.

All six classes were evaluated on 188 different images that
were created by the CNN algorithm and shown in Figure 11. Of
the 188 images analyzed, 158 were correctly categorized,

5 4 3

4 3 1

2 0 3

1 1 1

1 0

0 0 1

1 2 4

8 16

32 64 28

1 2 4

8 0

0 0 128

Threshold Multiply

Figure 5: Contrast and LBP calculation.
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according to the study. ,is yielded an accuracy of 84.04%.
,irty-four images were classified as guttate psoriasis, 23 as
inverse, 23 as erythrodermic, 28 as normal skin, 28 as plaque,
and 22 images were classified as pustular psoriasis.

Figure 12 illustrates the LSTM-created confusion matrix,
which reveals that 136 of the 188 images were correctly
identified. ,is yielded an accuracy of 72.34%.,irty images
were classified as guttate psoriasis, 20 as inverse psoriasis, 19
as erythrodermic, and 26 images as normal skin, 25 as
plaque, and 16 images were classified as pustular psoriasis.

Table 4 shows CNN and LSTM’s performance and
classification results.

,e graphical illustration of accuracy outcomes of both
the CNN and LSTM models are exhibited in Figure 13.

,e results generated by SPSS analysis are demonstrated
by equation (5) where 29 denotes the degrees of freedom,
20.216 is the t statistic value, and probability value (p value)
is less than 0.001, indicating that there is a significant dif-
ference between the accuracies obtained via CNN and
LSTM.

Table 3: Mathematical operations of CNN and LSTM.

CNN LSTM

CNNs are feed-forward neural networks in which learning is
achieved pixel by pixel [37]. CNN employs convolution kernel h, a
matrix that moves over the input images and executes a dot product
with the central region of the input data, represented by f∗ h.
Following this, the output is yielded as matrix of the dot products
with m columns and n rows and is represented by the following
expression;
G (m, n) � f ∗ h (m, n) � 􏽐

j

􏽐
k

h[j, k]f(m − j, n − k).

,e LSTM deep learning algorithm involves working on a loop
network that has two hidden states: cell state and hidden state.

Furthermore, it involves assigning weightsW as learning parameters
for the classification algorithm [38]. X2 denotes the LSTM layers with
the hidden layers being responsible for carrying feedback. ,e

following expression exhibits how the algorithm works with sigmoid
function σ and the inclusion of past values;

Initial Gate � σ (W
1
Input ∗X2 + W

1
Past ∗Hidden layer),

InputGate � σ (W
2
Input ∗X2 + W

2
Past ∗Hidden layer).

OutputGate � σ (W3
Input ∗X2 + W3

Past ∗Hidden layer).
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t(29) � 20.216, p< 0.001. (5)

4.4. PerformanceMetrics. TP, FP, TN, and FN are computed
with the help of the sklearn library of Python [39]. Classi-
fication methods involve classification metrics namely,
sensitivity, specificity, and accuracy, that aid in assessing the
performance of deep learning algorithms. Sensitivity is the

classification metric that permits evaluation of a model’s
ability to classify true positives of each available class. In
order to measure sensitivity, it is necessary to divide the total
of true positives and false negatives by the number of true
positives [40]. An algorithm’s actual negative rate, or
specificity, helps to identify all of the negative classes that
were correctly categorized by the algorithm, as well. ,e
ratio of true negatives to the total of true negatives and false
positives may be described as specificity [40]. It is possible to
determine the accuracy metric by dividing the number of
correctly categorized predictions by the total number of
predictions [41]. In this study, the accuracy, sensitivity, and
specificity metrics indicated by equations (6)–(8) were used
to assess the performance of the CNN and LSTM models.
Table 5 shows the values of these performance indicators,
determined according to their formulae.

accuracy �
TP + TN

TP + FP + TN + FN
∗ 100%, (6)

sensitivity �
TP

TP + FN
∗ 100%, (7)

specificity �
TN

TN + FP
∗ 100%. (8)

5. Discussion

5.1. Main Findings. ,e goal of this work was to extract
characteristics such as color, texture, and form from data-
bases of dermoscopic images of plaque, guttate, inverse,
pustular, and erythrodermic psoriasis. ,e images were
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Figure 11: All six classes of CNN images are shown in a confusion
matrix.
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Figure 12: All six classes of LSTM images are shown in a confusion
matrix.
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Figure 10: Confusion matrix.

Table 4: Classification results of CNN and LSTM.

Classes
CNN LSTM

Test
images

Truly
classified

Test
images Truly classified

Normal skin 29 28 29 26
Plaque 40 28 40 25
Inverse 23 23 23 20
Pustular 30 22 30 16
Erythrodermic 27 23 27 19
Guttate 39 34 39 30
Total 188 158 188 136
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classified using deep learning methods such as convolutional
neural networks (CNNs) and long short-term memories
(LSTMs).

CNN works on pixel-by-pixel convolution, whereas
LSTM runs on feedback mechanism. CNN learns each
minute detail about each pixel value. On the contrary, LSTM
is dependent on past inputs. ,e achieved accuracy of the
CNN model as exhibited by Figure 13 is 84.2%, whereas
LSTM accuracy is 72.3%. Figures 6 and 7 corresponding to
the CNN model accuracy and model loss show that during
training, CNN model accuracy was increasing and loss was
near to 0%. Whereas in Figures 8 and 9, the LSTM model
accuracy during training increases, while the loss decreases
from 30% to 2%. CNN outperforms LSTM when it comes to
categorizing skin images into the five categories of psoriasis
and normal skin, according to our deep learning application.

Other techniques that have used similar deep learning
methods have also achieved high accuracies. A skin lesion
classification system was proposed using plaque psoriasis
images with classification being executed by CNN, and the
results of the study reported an accuracy of 60% [22].
Psoriasis was classified using dermoscopic images in another
investigation. ,e study’s findings showed that CNN had a
precision rate of 92.9% [42]. Mathematical processing is the
key to CNN’s improved performance. Accordingly, the
84.2% accuracy achieved in this research using CNN is due
to the usage of kernel convolution approach, which converts
the data into higher dimensions and computes pixel-by-
pixel transformation [43].

,e specialty of our proposed deep learning application
lies in being the first of its kind study encapsulating the
classification of five different types of psoriasis and normal
skin. A limitation of this study includes using publicly
available datasets with no collection of clinical data. Hence,
future work can be conducted using collected images from
clinics and with other deep learning methods so that more
robust classification performances can be accomplished.

6. Conclusion

In order to classify the five forms of psoriasis and normal
skin, this research used a deep learning classification ap-
proach. Plaque, guttate, inverted, pustular, and

erythrodermic are the five forms of psoriasis that may occur.
Following the extraction of color, texture, and form char-
acteristics, the convolutional neural network (CNN) and
long short-termmemory (LSTM) were used.,e application
of CNN presented an accuracy of 84.2% and that of LSTM
presented an accuracy of 72.3%. ,e accuracies achieved
demonstrate that the proposed deep learning application is
reliable and effective. ,ere are implications for further
research in relation to the existing proposed deep learning
application which can lead to enhancement of methods in
biomedical imaging. ,e existing application can also be
applied to other skin disorders along with being integrated
with other deep learning techniques like RNN. Moreover,
research pertaining to Psoriasis Area and Severity Index
(PASI) scoring can also be carried out in the future.
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R. Maskeli�unas, “Skin lesion segmentation and multiclass
classification using deep learning features and improvedmoth
flame optimization,” Diagnostics, vol. 11, no. 5, p. 811, 2021.

[18] M. A. Kassem, K. M. Hosny, R. Damaševičius, and
M. M. Eltoukhy, “Machine learning and deep learning
methods for skin lesion classification and diagnosis: a sys-
tematic review,” Diagnostics, vol. 11, no. 8, p. 1390, 2021.

[19] O. O. Abayomi-Alli, R. Damasevicius, S. Misra,
R. Maskeliunas, and A. Abayomi-Alli, “Malignant skin
melanoma detection using image augmentation by over-
sampling in nonlinear lower-dimensional embedding mani-
fold,” Turkish Journal of Electrical Engineering and Computer
Sciences, vol. 29, no. SI-1, pp. 2600–2614, 2021.

[20] C.-I. Moon, J. Lee, H. Yoo, Y. Baek, and O. Lee, “Optimization
of psoriasis assessment system based on patch images,” Sci-
entific Reports, vol. 11, no. 1, pp. 1–13, 2021.

[21] M. Dash, N. D. Londhe, S. Ghosh, A. Semwal, and
R. S. Sonawane, “PsLSNet: automated psoriasis skin lesion
segmentation using modified U-Net-based fully convolu-
tional network,” Biomedical Signal Processing and Control,
vol. 52, pp. 226–237, 2019.

[22] A. Pal, U. Garain, A. Chandra, R. Chatterjee, and S. Senapati,
“Psoriasis skin biopsy image segmentation using deep con-
volutional neural network,” Computer Methods and Programs
in Biomedicine, vol. 159, pp. 59–69, 2018.

[23] X. Li and A. W. K. Kong, “A multi-model restoration algorithm
for recovering blood vessels in skin images,” Image and Vision
Computing, vol. 61, pp. 40–53, 2017.

[24] T. A. Rimi, N. Sultana, and M. F. A. Foysal, “Derm-NN: skin
diseases detection using convolutional neural network,” in
Proceedings of the 2020 Fourth International Conference on

Intelligent Computing and Control Systems, (ICICCS),
pp. 1205–1209, Madurai, India, May 2020.

[25] A. W. Armstrong, M. P. Siegel, J. Bagel et al., “From the
medical board of the national psoriasis foundation: treatment
targets for plaque psoriasis,” Journal of the American Academy
of Dermatology, vol. 76, no. 2, pp. 290–298, 2017.

[26] E. Errichetti, F. Lacarrubba, G. Micali, A. Piccirillo, and
G. Stinco, “Differentiation of pityriasis lichenoides chronica
from guttate psoriasis by dermoscopy,” Clinical and Experi-
mental Dermatology, vol. 40, no. 7, pp. 804–806, 2015.

[27] A. Zampetti and S. Tiberi, “Inverse psoriasis,” Clinical
Medicine, vol. 15, no. 3, p. 311, 2015.

[28] M. J. Gooderham, A. S. Van Voorhees, and M. G. Lebwohl,
“An update on generalized pustular psoriasis,” Expert
Review of Clinical Immunology, vol. 15, no. 9, pp. 907–919,
2019.

[29] R. K. Singh, K. M. Lee, D. Ucmak et al., “Erythrodermic
psoriasis: pathophysiology and current treatment perspec-
tives,” Psoriasis, vol. 6, p. 93, 2016.

[30] A. Gholamy, V. Kreinovich, and O. Kosheleva, “Why 70/30 or
80/20 relation between training and testing sets: a pedagogical
explanation,” Technical Report: UTEP-CS-18-09, University
of Texas, Austin, TX, USA, 2018.

[31] P. K. Verma, N. P. Singh, and D. Yadav, “Image enhancement:
a review,” Ambient Communications and Computer Systems,
Springer, Singapore, 2020.

[32] H. Singh, Practical Machine Learning and Image Processing,
Apress, New York, NY, USA, 2019.

[33] S. C. Shekar and D. Ravi, “Image enhancement and com-
pression using edge detection technique,” International Re-
search Journal of Engineering and Technology, vol. 4, no. 5,
2017.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014, https://
arxiv.org/abs/1409.1556.

[35] F. Landi, L. Baraldi, M. Cornia, and R. Cucchiara, “Working
memory connections for LSTM,” Neural Networks, vol. 144,
pp. 334–341, 2021.

[36] Z. Pan, Z. Li, H. Fan, and X. Wu, “Feature based local binary
pattern for rotation invariant texture classification,” Expert
Systems with Applications, vol. 88, pp. 238–248, 2017.

[37] J. A. Actor, D. T. Fuentes, and B. Rivière, “Identification of
kernels in a convolutional neural network: connections between
level set equation and deep learning for image segmentation,”
Proceedings of SPIE-Ce International Society for Optical Engi-
neering, vol. 11313, Article ID 1131317, 2020.

[38] S. Liu, C. Zhang, and J. Ma, Edited by D. Liu, S. Xie, and Y. Li,
Eds., “CNN-LSTM neural network model for quantitative
strategy analysis in stock markets,” in Neural Information
Processing, D. Zhao and E.-S. El-Alfy, Eds., Springer Inter-
national Publishing, New York, NY, USA, 2017.

[39] R. Garreta and G. Moncecchi, Learning Scikit-Learn: Machine
Learning in python, Packt Publishing Ltd., Birmingham, UK,
2013.

[40] J. Brownlee, Machine Learning Mastery with Python: Un-
derstand Your Data, Create Accurate Models, and Work
Projects End-To-End, Machine Learning Mastery, Melbourne,
Australia, 2016.

[41] J. Hao and T. K. Ho, “Machine learning made easy: a review of
scikit-learn package in python programming language,”
Journal of Educational and Behavioral Statistics, vol. 44, no. 3,
pp. 348–361, 2019.

Journal of Healthcare Engineering 11

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556


[42] Y. Yang, J. Wang, F. Xie et al., “A convolutional neural
network trained with dermoscopic images of psoriasis per-
formed on par with 230 dermatologists,”Computers in Biology
and Medicine, vol. 139, Article ID 104924, 2021.

[43] X. Hou, Y. Gong, B. Liu et al., “Learning based image
transformation using convolutional neural networks,” IEEE
Access, vol. 6, Article ID 49779, 2018.

12 Journal of Healthcare Engineering


