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Many critical policy decisions, from strategic investments to the
allocation of humanitarian aid, rely on data about the geographic
distribution of wealth and poverty. Yet many poverty maps are
out of date or exist only at very coarse levels of granularity. Here
we develop microestimates of the relative wealth and poverty
of the populated surface of all 135 low- and middle-income
countries (LMICs) at 2.4 km resolution. The estimates are built by
applying machine-learning algorithms to vast and heterogeneous
data from satellites, mobile phone networks, and topographic
maps, as well as aggregated and deidentified connectivity data
from Facebook. We train and calibrate the estimates using na-
tionally representative household survey data from 56 LMICs and
then validate their accuracy using four independent sources of
household survey data from 18 countries. We also provide con-
fidence intervals for each microestimate to facilitate responsible
downstream use. These estimates are provided free for public
use in the hope that they enable targeted policy response to the
COVID-19 pandemic, provide the foundation for insights into the
causes and consequences of economic development and growth,
and promote responsible policymaking in support of sustainable
development.

poverty | machine learning | low- and middle-income countries |
poverty maps | sustainable development

any critical decisions require accurate, quantitative data on

the local distribution of wealth and poverty. Governments
and nonprofit organizations rely on such data to target humani-
tarian aid and design social protection systems (1, 2); businesses
use this information to guide marketing and investment strategies
(3); these data also provide the foundation for entire fields of
basic and applied social science research (4).

Yet reliable economic data are expensive to collect, and only
half of all countries have access to adequate data on poverty
(5). In some cases, the data that do exist are subject to political
capture and censorship (6, 7) and often cannot be disaggregated
below the largest administrative level (8). The scarcity of quan-
titative data impedes policymakers and researchers interested in
addressing global poverty and inequality and hinders the broad
international coalition working toward the Sustainable Develop-
ment Goals, in particular toward the first goal of ending poverty
in all its forms everywhere (9).

To address these data gaps, researchers have developed ap-
proaches to construct poverty maps from nontraditional data.
These include methods from small area statistics that combine
household sample surveys with comprehensive census data (10),
as well as more recent use of satellite “nightlights” (11-13),
mobile phone data (14, 15), social media (16), high-resolution
satellite imagery (17-21), or a combination of these (22, 23).
But to date these efforts have focused on a single continent or
a select set of countries, limiting their relevance to development
objectives that require a global perspective.

Results

Here we develop an approach to construct microregional wealth
estimates and use this method to create a complete set of mi-
croestimates of the distribution of poverty and wealth across all
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135 low- and middle-income countries (LMICs) (Fig. 14). We use
this method to generate, for each of roughly 19.1 million unique
2.4-km microregions in all global LMICs, an estimate of the
average absolute wealth (in dollars) and relative wealth (relative
to others in the same country) of the people living in that region.
These estimates, which are more granular and comprehensive
than previous approaches, make it possible to see extremely local
variation in wealth disparities (Fig. 1 B and C).

Our approach, outlined in Fig. 2, relies on “ground-truth”
measurements of household wealth collected through traditional
face-to-face surveys with 1,457,315 unique households living
in 66,819 villages in 56 different LMICs around the world
(SI Appendix, Table S1). These Demographic and Health Surveys
(DHSs), which are independently funded by the US Agency for
International Development, contain detailed questions about
the economic circumstances of each household and make it
possible to compute a standardized indicator of the average
asset-based wealth of each village (Materials and Methods). We
then use spatial markers in the survey data to link each village
to a vast array of nontraditional digital data. This includes high-
resolution satellite imagery, data from mobile phone networks,
and topographic maps, as well as aggregated and deidentified
connectivity data from Facebook (SI Appendix, Table S2). These
data are processed using deep learning and other computational
algorithms, which convert the raw data to a set of quantitative
features of each village (SIAppendix, Fig. S2). We use these
features to train a supervised machine-learning (ML) model
that predicts the relative wealth (Fig. 14) and absolute wealth
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Fig. 1. Microestimates of wealth for all low- and middle-income coun-
tries. (A) Estimates of the relative wealth of each populated 2.4-km
gridded region of all 135 LMICs. Interactive version is available at
http://www.povertymaps.net. (B and C) Enlargements show (B) the countries
of South Africa and Lesotho and (C) the regions around Durban and
Polokwane.

(SI Appendix, Fig. S34) of every populated 2.4-km grid cell in
LMICs (Materials and Methods).

The estimates of wealth and poverty are quite accurate. De-
pending on the method used to evaluate performance, the model

Fig. 2.
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explains 56 to 70% of the actual variation in household-level
wealth in LMICs (Fig. 34). This performance compares favorably
to state-of-the-art methods that focus on single countries or
continents (Materials and Methods) (17, 21).

To validate the accuracy of these estimates, and to eliminate
the possibility that the ML model is “overfit” on the DHS sur-
veys, we compare the model’s estimates to four independent
sources of ground-truth data. The first test uses data from 15
LMIC:s that have collected and published census data since 2001
(81 Appendix, Table S3). These data contain census survey re-
sponses from 27 million unique individuals, including questions
about the economic circumstances of each household. Impor-
tantly, the census data are independently collected and are never
used to train the ML model. In each country, we aggregate
the census data at the smallest administrative unit possible and
calculate a “census wealth index” as the average wealth of house-
holds in that census unit. We separately aggregate the 2.4-km
wealth estimates from the ML model to the same administrative
unit. The ML model explains 72% of the variation in house-
hold wealth across the 979 census units formed by pooling data
from the 15 censuses (Fig. 3C) and, on average, 86% of the
variation in household wealth within each of the 15 countries
(SI Appendix, Fig. S4).

To test the accuracy of the model at the most granular level
possible, we obtain three additional sources of survey data that
link household wealth information to the exact geocoordinates
of each surveyed household. The first dataset, collected by the
government of the Togolese Republic (Togo) from 2018 to 2019,
contains a nationally representative sample of 6,172 households
located in 922 unique 2.4-km grid cells (Fig. 44). We find that the
ML model’s predictions explain 76% of the variation in wealth
of these grid cells (Fig. 4B) and 84% of the variation in wealth
of cantons, Togo’s smallest administrative unit (Fig. 4C). The
second dataset, similar to the first one but independently col-
lected by the government of Nigeria in 2019, contains a nationally
representative sample of 22,104 households in 2,446 grid cells
(Fig. 4D). We find that the ML estimates explain 50% of the

MACHINE LEARNING

C

Overview of approach. (A) Nationally representative household survey data are obtained from 56 different countries around the world. (B) In

Nigeria, for example, there are 40,680 households surveyed in 899 unique survey locations (“villages”). Geospatial “big” data from satellites and other
existing sensors are also sourced from each location. (C) These data are used to train a machine-learning algorithm that predicts microregional poverty from

nontraditional data, even in regions where no ground-truth data exists.
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Fig. 3.

Model performance. (A) Distribution of model performance, across 56 countries with ground-truth data, using three different approaches to cross-

validation. Average R? across 56 countries shown in parentheses. (B) Much of the model’s predictive power comes from being able to differentiate between
rural and urban locations, but the model also detects wealth differentials within urban and rural locations. (C) The ML model explains 72% of the variation
in wealth, as measured with independent census data from 15 LMICs. Population-weighted regression lines are in blue; 95% confidence intervals are shown

with dashes.

variation in grid cell wealth (Fig. 4F) and 71% of the variation
in wealth of local government areas (Fig. 4F).

We further validate the grid-level predictions using a dataset
collected by GiveDirectly, a nonprofit organization that provides
humanitarian aid to poor households. In 2018, GiveDirectly
surveyed 5,703 households in two counties in Kenya (Fig. 4G),
recording a poverty probability index as well as the exact geoco-
ordinates of each household (Fig. 4H). Using these data, we show
that even within small rural villages, the ML model’s predictions
correlate with GiveDirectly’s estimates of poverty and wealth
(Fig. 4I; Pearson’s p between 0.41 and 0.78).

In addition to providing point estimates of the average wealth
of the households in each grid cell, we calculate estimates of the
expected error of each grid cell (SI Appendix, Fig. S3B). These
are obtained by using a linear regression to predict the absolute
value of the residuals (i.e., the model error) from the wealth
prediction model, as a function of observable characteristics of
each location (see Materials and Methods for details of this pro-
cedure and additional analysis of model error). While this linear
regression has limited explanatory power (average R? = 0.09 us-
ing spatially stratified cross-validation; SI Appendix, Fig. S164),
it is evident that prediction errors are larger in regions that are
far from areas covered by the DHS data (SI Appendix, Table S4).
While measures of uncertainty are not common in prior work on
subregional wealth estimation, we believe this is an important
step to help promote the responsible use of such estimates in
research and policy settings (24).

While our primary focus is on constructing, validating, and
disseminating this resource, the process of building this dataset
produces several insights relevant to the construction of high-
resolution poverty maps. For instance, we find that different
sources of input data complement each other in improving pre-
dictive performance (22, 23). While prior work has focused heav-
ily on satellite imagery, we find that models trained only on
satellite data do not perform as well as models that include other
input data (SI Appendix, Fig. S7A). In particular, information on
mobile connectivity is highly predictive of subregional wealth,
with 5 of the 10 most important features in the model related
to connectivity (SI Appendix, Fig. S2).

The global scale of our analysis also reveals intuitive patterns
in the geographic generalizability of machine-learning models
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(17, 25, 26). We find that models trained using data in one
country are most accurate when applied to neighboring countries
(81 Appendix, Fig. S6). Models also perform better in countries
when trained on countries with similar observable characteristics
(81 Appendix, Fig. S14). And while much of the model’s perfor-
mance derives from being able to differentiate between urban
and rural areas, the model can differentiate variation in wealth
within these regions as well (Fig. 3B).

We are making these microregional estimates of wealth and
poverty, along with the associated confidence intervals, freely
available for public use and analysis (27). These estimates are
provided through an open and interactive data interface that
allows scientists and policymakers to explore and download
the data (SI Appendix, Fig. S1; available online at http://www.
povertymaps.net).

Discussion

How might these estimates be used to guide real-world policy-
making decisions? One key application is in the targeting of
social assistance and humanitarian aid. In the months following
the onset of the COVID-19 pandemic, hundreds of new social
protection programs were launched in LMICs, and in each case,
program administrators faced difficult decisions about whom to
prioritize for assistance (28). This is because in many LMICs,
planners do not have comprehensive data on the income or
consumption of individual households (29). Our microestimates
provide one potential solution.

In simulations, we find that geographic targeting using our
microestimates allocates a higher share of benefits to the poor
(and a lower share of benefits to the nonpoor) than geographic
targeting approaches based on recent nationally representative
household survey data (see Table 1 and Materials and Methods for
targeting simulations). This is because the microestimates make
it possible to target smaller geographic regions than would be
possible with traditional survey data—a finding that is consistent
with prior work that suggests that more granular targeting can
produce large gains in welfare (2, 30, 31). For instance, the most
recent DHS in Nigeria surveyed households in only 13.8% of all
Nigerian wards (the smallest administrative unit in the country);
by contrast, the microestimates cover 100% of wards. In Togo,
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Fig. 4. Validation with independently collected microdata in Togo, Nigeria, and Kenya. (A) Map of Togo showing locations of surveyed households
(jitter added to map to preserve household privacy). (B) Scatterplot of the predicted RWI of each grid cell against the average wealth of the grid cell,
as reported in a nationally representative government survey. Points are sized by population. Population-weighted regression lines are in blue; 95%
confidence intervals are shown with dashes. (C) Scatterplot of predicted RWI against average wealth of each canton, the smallest administrative unit in Togo.
(D) Map of surveyed households in Nigeria (jitter added). (E) Scatterplot of predicted RWI against average wealth of each grid cell. (F) Scatterplot of predicted
RWI against average wealth of each local government area (LGA). (G) Map of Kenya showing the regions surveyed by GiveDirectly. (H) Enlargement of the
three survey regions, showing the location of each of 5,703 surveyed households. Colors of background grid cells indicate RWI predicted from the ML model.
In both enlargements, the width of the grid cell is 2.4 km. (/) Scatterplot of the predicted RWI of each grid cell (y axis) against the average PPI of all surveyed
households in the grid cell (x axis). Points are sized by the number of households in the grid cell and colored by region.
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Table 1. Targeting simulations in Togo and Nigeria

1) 2) 3) 4) 5)
No. of spatial No. of units R? Targeting accuracy, Targeting accuracy
units with estimates poorest 25% poorest 50%
Togo
A) High-resolution estimates
Tile targeting 10,187 10,187 0.60 0.73 0.79
Canton targeting 387 387 0.56 0.73 0.77
B) Imputation based on DHS data
Prefecture targeting 40 40 0.49 0.70 0.70
Canton targeting 387 185 0.52 0.76 0.80
Nigeria
C) High-resolution estimates
Tile targeting 159,147 159,147 0.53 0.79 0.79
Ward targeting 8,808 8,808 0.51 0.78 0.78
D) Imputation based on DHS data
State targeting 37 37 0.37 0.75 0.74
LGA targeting 774 631 0.47 0.78 0.76
Ward targeting 8,808 1,218 0.54 0.83 0.79

A and C simulate the performance of antipoverty programs that geographically target households using the ML estimates of tile wealth, under scenarios
where the program is implemented at the tile level (first row) or smallest administrative unit in the country (second row). B and D simulate geographic
targeting based on the most recent DHS survey, using administrative units of different sizes. For B and D, when an admin-unit has no surveyed households,
the wealth of the unit is imputed based on the wealth of the geographic unit closest to the household. Column 1 indicates the number of units in the
country; column 2 indicates the number of units where data exist—see also S/ Appendix, Fig. S19 for maps highlighting the regions in Togo and Nigeria that
were surveyed in the most recent DHS. Column 3 indicates the R?> from a weighted least-squares regression, at the household level, of the ground-truth
wealth of each household (from the EHCVM or NLSS) and the estimate of the wealth of the spatial unit in which that household is located, weighted using
the EHCVM or NLSS household weight. Columns 4 and 5 assume that the government has a fixed budget, sufficient to cover 25% (column 4) or 50% (column
5) of the population, and provides benefits to all households in the poorest administrative units; we then report the accuracy at targeting the 25% or 50%

of the poorest households (in the EHCVM or NLSS).

existing government surveys provide poverty estimates that are
only representative at the regional level (of which there are only
five); we provide estimates for 9,770 distinct tiles.

Based on the strength of these results, the Government of
Nigeria is using these estimates as the basis for social protection
programs that are providing benefits to millions of poor families
(32). Likewise, the Government of Togo is using these estimates
to target mobile money transfers to hundreds of thousands of the
country’s poorest mobile subscribers (33). These examples high-
light how the ML estimates can improve targeting performance
even in countries with robust national statistical offices, like
Nigeria and Togo. In the large number of LMICs that have not
conducted a recent nationally representative household survey,
these microestimates create an option for geographic targeting
that would otherwise not exist.

The standardized procedure through which these estimates
are produced may also be attractive in contexts where political
economy considerations might lead to systematic misreporting
of data (7) or influence whether new data are collected at all (6).
However, this does not imply the ML estimates are apolitical, as
maps have a historical tendency to perpetuate existing relations
of power (34). One particular concern is that the technology
used to construct these estimates may not be transparent to
the average user; if not produced or validated by independent
bodies, such opacity might create alternative mechanisms for
manipulation and misreporting.

Our hope is that these methods and maps can provide an ad-
ditional set of tools to study economic development and growth,
guide interventions, monitor and evaluate policies, and track the
elimination of poverty worldwide.

Materials and Methods

Ground-Truth Wealth Measurements. The ground-truth wealth data used to
train the predictive models are derived from household surveys conducted
by the Demographic and Health Survey (DHS) Program. The DHS collects
“nationally representative household surveys that provide data for a
wide range of monitoring and impact evaluation indicators in the areas
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of population, health, and nutrition” (35). We elected to train our
model exclusively on DHS data because it is the most comprehensive
single source of publicly available, internationally standardized wealth
data that provides household-level wealth estimates with subregional
geomarkers.

We use the DHS “relative wealth index” as our ground-truth measure of
wealth and poverty. This means that our machine-learning algorithms are
being trained to reconstruct a specific, asset-based relative wealth index—
albeit at a much finer spatial resolution and in areas where DHSs did not
occur. This is because we believe the DHS version of a relative wealth index
is the best publicly available instrument for consistently measuring wealth
across a large number of LMICs. However, it posits a specific, asset-based
definition of wealth that does not necessarily capture a broader notion of
human development. More broadly, a rich social science literature debates
the appropriateness of different measures of human welfare and wellbeing
(4, 36). Our decision to focus on estimating asset-based wealth, rather than
a different measure of socioeconomic status, was motivated by several
considerations. First, in developing economies, where large portions of the
population do not earn formal wages, measures of income are notoriously
unreliable. Instead, researchers and policymakers rely on asset-based wealth
indexes or measures of consumption expenditures. Between these two,
wealth is much less time consuming to record in a survey; as a result, wealth
data are more commonly collected in a standardized format for a large
number of countries (37).

We obtain the most recent publicly available DHS survey data from 56
countries (S/ Appendix, Table S1). The criteria for inclusion are that the data
are available for download through the DHS website (as of March 2020),
the data contain asset/wealth information and subregional geomarkers, and
the most recent survey was conducted since 2000. The combined dataset
contains the survey responses from 1,457,315 household surveys taken across
Africa, Asia, Europe, and Latin America. Each individual household survey
lasts several hours and contains several questions related to the socioeco-
nomic status of the household. We focus on a standardized set of questions
about assets and housing characteristics (electricity in household, telephone,
automobile, motorcycle, refrigerator, TV, radio, water supply, cooking fuel,
trash disposal, toilet, floor material, wall material, roof material, and rooms
in house). From the responses to these questions, and following standard
practice (8, 38), the DHS calculates a single continuous measure of relative
household wealth, the relative wealth index (RWI), by taking the first
principal component of these 15 questions. It is this DHS-computed RWI that
we rely upon as a ground-truth measure of wealth.
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As noted in the DHS documentation, the DHS relative wealth index “is
constructed as a relative index within each country at the time of the survey.
Each wealth index has a mean value of zero and a standard deviation of one.
Thus, specific scores cannot be directly compared across countries or over
time” (39). In our analysis, we similarly standardize the satellite imagery and
other input data within each country, to have a mean value of zero and a SD
of one. Thus, our supervised-learning models recover how relative values of
input data (relative to other locations in that country) correlate with relative
values of wealth (also relative to other locations in that country).

In addition to providing measures of wealth for each household, the DHS
indicates the cluster in which each household is located. The 1.5 million
households are associated with 66,819 unique clusters, where a cluster is
roughly equivalent to a village in rural areas and a neighborhood in urban
areas. We calculate the average wealth of each “village” cluster by taking
the mean RWI of all surveyed households in that cluster.” This village-level
average RWI is the target variable for the machine-learning model.

Input Data. The prediction algorithms rely on data from several different
sources (S/ Appendix, Table S2). To facilitate downstream analysis, all data
are converted into features that are aggregated at the level of a 2.4-km
grid cell. We use 2.4-km cells because that is the highest resolution at which
many of our input data are available, and it is best suited to the spatial
merge with the survey data (see Supervised Machine Learning below). We
were also concerned that providing estimates of wealth at even smaller grid
cells might compromise the privacy of individual households. Thus, if the
native resolution of a data source is higher than 2.4 km, we aggregate the
smaller cells to the 2.4-km level by taking the average of the smaller cells.

The features input into the model indicate, for each cell, properties such
as the average road density, the average elevation, and the average annual
precipitation. Several features related to telecommunications connectivity
are obtained from Facebook, which uses proprietary methods to estimate
the availability and use of telecommunications infrastructure from deiden-
tified Facebook usage data.” All estimates are regionally aggregated at the
2.4-km level to preserve individual privacy. We use estimates of the number
of mobile cellular towers in each grid cell, as well as the number of WiFi
access points and the number of mobile devices of different types. These
measures are based on the infrastructure used by Facebook users, so may not
be representative of the full population. To the extent that these features
are predictive of regional wealth (which they are), no deeper inference
or causal interpretation should be drawn from the empirical association.
Rather, these patterns simply indicate that the regional distribution of
wealth is correlated with these nonrepresentative measures of telecommu-
nications use.

Since the raw satellite imagery is extremely high dimensional, we use
unsupervised-learning algorithms to compress the raw data into a set of 100
features. Specifically, following Jean et al. (17), we use a pretrained, 50-layer
convolutional neural network (CNN) to convert each 256 x 256-pixel image
into 2,048 features and then extract the first 100 principal components of
these 2,048-dimensional vectors.* These 100 components explain 97% of the
variance of the 2,048 features (S/ Appendix, Fig. S9).

All input features are normalized by subtracting the country-specific
mean and dividing by the country-specific SD.

Spatial Join. We match the ground-truth wealth data to the input data
using spatial information present in both datasets. The 2.4-km grid cells
are defined by absolute latitude and longitude coordinates specified by the
Bing tile system.5 The DHS data include approximate information about the

*Our main estimates do not use the cluster weights provided by the DHS. We separately
evaluate a model that used these weights to train a weighted regression tree and find
that the predictions of the two models are highly correlated (r = 0.9) and result in
similar overall performance (R? = 0.56 without weights vs. R% = 0.54 with weights).

i https://research.facebook.com/research-areas/networking-connectivity/.

*We use a 50-layer resnet50 network (40), where pretraining is similar to that in Mahajan
et al. (41). This network is trained on 3.5 billion public Instagram images (several orders
of magnitude larger than the original Imagenet dataset) to predict corresponding
hashtags. We extract the 2,048-dimensional vector from the penultimate layer of the
pretrained network, without fine-tuning the network weights. The satellite imagery
has a native resolution of 0.58 m/pixel. We downsample these images to 9.375 m/pixel
resolution by averaging each 16 x 16 block. The downsampled images are segmented
into 2.4-km squares and then passed through the neural network. For each satellite
image, we do a forward pass through the network to extract the 2,048 nodes on the
second-to-last layer. We then apply PCA to this 2,048-dimensional object and extract the
first 100 components. The PCA eigenvectors are computed from images in the training
dataset (i.e., the images from the 56 countries with household surveys).

Ssee https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system.
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global positioning system (GPS) coordinate of the centroid of each of the
66,819 villages. However, the exact geocoordinates are masked by the DHS
program with up to 2 km of jitter in urban areas and up to 5 km of jitter in
rural areas.

To ensure that the input data associated with each village cover the
village’s true location, we include a 2 x 2 grid of 2.4-km cells around the
centroid in urban areas and a 4 x 4 grid in rural areas. For each village, we
then take the population-weighted average of the 112-dimensional feature
vectors across a 2 X 2 or a 4 x 4 set of cells, using existing estimates of
the population of 2.4-km grid cells (42). This leaves us with a training set of
66,819 villages with wealth labels (calculated from the ground-truth data)
and 112-dimensional feature vectors (computed from the input data).

Supervised Machine Learning. We use machine-learning algorithms to pre-
dict the average RWI of each village from the 112 features associated with
that village. We do not perform ex ante feature selection prior to fitting the
model. We use a gradient-boosted regression tree, a popular and flexible
supervised-learning algorithm, to map the inputs to the response variable.
To tune the hyperparameters of the gradient-boosted tree, we use three
different approaches to cross-validation:"

e K-fold cross-validation (labeled “basic CV" in Fig. 3A). For each coun-
try, the labeled data are pooled and then randomly partitioned into
k =5 equal subsets. A model is trained on all but one subset and tested
on the held-out subset. The process is repeated k times and we report
average held-out performance for that country. This approach to cross-
validation is used most frequently in prior work, but can substantially
overestimate performance (43). This bias arises because both the input
(e.g., satellite) and response (RWI) data are spatially autocorrelated,
leaving the training and test data not independent and identically
distributed (44).*

® Leave-one-country-out cross-validation (“leave-country-out”). For each
country, a model is trained using the pooled data from all other 55
countries; the test performance is evaluated on the held-out country
(21).

e Spatially stratified cross-validation (“spatial CV"”). This method ensures
that training and test data are sampled from geographically distinct
regions (43, 44). In each country, we select a random cell as the training
centroid and then define the training dataset as the nearest (k — 1) /k
percent of cells to that centroid. The remaining 1/k cells from that
country form the test dataset. This procedure is repeated k = 10 times
in each country.

Fig. 3A compares the performance of these three methods, by showing
the distribution of R? values for each approach to cross-validation (the
distribution is formed from 56 countries, where a separate model is trained
and cross-validated in each country). The difference in R? resulting from
different approaches to cross-validation highlights the potential upward
bias in performance that results from spatial autocorrelation in training
and test data. By comparison, recent work on wealth prediction in Africa
found that a mixture of remote sensing and nightlight imagery explains on
average 67% of the variation in wealth (21). That benchmark was based on
an approach similar to the “leave-country-out” method shown in Fig. 3A,
evaluated on a more homogenous set of 23 African nations. When we
restrict our analysis to the same 23 countries evaluated by ref. 21, our model
explains 71% of the variation in ground-truth wealth, using leave-country-
out cross-validation (S/ Appendix, Fig. S8).

Unless noted otherwise, all analysis in this paper uses models based on
spatially stratified cross-validation. While this has the effect of lowering
the R? values that we report, we believe it is the most conservative and
appropriate method for training machine-learning models on geographic
data with spatial autocorrelation.

Feature Importance. To explore which input data are driving the model’s
predictions, S/ Appendix, Fig. S2 provides two different indicators of feature
importance. S/ Appendix, Fig. S2 A, Left indicates the unconditional correla-
tion between the true wealth label and each individual feature, calculated

1 Hyperparameters were tuned to minimize the cross-validated mean-squared error, using
a grid search over several possible values for maximum tree depth (1, 3, 5, 10, 15, 20,
31) and the minimum sum of instance weight needed in a child (1, 3, 5, 7, 10).

#In an extreme example, imagine a single town that covers two adjacent grid cells. If one
of the grid cells is in the training set and the other is in the testing set, a flexible model
could simply learn to detect the town and predict its wealth. This sort of overfitting is
not addressed by standard k-fold cross-validation.
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as the R? from a univariate regression of the wealth label on each single
feature (each row is a separate regression; with 56 countries, there are 56
R? values that form the distribution of each boxplot). SI Appendix, Fig. 2 B,
Right indicates the model gain, which provides an indication of the relative
contribution of each feature to the final model (specifically, it is the average
gain across all splits in the random forest that use that feature) (45). In
general, we find that data related to connectivity, such as the number
of cell towers and mobile devices in a region, are the most predictive
features; nightlight radiance and population density are also predictive.
While no single feature derived from satellite imagery is especially predictive
in isolation, the large number of satellite features collectively contributes
to model accuracy—this can be seen most directly in S/ Appendix, Fig. S7A,
which compares the predictive performance of models with and without
satellite imagery.

Out-of-Sample Estimates. To produce the final maps and microestimates, as
well as the public dataset, we pool data from all 56 countries and train a
single model using spatially stratified cross-validation to tune the model
parameters.l This model maps 112-dimensional feature vectors to wealth
estimates. We then pass the 112-dimensional feature vector for each 2.4-km
grid cell located in a LMIC through this trained model to produce an estimate
of the relative wealth (RWI) of each grid cell (Fig. 1). We use the World
Bank’s List of Country and Lending Groups to define the set of 135 low- and
middle-income countries.** Since we do not normalize these predictions at
the country level after they have been generated, we do not expect that
each country will have the same within-country RWI distribution.

The 2.4-km grid cell estimates are more granular than the data that were
used to train and cross-validate the model, which used 2 x 2 or 4 x 4
grids of 2.4-km cells to account for the jitter in the DHS data. It is possible
to generate these 2.4-km estimates because that is the native resolution
of much of the input data, so it is possible to construct input vectors for
each 2.4-km grid cell. However, it is possible that performance at this finer
resolution would be different from the performance that is cross-validated
at coarser resolution. We cannot test this possibility with the DHS data;
however, subsequent validation of the 2.4-km estimates using microdata
with actual GPS coordinates suggests that, at least in the three countries
we can check, the accuracy of the 2.4-km estimates is similar to that of the
2 x 2 and 4 x 4 grids tested through cross-validation.

To help preserve the privacy of individuals and households, we do not
display wealth estimates for 2.4-km regions where existing population layers
indicate the presence of 10 or fewer individuals in the region (42). Instead,
we aggregate neighboring 2.4-km tiles (by taking the population-weighted
average RWI) until the total estimated population of the larger area is at
least 10. The “neighbors” of a tile are those tiles that fall within the larger
tile, using the tile boundaries defined by the Bing tile system (the 2.4-km
estimates correspond to Bing tile level 14; the next largest tile, Bing tile level
13, defines 4.8-km grid cells, and so forth). All of the neighboring 2.4-km
cells in the larger tile are then assigned the same estimate of RWI (i.e., the
population-weighted average).

Cross-Sectional Estimation. Our main objective is to produce accurate
estimates of the current, cross-sectional distribution of wealth and poverty
within LMICs. In training the machine-learning model described above,
we thus use the most recently available version of each data source.
The ground-truth wealth measurements cover a wide range of years
(S Appendix, Table S1); the input data are primarily generated in 2018
(SI Appendix, Table S2). This often creates a mismatch between the dates
of the input variables and the survey labels for a given region. In practice,
this means that our estimates are best at capturing within-country variation
in wealth that does not change over a relatively short time horizon (i.e.,
between the prior survey date and 2018). Analysis of DHS data from LMICs
with multiple surveys suggests a high degree of persistence in the within-
country variation in wealth (S/ Appendix, Fig. $12). For instance, across the
33 countries with two or more DHS surveys conducted since 2000, the median
R? between regional Administrative Level 2 (admin-2) wealth estimates

lin robustness analysis, we separately constructed complete microestimates for all LMICs
in which the estimates for all countries without DHS surveys were based on the full
model trained on pooled data from the 56 countries with DHS surveys; then, in each of
the 56 countries with DHS surveys, we replaced the pooled estimates with the estimates
from a model trained exclusively with data from the target country. We find that the
average accuracy of this alternative approach (R? = 0.54, using spatial CV) is nearly
identical to the pooled approach (average R% = 0.56, using spatial CV).

**We use the 2018 version of this list, which includes countries whose gross national
income per capita was less than $4,045. See https://datahelpdesk.worldbank.org/
knowledgebase/articles/906519-world-bank-country-and-lending-groups.
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from the most recent DHS survey and the preceding DHS survey is 0.81. Still,
this approximation likely introduces error into our model and suggests that
these estimates are better suited toward applications that require a measure
of permanent income than to applications that require an understanding
of poverty dynamics. More broadly, we see this model’s performance as
a benchmark that can be improved upon as more input and survey data
become available.

Ideally, we would obtain historical input data from the same years in
which each survey was conducted. Unfortunately, historical versions of
most of the input data in S/ Appendix, Table S2 do not exist. Alternatively,
we could restrict our analysis to input data that do exist in a historical
panel. However, as shown in SI Appendix, Fig. S7A, excluding key predictors
substantially limits the model’s predictive accuracy. Another option would be
to train the model using only more recent surveys. In S/ Appendix, Fig. S10A,
we observe that the accuracy of a model trained on the subset of 24 coun-
tries that conducted DHS surveys since 2015 is similar to the performance
of a model trained on all 56 countries with DHS data since 2000. Related,
when we validate the model’s performance using independently collected
census data (Independent Validation with Census Data), we find no evidence
to suggest that a shorter gap between the date of the DHS training data
and the date of the census increases the predictive accuracy of the model
(S/ Appendix, Fig. S11).

Independent Validation with Census Data. We validate the accuracy of the
ML estimates using census data that are collected independently from the
DHS data used to train the models. Specifically, we obtain census data from
all countries with public IPUMS-I data, where the census occurred since
2000 and where asset data are complete (46). In total, these data cover 15
countries on three continents and capture the survey responses of 27 million
individuals (S/ Appendix, Table S3). We assign each of these individuals a
census wealth index by taking the first principal component of the 13 assets
present in the census data. This list is similar to the DHS asset list, but excludes
data on motorcycles and rooms in the household. As with the DHS data, the
principal component analysis (PCA) eigenvectors are computed separately
for each country. Finally, we compute the average census wealth index over
all households within each second administrative unit, the smallest unit that
is consistently available across countries. Of the 1,003 census units, 979 have
households with wealth information and also contain a 2.4-km tile with a
centroid inside the unit.

Fig. 3C shows a scatterplot of these 979 administrative units, sized by pop-
ulation. The x axis indicates the average wealth of each administrative unit,
according to the census (calculated as the mean first principal component
across all households in the unit). The y axis indicates the average predicted
RWI of the administrative unit, calculated by taking the population-
weighted mean RWI of all grid cells within the unit. The population-
weighted regression line R? = 0.72 (obtained when pooling the 979 admin-2
regions from all 15 countries). S/ Appendix, Fig. S4 disaggregates Fig. 3C by
country, showing the relationship between census-based wealth and RWI
across the administrative units of each country. The average population-
weighted R? across the 15 countries is 0.86 (S/ Appendix, Table S3).

High-Resolution Validation with Independently Collected Microdata from Togo,
Nigeria, and Kenya. We further validate the accuracy of the ML estimates
at the finest possible spatial resolution by comparing them to three inde-
pendently collected household surveys in Togo, Nigeria, and Kenya. In each
case, we obtain the original survey data for all households, as well as the
exact GPS coordinates of each surveyed household. As with the census data,
none of these datasets were used to train the ML model; they thus provide
an independent and objective assessment of the accuracy and validity of our
new estimates.

Togo. As part of the 2018 to 2019 Enquete Harmonizee sur les Condi-
tions de Vie des Menages (EHCVM), the government of Togo conducted a
nationally representative household survey with 6,172 households.™ A key
advantage of these data is that, in addition to observing a wealth index for
each household (calculated as the first principal component of roughly 20
asset-related questions), we observe each household’s exact geocoordinates
(Fig. 4A). The 6,172 households are located in 922 unique 2.4-km grid cells
(which correspond to 260 unique cantons, the smallest administrative unit
in Togo), of the 9,770 total grid cells in the country. We also note that there
is nothing Togo specific in how the ML model is trained: We simply use
the estimates generated by the final model that is trained using spatially
stratified cross-validation from all 56 countries with DHS data (Fig. 1).

See https://inseed.tg/.
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Fig. 4A shows the approximate location of each of the households

surveyed in the EHCVM. Fig. 4B compares, for each of the 922 grid cells
with surveyed households, the average wealth of all households in each
grid cell as calculated from the EHCVM (x axis) to the estimated RWI of
the grid cell, which is displayed on the y axis (R? = 0.76). Fig. 4C presents
an analogous analysis for each of the 260 cantons in Togo, where the x axis
indicates the average EHCVM wealth of all households in the canton and the
y axis indicates the average RWI for each canton, calculated as population-
weighted mean of all cells within the canton (R? = 0.84).
Nigeria. During the 2018 to 2019 Nigerian Living Standards Survey (NLSS),
Nigeria’s National Bureau of Statistics, in collaboration with the World
Bank, conducted a nationally representative household survey with 22,104
households (Fig. 4D). The survey excluded Borno State due to security
concerns (see https://www.nigerianstat.gov.ng/nada/index.php/catalog/64).
Like the EHCVM in Togo, the NLSS in Nigeria contains a wealth index for
each household and each household’s exact geocoordinates. The 22,104
households are located in 2,446 unique 2.4-km grid cells. We compare the
NLSS microdata, which were never used to train the model, to the final
estimates of the ML model.

Fig. 4D shows the approximate location of each of the households

surveyed in the NLSS. Fig. 4E compares, for each of the 2,446 grid cells with
surveyed households, the average wealth of all households in the grid cell
as calculated from the NLSS to the estimated RWI of the grid cell (R? =
0.50). Fig. 4F presents an analogous analysis for each of Nigeria’s 774 Local
Government Areas (R = 0.71).
Kenya. We also validate the accuracy of the grid-cell RWI estimates using
GPS-enabled survey data collected in the Kenyan counties of Kilifi and Bomet
(Fig. 4G). These data were collected by GiveDirectly, a nonprofit organiza-
tion that provides unconditional cash transfers to poor households. When
GiveDirectly works in a village, they typically conduct a socioeconomic survey
with every household in the village. The survey includes a standardized set
of 10 questions that form the basis for a poverty probability index (PPI)
(https://www.povertyindex.org/country/kenya), which GiveDirectly uses to
determine which households are eligible to receive cash transfers. GiveDi-
rectly also records the exact geocoordinates of each household that they
survey (Fig. 4G).

Fig. 4/ compares estimates of microregional wealth based on GiveDi-
rectly’s household PPI census to estimates of wealth based on the ML model.
We calculate the average PPI score of each 2.4-km grid cell by taking the
mean of the PPI scores of all households in the grid cell. We compare this
to the predicted RWI from the ML model. Across the 44 grid cells shown
in Fig. 4H (10 from region 1, 26 from region 2, and 8 from region 3), the
predicted RWI explains 21% of the variation in PPI (Pearson’s r = 0.46). Within
each region, the correlation between PPl and RWI ranges from 0.41 to 0.78.

While the ML model explains less of the variation in Kenya than it does in
Togo, Nigeria, or the 15 census countries, this is a much more stringent test.
This is because the comparison is being done across 44 spatially proximate
units (Fig. 4H) in three small and relatively homogenous villages. Within
these villages, there is less variation in wealth than there is across an entire
country (the variance in RWI across the 44 cells is 0.05; across all of Kenya
the variance is 0.10). Our other tests—and indeed all prior work of which
we are aware—measure R? across entire countries. The Kenya test is also
handicapped by the fact that the Kenyan PPI is not strictly a wealth index,
containing questions about education, consumption, and housing materials.
Measures of wealth and poverty are quite sensitive to the measurement
instrument used. For instance, Filmer and Pritchett (37) find that, even within
a single survey, the Spearman rank correlation between an asset index and
a measure of consumption expenditures ranges from 0.43 (in Pakistan) to
0.64 (in Nepal). The analysis in Fig. 4/ compares estimates of microregional
wealth, based on variation within single villages, to independently collected
household survey data where the exact location of each surveyed household
is known. We therefore find it encouraging that the predicted RWI roughly
separates wealthier from poorer neighborhoods within these small regions.

Model Accuracy in High-Income Nations. The primary intent of the model is
to produce estimates of wealth in LMICs, and it is from LMICs that we source
all of the ground-truth data used to train the model. For completeness, we
assess the performance of the model’s predictions in high-income nations.
This comparison is imperfect, because high-income nations do not typically
collect asset-based wealth indexes, which is what the ML model is trained
to estimate. Instead, we compare the absolute wealth estimates (AWEs)
of the ML model (see below for details on how these are constructed)
to independently produced data on regional gross domestic product per
capita (GDPpc) from 30 member nations of the Organization for Economic
Cooperation and Development (OECD). These data are collected by the
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National Statistical Offices of each respective country, through the network
of delegates participating in the Working Party on Territorial Indicators.*
In each country, we obtain the OECD’s estimate of the average GDPpc
of each “small” Territorial Level (TL)3 region.5® We separately calculate the
AWE of each region by taking the population-weighted average AWE of
all 2.4-km grid cells in the region. S/ Appendix, Fig. S5A shows a scatterplot
of these 1,540 administrative units, sized by population, where the x axis
indicates the OECD-based measure of wealth of the administrative unit and
the y axis indicates the population-weighted average predicted AWE of the
administrative unit. S/ Appendix, Fig. S5B shows the accuracy of the model
in each of the 30 countries. The average population-weighted R? across
the 30 countries is 0.50; the population-weighted regression line R? = 0.59
(obtained when pooling the 1,540 regions from all 30 countries). We note
that the AWE values are generally larger than the OECD estimates of GDPpc
(the slope of the regression line in S/ Appendix, Fig. S5A is 1.35). This is likely
due to the fact that the GDPpc estimates used to construct the AWE (sourced
from the World Bank) are consistently higher than the GDPpc estimates
sourced from the OECD. This comparison is made in S/ Appendix, Fig. S5C,
where we compare, for the 30 OECD nations, the relationship between the
World Bank estimate of GDPpc and the average regional GDPpc based on
OECD data (the slope of the regression line in S/ Appendix, Fig. S5C is 1.66).

Estimates of Model Error. In many applied settings, it is important to have
not just a point estimate of the wealth of a particular location, but also an
understanding of the uncertainty associated with each point estimate. We
are encouraged by the fact that we do not find evidence that the model
performs any worse in poorer regions (S/ Appendix, Fig. S13), as occurs with
nightlights data (17).

Disaggregating this error, we find that model error is lower when the
target country is near many countries with ground-truth data used to train
the model and when there are many training observations nearby. This
can be seen in S/ Appendix, Table S4, where we estimate the error of each
individual 2.4-km location / by fitting a linear regression of the absolute
value of the model’s residual at / (in the locations with ground-truth data)
on observable characteristics of /. We selected a broad set of observable
characteristics that include all of the features used in the predictive model
(with the exception of the imagery-based features), how much ground-truth
training data were available near the spatial unit (such as the distance to the
nearest DHS cluster), and country-level characteristics (such as average GDP
per capita and continent dummy variables). We then regress the absolute
model error, in RWI units, of grid cell / on I's vector of observable charac-
teristics. We show the correlates of model error in S/ Appendix, Table S4,
column 1.

To better understand the sensitivity of these error estimates, we rees-
timate the results in column 1 of S/ Appendix, Table S4 using different
subsets of available predictors. Columns 2 and 3 of S/ Appendix, Table S4
indicate that while the point estimates 3 depend somewhat on the other
variables included in the regression, the qualitative patterns are the same.
More importantly, we observe that the actual error estimates (for any
given location /) are not very sensitive to the variables included in the
model. For instance, S/ Appendix, Fig. S15 compares the error predicted
by the model in column 1 of (x axis) against the error predicted by the
two alternative specifications in columns 2 and 3 of S/ Appendix, Table S4.
SI Appendix, Fig. S15A shows the correlation between the median error
of a country under the original specification and the median error of a
country using a different specification that also includes the 100 satellite
imagery features as predictors (r = 0.770). S/ Appendix, Fig. S15B shows the
correlation between the median country error under the original model and
amodel that includes only the set of features that were not used to estimate
RWI (r = 0.773).

More broadly, S/ Appendix, Figs. S6 and S14 indicate that models
trained with data from a single country perform best when applied to
countries with similar characteristics. To construct S/ Appendix, Fig. S14,

**Data were obtained from https://stats.oecd.org/Index.aspx?DataSetCode=PDB_LV. Of
the 36 OECD member countries, 34 provide data on GDPpc. Of these, we exclude
Luxembourg and Malta [which have only 1 and 2 geographic units, respectively]. Ireland
[6 units] and Lithuania [9 units] are also excluded since the spatial units listed in the
GDPpc data do not match the spatial units listed in the corresponding OECD shapefiles.
The remaining 30 countries contain 1,690 administrative units, of which 1,540 have
GDPpc information.

5The OECD's TL3 regions typically correspond to second-level administrative regions,
with the exception of Australia, Canada, and the United States. These TL3 regions
are contained in a TL2 region, with the exception of the United States for which the
economic areas cross the states’ borders.
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we calculate the cosine similarity between all pairs of countries based
on the country-level attributes listed in S/ Appendix, Table S4. (i.e., area,
population, island, landlocked, distance to the closest country with DHS,
number of neighboring countries with DHS, GDP per capita, and Gini
coefficient). We then show, for different thresholds of dissimilarity d,
the average test error across all countries ¢ when the model is trained
on countries at least d dissimilar to c. For instance, when d = 0.1, the
model for each country c is trained only on countries at least distance 0.1
from c.

An advantage of modeling error with a linear regression is that the
resulting coefficients can be readily interpreted, as we have done above. It is
possible, however, that such a simple model might not predict model error as
well as a more flexible nonlinear model. For this reason, we test a machine-
learning approach to predicting the absolute residuals from the wealth
prediction model. In particular, SI Appendix, Fig. S16 shows the results from
using three different methods for cross-validation to predict the absolute
value of the model’s residual at location /. S/ Appendix, Fig. S16A shows the
distribution of R? values across the 56 DHS countries, using a linear regres-
sion with all of the regressors shown in S/ Appendix, Table S4, column 1.
SI Appendix, Fig. S16B shows the results obtained when a gradient-boosted
regression tree is used instead. S/ Appendix, Fig. S17 indicates the feature
importances for the gradient-boosting model of prediction error.

We observe little difference in the predictive accuracy of the linear
model and gradient-boosted decision tree. We also make this comparison
more directly in S/ Appendix, Fig. S15C, which plots the median error of
the linear model for each country (x axis) against the median error of the
gradient-boosting model for the same country (r = 0.541). More generally,
this analysis indicates that it is more difficult to predict model error than it
is to predict ground-truth wealth. This is expected, since model error is itself
based on the residual of a predictive model; unless that original model was
misspecified, its residuals should be hard to predict.

Our objective in constructing the microestimates of model error
is to provide policymakers and other users with a sense of where
the model is accurate and where it is not. Thus, S/ Appendix, Fig. S3B
provides a granular map of expected model error produced using the
linear model described in S/ Appendix, Table S4, column 1. The raw data
used to produce S/ Appendix, Fig. S3B are available for download from
http://www.povertymaps.net. We also provide country-level summary
statistics of model error in S/ Appendix, Table S5 (i.e., the mean, median,
and SD of estimated model error in each country), to provide policymakers
in specific countries with at-a-glance estimates of model performance.

Absolute Wealth Estimates. The predictive models are trained to estimate
the RWI of each 2.4-km grid cell. The RWI indicates the wealth of that
location relative to other locations within the same country. However,
certain practical applications require a measure of the absolute wealth of
a region that can be more directly compared from one country to another.
To provide a rough estimate of the absolute per capita wealth of each
grid cell, we use the technique proposed by Hruschka et al. (47) to convert
a country'’s relative wealth distribution to a distribution of per-capita GDP.
This method relies on three parameters to define the shape of the wealth
distribution: the mean GDP per capita, as a measure of the central tendency
(GDP,.); the Gini coefficient, as a measure of dispersion (Ginic); and a combi-
nation of the Pareto and log-normal distributions that are used to estimate
skewness. Specifically, our AWE of a grid cell i in country c is defined by

GDP,
AWE;. = rankic * T e
7 > ICDF(rank;)
where rank;. is the rank of each grid cell's RWI (relative to other cells
in ¢), GDP. is the mean wealth per capita of ¢, and ICDF. is the inverse
cumulative distribution of wealth, which is parameterized exactly following
Hruschka et al. (47).7 We collect indicators of each country’s Gini coef-
ficient and mean per capita GDP from the sources listed in S/ Appendix,
Table S6, and use it to produce the AWEs shown in S/ Appendix, Fig. S3A.
This conversion requires strong parametric assumptions about the na-
tional distribution of wealth based on information about the average
wealth and wealth inequality in each country. These assumptions are not
justified in many countries, particularly where Gini estimates are unreliable,
or when the ICDF approximation is a poor fit. Thus, the AWE estimates

MEor the Pareto distribution, ICDF¢ is the inverse cumulative distribution function with
shape parameter o« = (1 + Ginic)/(2Ginic), using a threshold of [1 — é]. Otherwise,
ICDF¢ is for a log-normal distribution based on a normal distribution with a mean of
Ln(GDPpcc) — o2 /2, where o = /2 probit(%).
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should be treated with more caution than the RWI estimates, which were
carefully validated with several different sources of independent survey
data.

SI Appendix, Fig. S18 shows the global distribution of (predicted) abso-
lute wealth, as derived from the relative wealth index using the above
procedure. SI Appendix, Fig. S18 compares the predicted wealth distribution
based on our method to the global income distribution in 2013, as indepen-
dently estimated by Hellebrandt and Mauro (48) using household income
surveys for more than 100 countries that were collected through the Luxem-
bourg Income Study. As expected, the average wealth distribution, which is
a measure of per capita GDP, is uniformly higher than the estimated income
distribution, which reflects actual family incomes (i.e., total economic output
does not translate directly to better family outcomes).

Targeting Simulations. We simulate a scenario in which an antipoverty
program administrator has a fixed budget to distribute to a country’s
population. Following Ravallion (30) and Elbers et al. (2), we assume that
the program will be geographically targeted and that all individuals within
targeted regions will receive the same transfer. Our analysis compares the
performance of different approaches to geographic targeting in Togo and
Nigeria. Performance is evaluated using recent nationally representative
household survey data collected in each country.

In Table 1, A and C, the row labeled “Tile targeting” simulates geographic
targeting using the high-resolution ML estimates, where cash is transferred
to households located in the poorest 2.4-km tiles of the country; the
“Canton targeting” and “Ward targeting” rows simulate distribution to the
households located in the poorest administrative units of the country (the
canton is the smallest administrative unit in Togo and the ward is the smallest
administrative unit in Nigeria), where the wealth of the administrative unit is
calculated as the population-weighted average of the RWI of all tiles in that
unit. Column 1 indicates the number of unique spatial units in each country;
column 2 simply indicates that every spatial unit (tile or canton/ward) has
a corresponding wealth estimate. Column 3 reports the R? of a regression
of the ground-truth wealth of each household (i.e., “true wealth”) and the
estimate of the wealth of the spatial unit in which that household is located
(i.e., "predicted wealth"”), calculated at the household level using weighted
least-squares regression using household weights from the EHCVM (in Togo)
or NLSS (in Nigeria). In columns 4 and 5 in Table 1, we assume that the
government has a fixed budget that allows it to target 25% or 50% of
the population and uses that budget to target the k poorest administrative
units (where k is set to ensure that the budget constraint is respected—in
instances where including one additional spatial unit would imply that more
than 25% or 50% of households would receive benefits, households from
that region are randomly selected to ensure that exactly 25% or 50% of
households receive benefits). We consider the “true poor” to be the 25% or
50% of households in the ground-truth survey with the lowest household
asset index and report the accuracy of each geographic targeting approach
in providing benefits to those true poor.

For comparison, in Table 1, B and D simulate alternative geographic
targeting approaches that a policymaker might rely on in the absence of
comprehensive household-level data on poverty status. These simulations
assume that the policymaker does not have access to the ML microestimates
of RWI or the ground-truth data from the EHCVM/NLSS that are used
to evaluate their allocation decisions. Instead, the policymaker designs a
geographic targeting policy based on the most recent DHS survey, which
was conducted in 2013 to 2014 in Togo and in 2018 in Nigeria.

Each row in Table 1, B and D corresponds to targeting at a different
level of geographic aggregation. For instance, the row labeled “Prefecture
targeting” in Table 1, B assumes that the program will be targeted at
the prefecture level, the second-level administrative region in Togo, such
that either all households in the prefecture will receive benefits or none
will. Subsequent rows allow for targeting at smaller geographic units. The
columns in Table 1, B are organized similarly to Table 1, A. Note, however,
that it is no longer the case that each spatial unit will necessarily have a
“predicted wealth” value. For instance, the Canton targeting row in Table
1, B (column 2) indicates that only 185 cantons have one or more surveyed
households in the most recent DHS (i.e., only 47.8% of all cantons). In Table
1, column 3, the “predicted wealth” of each household is defined as the
average wealth of households in that region, as calculated from the most
recent DHS. In subsequent columns, the targeting mechanism selects the k
predicted poorest administrative units, based on the average DHS wealth of
households in that region.

The targeting simulations highlight three main results. First, and echoing
previous results, the ML estimates are accurate at estimating household
wealth (Table 1, column 3). Table 1 is based on two countries with recent
DHS data and thus provides a conservative estimate of the gains from
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using the ML estimates for geographic targeting. Many LMICs do not have
a recent nationally representative household survey available; for such
countries, these microestimates create options for geographic targeting that
might otherwise not exist.

Second, the ML estimates allow for geographic targeting at a level of spa-
tial resolution that would not be possible with traditional survey-based data.
For logistical reasons, many geographically targeted programs will be tied
to administrative regions; it may simply not be possible to target benefits at
the tile level. For such programs, we find that admin-region targeting based
on the ML estimates performs similarly to admin-region targeting based on
recent nationally representative household surveys (i.e., the comparison of
the last row of Table 1, A or C to the last row of Table 1, B or D). This
is important because the ML estimates can be used to construct accurate
estimates of the wealth of 100% of administrative units. By contrast, the
DHS surveyed households in only 185 (47.8%) cantons in Togo and only
1,218 (13.8%) wards in Nigeria—see S/ Appendix, Fig. S19 for a map of the
surveyed and unsurveyed regions. Thus, a geographic targeting approach
relying on the DHS data alone would either require implementation at a
larger administrative unit or require some other form of imputation into
unsurveyed regions (as is the case in Table 1, B and D)—both of which
adjustments reduce the effectiveness of geographic targeting (2, 30, 31).

Third, the microestimates create an option to geographically target very
small units, which in turn produces gains in targeting performance. The
gains to disaggregation are most evident in column 3 of Table 1, which
highlights how targeting at the tile level increases accuracy relative to the
other targeting options that provide 100% coverage. While subregional
targeting is not common, recent programs have demonstrated how mobile
money can be used to deliver cash transfers directly to beneficiaries, which
may increase the scope for this type of approach (1, 15).

1. J. Blumenstock, Machine learning can help get COVID-19 aid to those who need it
most. Nature, 10.1038/d41586-020-01393-7 (2020).

2. C.Elbers, T. Fujii, P. Lanjouw, B. Ozler, W. Yin, Poverty alleviation through geographic
targeting: How much does disaggregation help? J. Dev. Econ. 83, 198-213 (2007).

3. J. Sheth, Impact of emerging markets on marketing: Rethinking existing perspec-
tives and practices. J. Mark. 75, 166-182 (2011).

4. A. Deaton, Measuring poverty in a growing world (or measuring growth in a poor
world). Rev. Econ. Stat. 87, 1-19 (2005).

5. U. Serajuddin, C. Wieser, H. Uematsu, A. Dabalen, N. Yoshida, Data Deprivation:
Another Deprivation to End. Policy Research Working Paper; No. 7252. World Bank,
Washington, DC. https://openknowledge.worldbank.org/handle/10986/21867. Ac-
cessed 1 December 2021.

6. R. Pande, F. Blum, Data poverty makes it harder to fix real poverty. That's why the
UN should push countries to gather and share data. The Washington Post, 20 July
2015.

7. J.Sandefur, A. Glassman, The political economy of bad data: Evidence from African
survey and administrative statistics. J. Dev. Stud. 51, 116-132 (2015).

8. S. Rutstein, K. Johnson, “The DHS wealth index” (DHS Comp. Rep. 6, ORC Macro,
Calverton, MD, 2004).

9. J. Espey et al., Data for Development: A Needs Assessment for SDG Monitoring and
Statistical Capacity Development (Open Data Watch, 2015).

10. C. Elbers, J. Lanjouw, P. Lanjouw, Micro-level estimation of poverty and inequality.
Econometrica 71, 355-364 (2003).

11. C. Elvidge et al., A global poverty map derived from satellite data. Comput. Geosci.
35, 1652-1660 (2009).

12. J. V. Henderson, A. Storeygard, D. N. Weil, Measuring economic growth from outer
space. Am. Econ. Rev. 102, 994-1028 (2012).

13. X. Chen, W. D. Nordhaus, Using luminosity data as a proxy for economic statistics.
Proc. Natl. Acad. Sci. U.S.A. 108, 8589-8594 (2011).

14. ). Blumenstock, G. Cadamuro, R. On, Predicting poverty and wealth from mobile
phone metadata. Science 350, 1073-1076 (2015).

15. E. Aiken, S. Bellue, D. Karlan, C. R. Udry, J. Blumenstock, Machine Learning and
Mobile Phone Data Can Improve the Targeting of Humanitarian Assistance. National
Bureau of Economic Research, Working Paper 29070. University of California,
Berkeley, CA. https://www.nber.org/papers/w29070. Accessed 1 December 2021.

16. |. Weber, R. Kashyap, E. Zagheni, Using advertising audience estimates to improve
global development statistics. /TU J. 1 (2018).

17. N.Jean et al., Combining satellite imagery and machine learning to predict poverty.
Science 353, 790-794 (2016).

18. A. Head, M. Manguin, N. Tran, J. Blumenstock, “Can human development be mea-
sured with satellite imagery ?” in ICTD ‘17: Proceedings of the Ninth International
Conference on Information and Communication Technologies and Development
(Association for Computing Machinery, New York, NY, 2017).

19. R. Engstrom, J. Hersh, D. Newhouse, Poverty from Space: Using High-Resolution
Satellite Imagery for Estimating Economic Well-Being. Policy Research Work-
ing Paper; No. 8284. World Bank, Washington, DC. https://openknowledge.
worldbank.org/handle/10986/29075. Accessed 1 December 2021.

20. G. R. Watmough et al., Socioecologically informed use of remote sensing data to
predict rural household poverty. Proc. Natl. Acad. Sci. U.S.A. 116, 1213-1218 (2019).

| PNAS
https://doi.org/10.1073/pnas.2113658119

10 of 11

Finally, we note that the above discussion compares universal geographic
targeting using the ML estimates to universal geographic targeting using re-
cent DHS data, such that all individuals in a targeted region receive uniform
benefits. In practice, most real-world programs are more nuanced and rely
on additional targeting criteria (such as proxy means tests and participatory
wealth rankings) to determine program eligibility. These additional criteria
would be expected to increase the performance of all methods listed in
Table 1; we do not simulate those changes to better highlight the gains from
geographic disaggregation.

Data Availability. The main datasets of population wealth esti-
mates produced in this study are publicly available at https:/data.
humdata.org/dataset/relative-wealth-index (27). The data used to construct
these estimates are available from public online repositories, publicly
available upon registration at https://www.dhsprogram.com/ (35) and
not publicly available because of restrictions by the data provider. A
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Table S2. The code used for these analyses is publicly available online
at https://github.com/g-chi/global-poverty. Our repository excludes the
pretrained CNN used to extract features from satellite imagery, which is
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should produce similar results.
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