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Inferotemporal (IT) cortex in humans and other primates is to-
pographically organized, containing multiple hierarchically or-
ganized areas selective for particular domains, such as faces
and scenes. This organization is commonly viewed in terms of
evolved domain-specific visual mechanisms. Here, we develop
an alternative, domain-general and developmental account of IT
cortical organization. The account is instantiated in interactive
topographic networks (ITNs), a class of computational models
in which a hierarchy of model IT areas, subject to biologically
plausible connectivity-based constraints, learns high-level visual
representations optimized for multiple domains. We find that
minimizing a wiring cost on spatially organized feedforward and
lateral connections, alongside realistic constraints on the sign of
neuronal connectivity within model IT, results in a hierarchical,
topographic organization. This organization replicates a number
of key properties of primate IT cortex, including the presence
of domain-selective spatial clusters preferentially involved in the
representation of faces, objects, and scenes; columnar responses
across separate excitatory and inhibitory units; and generic spatial
organization whereby the response correlation of pairs of units
falls off with their distance. We thus argue that topographic
domain selectivity is an emergent property of a visual system
optimized to maximize behavioral performance under generic
connectivity-based constraints.

inferotemporal cortex | functional organization | topography | neural
network | development

Inferotemporal (IT) cortex subserves higher-order visual abili-
ties in primates, including the visual recognition of objects and

faces. By adulthood in humans, IT cortex, and ventral tempo-
ral cortex more generally, contains substantial functional topo-
graphic organization, including the presence of domain-selective
spatial clusters in reliable spatial locations, including clusters
for faces (1–3), objects (4), buildings and scenes (5, 6), and
words (7). Similar domain-level topographic properties have
been found in rhesus macaque monkeys, including multiple re-
gions of clustered face selectivity (8–10). Intriguingly, this se-
lectivity is encompassed in a larger-scale “mosaic” of category
selectivity, in which areas of category selectivity themselves have
further columnar clustering within them (11–13), and moreover,
category selectivity appears to exist as clusters within general
dimensions of object space (14) spatially organized to smoothly
map neuronal correlations over space (15), pointing to more
general principles of organization beyond the domain level. In
line with this idea, human IT cortex also exhibits larger-scale
organization for properties such as animacy and real-world size
(16, 17), and midlevel features characteristic of these properties
and domains have been shown to account well for patterns of
high-level visual selectivity (18). How these domain-level and
more general facets of functional organization arise, how they
are related, and whether and in what ways they rely on innate
specification and/or experience-based developmental processes
remain contentious.

Recent work has demonstrated that the neural basis of face
recognition depends crucially on experience, given that depriva-
tion of face viewing in juvenile macaque monkeys prevents the
emergence of face-selective regions (19). Relatedly, the absence
of exposure to written forms through reading acquisition pre-
cludes the emergence of word-selective regions (20, 21). That
there exists clustered neural response selectivity for evolution-
arily new visual categories such as written words offers further
evidence that the topographic development of the human visual
system has a critical experience-dependent component (22, 23).
In contrast with a system in which innate mechanisms are de-
termined through natural selection, this experiential plasticity
permits the tuning of the visual system based on the most fre-
quent and important visual stimuli that are actually encountered,
thereby enabling greater flexibility for ongoing adaptation across
the lifespan.

There is considerable computational evidence that experience-
dependent neural plasticity can account for the response proper-
ties of the visual system at the single-neuron level. Classic work
demonstrated that the statistics of natural images are sufficient
for learning V1-like localized edge tuning within a sparse coding
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framework (24, 25). More recently, deep convolutional neural
networks (DCNNs) trained on image classification have been
successful in accounting for the tuning of neurons in V1, V2, V4,
and IT in a hierarchically consistent manner, where deeper layers
of the DCNN map onto later layers of the anatomical hierarchy
(26, 27).

Above the single-neuron level, considerable prior work has
demonstrated that topographic organization in V1 may emerge
from self-organizing, input-driven mechanisms (28–34) (for re-
view, see ref. 35). For example, the pinwheel architecture of
spatially repeating smooth orientation selectivity overlaid with
global retinotopy has been shown to be well accounted for by self-
organizing maps (SOMs) (31, 32, 36).

One notable application of an SOM to modeling high-level
visual cortex by Cowell and Cottrell (37) demonstrated stronger
topographic clustering for faces compared to other object cat-
egories (e.g., chairs, shoes), suggesting that the greater topo-
graphic clustering of faces in IT is due to greater within-category
similarity among faces compared to these other categories. This
work provides a strong case for domain-general developmental
principles underlying cortical topography in IT, but at least two
important issues remain unaddressed. First, rather than support-
ing only discrimination of face from nonface categories (as in
ref. 37), face representations in humans (and likely nonhuman
primates, although see ref. 38) must support the more diffi-
cult and fine-grained task of individuation; this task requires a
“spreading transformation” of representations for different face
identities (39, 40), which could alter the feature space and its
topographic mapping and necessitate a more domain-specialized
representation than that examined by ref. 37. Second, rather than
a single face-selective area, IT cortex actually contains multiple
hierarchically organized face-selective regions with preferential
interconnectivity (41). Generally, SOMs are not well equipped
to explain such hierarchical topographic interactions, as they are
designed to map a feature space into a topographic embedding,
but not to transform the feature space hierarchically in the way
needed to untangle invariant visual object representation from
the statistics of natural images (42). This suggests that SOMs
are an incomplete model of topographic development in cortical
networks.

An alternative approach to studying topographic organization
involves incorporating distance-dependent constraints on neural
computation within more general neural network models (43–
46). Of particular interest is a hierarchical neural network de-
veloped by Jacobs and Jordan (45) in which error-driven learn-
ing was augmented with a spatial loss function penalizing large
weights to a greater degree on longer versus shorter connections.
This model was shown to develop topographic organization for
“what” versus “where” information when trained with spatially
segregated output units for the two tasks. Closely related work by
Plaut and Behrmann (47) demonstrated that a similarly spatially
constrained model with biased demands on input (e.g., retino-
topy) and output (e.g., left-lateralized language) could account
for the organization of domain-specific areas in IT cortex, such
as the foveal bias for words and faces, leftward lateralization of
words, and rightward lateralization of faces (48–50).

However, to date, none of these structurally biased neural net-
work models have been applied to large-scale sets of naturalistic
images, the statistics of which are thought to organize high-level
visual representations in IT cortex (51), and the topography in
these models (45, 47) has been analyzed at a relatively coarse
level. Nonetheless, this early work raises the possibility that the
application of distance-dependent constraints in a deep neural
architecture trained on natural images might provide a more
comprehensive account of topographic organization in IT.

Along these lines, Lee et al. (15) have recently modeled the to-
pography of IT cortex with topographic deep artificial neural net-
works (TDANNs) that are trained on a large set of natural images

using a correlation-based layout that explicitly encourages units
within a layer of the network to be spatially nearer to units with
correlated responses and farther from units with uncorrelated
or anticorrelated responses. As a result, the TDANN developed
face-selective topography that corresponded well with data from
macaque monkeys. However, this approach imposes topographic
functional organization on the network based on measured func-
tional responses, rather than deriving it from realistic princi-
ples of cortical structure and function, such as constraints on
connectivity. Moreover, like the SOM, the TDANN can explain
only within-area topographic organization and not spatial rela-
tionships between areas, such as the stream-like organization of
multiple stages of IT cortex (3, 52) and their embedding in a
network coupled with upstream and downstream cortical areas
(48). Thus, the question remains whether such basic structural
principles can account for the topographic organization of IT.

In the current work, we combined the approaches of task-
optimized DCNN modeling (15, 51) with flexible connectivity-
constrained architectures (45, 47) to develop a hierarchical
model of topographic organization in IT cortex. We implemented
a bias toward local connectivity through minimization of an
explicit wiring cost function (45) alongside a task performance
cost function. Intriguingly, we observed that this pressure
on local connectivity was, on its own, insufficient to drive
substantial topographic organization in our model. This led
us to explore two neurobiological constraints on the sign of
connectivity—strictly excitatory feedforward connectivity and
the separation of excitation and inhibition—with the result
that both, and particularly, excitatory feedforward connectivity,
provided a powerful further inductive bias for developing
topographic organization when combined with a bias toward
local connectivity. Our results begin to shed light on the factors
underlying hierarchical topographic organization in the primate
visual system.

Materials and Methods
The Interactive Topographic Network. We introduce the interactive topo-
graphic network (ITN), a framework for computational modeling of high-
level visual cortex, and specifically its functional topographic organization.
ITN models are defined as neural network models that are 1) optimized to
perform naturalistic tasks (following ref. 53) and 2) connectivity constrained
in a biologically plausible manner to give rise to functional organization
(extending previous work by refs. 45 and 47). In this work, we introduce
a form of ITN that is divided into three components: an encoder that
approximates early visual cortex, interactive topography (IT) layers that
approximate inferotemporal cortex, and a readout mechanism for one or
more downstream tasks. The goal of the encoder is to extract general visual
features that describe the visual world along dimensions that support a
broad range of downstream readout tasks. However, our main modeling
focus is on the IT layers, which consist of a series of pairs of recurrent layers
that are subject to biological constraints. For computational simplicity, such
constraints are not modeled in the encoder (but see Discussion for future
directions).

Encoder Architecture and Training. We used a ResNet-50 (54) encoder to
allow the ITN to extract deep and predictive features of the trained inputs.
The encoder is pretrained on equal-sized subsets of faces, objects, and
scenes from the VGGFace2 (55), ImageNet (56), and Places365 (57) datasets,
respectively, matched in terms of total training images. We reused the same
subsets of faces and objects as in ref. 58, and an additional scene domain
was constructed to match the other two domains in total images. An initial
learning rate of 0.01 was used, and this learning rate was decayed five times
by a factor of 10 upon plateau of the validation error; after the fifth learning
rate decay, the next validation error plateau determined the end of training.
Stochastic gradient descent with momentum (ρ = 0.9) and l2 weight decay
(λ = 0.0001) was used, with batch size of 256 on a single graphics processing
unit (GPU).

Recurrent Neural Network Formulation of IT. Our model of IT extends
the standard discrete-time recurrent neural network (RNN) formulation
common in computational neuroscience (59). We begin with the continuous-
time dynamics of units in an RNN layer, where x (a) is the vector of
preactivation activities in area a of IT, r(a) is the vector of postactivation
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activities in area a, b(a) is the vector of baseline activities in area a, τ is the
scalar neuronal time constant, and W(a,b) is the matrix of weights from area
a to area b:

τ
dx (a)

t

dt
= −x

(a)
t + W(a,a)

r
(a)
t + W(a−1,a)

r
(a−1)
t + b

(a) [1]

where the activation function r
(a)
t = [x

(a)
t ]+ is positive rectification, also

called a rectified linear unit (ReLU). Applying the Euler method to integrate
this first-order ordinary differential equation, with time-step size Δt, and
substituting α = Δt

τ , yields the discrete-time update:

x
(a)
t = (1 − α)x

(a)
t−1 + α

(
W(a,a)

r
(a)
t−1 + W(a−1,a)

r
(a−1)
t−1 + b

(a)
)

. [2]

When training models with separate excitatory and inhibitory units, we
noted that training could be extremely unstable and typically required some
mechanism for achieving stability. To this end, we adopted layer normaliza-
tion (60), without the trainable scaling parameter that is sometimes used
(see ref. 60 for more details). We found layer normalization to be extremely
effective in stabilizing models and encouraging well-distributed activations
(SI Appendix, Fig. S38). Where μ(x) is the mean of x , and σ(x) is the SD of
x , and b is the learned bias term (moved outside of the layer normalization),
the layer-normalized activities are given as

z t =
x t − μ(xt )

σ(xt )
+ b

r
′
t = [z t]+.

Incorporating layer normalization into our update equation yields the final
update equation:

x
(a)
t = (1 − α)z

(a)
t−1 + α

(
W(a,a)

r
′ (a)
t−1 + W(a−1,a)

r
′ (a−1)
t−1

)
. [3]

Extending the Standard RNN Framework with Biological Constraints. Here, we
outline the major biological constraints implemented in this work.
Spatial organization. An essential aspect of an ITN model is that each IT
layer has a spatial organization (15). We chose to model layers as square
grids, with each layer of the hierarchy of equal size (typically, a grid size
length of 32, corresponding to a layer of 1,024 units). We normalize the
coordinates to lie in the range [0,1]. Each unit thus has a unique (x, y)
coordinate that will be used to determine the distance-dependent network
topology. In general, the specific choices about map spatial arrangement
are not critical to the predictions of the model, but they can potentially be
manipulated in certain ways in the service of other theoretical goals.
Spatial connectivity costs. We impose distance-dependent constraints on
connectivity through a cost on longer connections throughout training. This
basic formulation of the loss was introduced by Jacobs and Jordan (45) as a
way to induce spatially organized task specialization and was shown to do so
in a simple neural network model trained on small-scale tasks. To our knowl-
edge, no other research has examined this loss in modern deep-learning
architectures trained on natural images. We use a simple modification of the
original loss function, using the squared Euclidean distance

(
Di,j

)2 = ||r i −
rj ||22 [in place of

(
Di,j

)10 = ||r i − rj ||10
10 distance (45)]. By using the squared

distance, we penalize longer connections disproportionally compared to
shorter connections. The spatial loss on connections between areas a and
b, L(a,b)

w , is given by

L(a,b)
w =

∑
i,j

(
D(a,b)

ij

)2 (
W(a,b)

ij

)2

1 +
(

W(a,b)
ij

)2 . [4]

The total spatial loss is the sum of the area-to-area spatial losses Lw =∑
a,b L(a,b)

w and is added to the task-based loss as L = Lt + λwLw , on which
gradient descent is performed. Additionally, in contrast to ref. 45, we choose
a single λw parameter, rather than varying it throughout training. For each
architectural variant, we chose the λw that maximized a metric of generic
topographic organization (Tg, Eq. 7).
Connection noise. To approximate axon-specific variability in instantaneous
firing rate (61), we apply multiplicative noise on the individual connections
between neurons that is uniform over distance and layers. In practice, we
find that connection noise helps to regularize the activations in the network,
encouraging a more distributed representation that aids the formation of
topography across a range of models (see SI Appendix, Fig. S39 for evidence
that it is not absolutely necessary). Noise is sampled independently from a
Gaussian distribution N centered at 0 with variance σ2 at each time step of

each trial and is squashed by a sigmoidal function S(x) = 2
1+e−x , ensuring

that the sign of each weight is not changed and each magnitude does not
change by more than 100%. Thus, the noisy weight matrix W(a,b)

n from area
a to area b on a given trial and time step is

W(a,b)
n = S (N (0, σ)) ∗ W(a,b). [5]

Sign-based restrictions on neuronal connectivity. Standard neural net-
works gloss over a key detail of neuronal morphology—that single neurons
obey Dale’s law, whereby all of their outgoing connections are either
excitatory or inhibitory (ignoring modulatory neurons and other special, rare
cases) (59). We employ this principle within our framework by replacing the
single sheet of unconstrained neurons with parallel sheets of excitatory (E)
and inhibitory (I) neurons. The second sign-based restriction we implement is
that between-area interactions are carried out predominantly by excitatory
pyramidal neurons. Thus, we restrict between-area feedforward connectiv-
ity to originate from the excitatory neurons only. In the main model, both E
and I neurons receive feedforward inputs.

IT Architecture and Training. The main ITN model consists of three IT layers
(posterior IT [pIT], central IT [cIT], and anterior IT [aIT]) with separate E
and I populations and feedforward connections sent only by E units. To
facilitate training many models with fewer computational demands, the
model is trained using a fixed pretrained ResNet-50 encoder on smaller
subsets of faces, objects, and scenes. Specifically, we created image subsets
equal to the size of the popular CIFAR-100 dataset but at higher image
resolution, containing 100 categories each with 500 training images and
100 validation images, resized to 112 × 112 pixels. Thus, the combined
dataset contained 300 categories with 150,000 training images and 30,000
validation images. The same learning-rate schedule as used for training the
encoder was used. Stochastic gradient descent with momentum (ρ = 0.9)
was used, with batch size of 1,024 on a single GPU. In the main model, we
used spatial regularization with λw = 0.05, without additional weight decay
on IT connections.

IT Model Variants. To better understand the relative importance of different
aspects of model design that contribute to the development of topographic
organization, we examine a variety of IT model variants containing different
subsets of implemented constraints (see Fig. 6). Some of these models do
not use separate populations of E and I units, but still restrict feedforward
connectivity to be excitatory. In this case, we simply restrict the feedforward
weights to be positive, despite the same neuron having both positive and
negative lateral connections. In another case, separate populations of E and
I units are both allowed to send feedforward projections. In another class of
variants, we remove learned lateral connections entirely. These models are
trained for a single time step, and the only recurrent computation is that of
a single pass of layer normalization. Finally, we explore a range of spatial
regularization strengths.

Analyses of Trained Models. After training, the responses in IT layers are
probed to investigate emergent task specialization and its topographic
organization. We use three main approaches.
Mass-univariate analyses. The first analytic approach is the simple mass-
univariate approach, in which each unit is analyzed separately for its mean
response to each stimulus domain (objects, faces, scenes), using untrained
validation images from the same categories used in training. In addition to
computing the mean response to each domain, we compute selectivity, a
ubiquitous metric used in neuroscience, to analyze how responsive a unit is
to one domain compared to all others. We compare the responses of each
domain versus the others using a two-tailed t test, and given the test statistic
t, the significance value p of the test, and the sign of the test statistic s =
sign(t), we compute the selectivity as −s log(p).
Searchlight decoding analysis. The second analysis approach is the multi-
variate searchlight analysis commonly used in functional MRI (fMRI) (62), in
which a pool of units is selected in a (circular) spatial window around each
unit, and the accuracy for discriminating between different categories (e.g.,
hammer vs. screwdriver) in each domain (e.g., objects) is computed using the
activations of only that pool of units; the mean accuracy value is assigned to
the center unit, and the process is repeated for all units.
Lesion analysis. To assess the causal role of certain units in the performance
of specific tasks, we adopt a lesioning approach in which the activities of
lesioned units are set to 0 at each time step. This effectively removes them
from processing, allowing the network’s dynamics to unfold independently
of these units. The effect of a lesion is measured by computing the accuracy
following the lesion and relating that to the baseline accuracy.

The first type of lesion we perform is a spatial or focal lesion in which a
circular neighborhood of size p × n units is selected, where p is the fraction
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of units selected and n is the total number of units in the area where the
lesion is performed. The lesion is centered on a unit ui,j either randomly or
according to the peak of a specific metric such as selectivity. To lesion spatial
neighborhoods corresponding to regions of high domain selectivity, we take
the selectivity map, perform spatial smoothing, and select the unit u of peak
smoothed selectivity.

The second type of lesion sorts units according to a given selectivity metric
irrespective of their spatial location. In this analysis, the p × n most selective
units are chosen for a given lesion. This is done separately for the selectivity
of each domain, as in the focal lesions. When the topography is smooth
and the regions approximately circular, the selectivity-ordered and focal
lesions yield similar results. However, to the extent that the topography is
not perfectly smooth or circular, the selectivity-ordered lesion may knock out
a more relevant set of units for a given task.
Distance-dependent response correlation. We calculate the correlations of
the responses of all pairs of units as a function of distance between them.
Response correlation is computed for a given time step over a large number
of images, either from all domains or from each domain separately.
Topographic organization summary statistics. We compute two metrics
of topographic organization—one indexing generic organization and the
other, domain-level organization. The domain-level topography statistic
Td is a measure of how much the alignment of domain-level selectivity
vectors between pairs of units falls off with distance. For a given layer l,
cell type c, and neuron i, let us consider a three-dimensional (3D) vector of
selectivity values for each domain s i . Using the dot product s i · s j between
selectivity vectors of m =

(p
2

)
pairs of neurons (to allow for magnitude

effects), standardized over all neuron pairs as z(·), and assuming l and c
are held constant, the domain-topography statistic Td is then given as

Td =
1

m

p∑
i,j

z(s i · s j)

Di,j
. [6]

The standardization ensures that the statistic is not inflated for poorly
trained networks with uniformly high correlation values across unit pairs.
Similarly, the generic topography statistic is a measure of how much pairwise
response correlation falls off with distance. For a given layer l, cell type c,
and neuron i, let us consider a n-D vector of responses over n images s i . The
statistic Tg is then given as

Tg =
1

m

p∑
i,j

z(r(a i , a j))

Di,j
. [7]

In this paper, we plot the Tg and Td values averaged over layers and cell
types. In SI Appendix, we additionally plot values per layer and cell type.
Analyzing spatial costs of trained networks. To understand the wiring cost
of certain trained models, we analyze the spatial cost of a network, as
given by Eq. 4, as a function of architectural parameters such as the spatial
regularization strengthλw . In one analysis, we analyze only the feedforward
spatial cost, which simply requires summing spatial costs over pairs of areas
a and b where a �= b. Similarly, to analyze only the recurrent spatial cost, we
can sum spatial cost over pairs of areas a and b where a = b.
Unweighted spatial cost of sparsified networks. While wiring cost in an
artificial neural network should depend to some extent on the strength of
connections—stronger connections may require greater myelination, and
strong connections in an artificial neural network may correspond to a larger
number of synapses in a biological neural network—there is another notion
of wiring cost whereby it depends only on whether or not two neurons
are connected. This notion of wiring costs has been commonly applied to
the study of cortical areal layout and early visual cortical maps (31, 63–
65). Moreover, the analysis of binary connectivity in thresholded networks
is also common in graph-theoretic analysis of brain data (66). To analyze
this notion of wiring costs, we pruned our trained models to a desired
connection sparsity level s, setting to 0 the n × m × s connections with the
smallest magnitude, where n and m are the number of units in areas a and b.
Sparsity was enforced globally within IT and from IT to readout, rather than
individually for each set of connections. We then analyzed an unweighted
wiring cost L(a,b)

w,u that computes the mean of squared Euclidean distance
values between connected units i and j in areas a and b, given that (a, b)
are in the set of connected areas C:

L(a,b)
w,u =

1

n m (1 − s)

∑
i,j

(
D(a,b)

ij

)2 (
W(a,b)

ij �= 0
)

. [8]

Results
A Connectivity-Constrained Model of Ventral Temporal Cortex
Produces Hierarchical, Domain-Selective Response Topography. We
first present the results of simulations of a specific ITN model
(Fig. 1A), which we refer to as the main model or “E/I-
EFF-RNN,” to indicate that it possesses separate neurons
responsible for excitation and inhibition (E/I), a restriction
that feedforward connections are strictly excitatory (EFF), and
temporally recurrent processing is mediated through learned
lateral connections (RNN). These three factors—in addition
to the strength of the wiring cost penalty λw—will be of interest
later as we uncover the key ingredients of developing topography.
Additionally, this model uses a ResNet-50 encoder that is
pretrained on a large dataset including several categories from
the domains of objects, faces, and scenes (each domain matched
in total training images) and, following pretraining, is used
as a feature extractor that provides input to a three-area IT
containing separate pIT, cIT, and aIT areas. The main model used
a spatial cost parameter λw = 0.5 that was chosen to maximize a
metric of domain-level organization (see Fig. 6).

After training, the model performed well on each domain,
reaching a classification accuracy of 86.4% on the face domain,
81.8% on the object domain, and 65.9% on the scene domain
(SI Appendix, Fig. S1). Performance differences across domains
are unlikely to be an artifact of the specific architecture as they
can be seen across a variety of DCNNs, reflecting the intrinsic
difficulty of each task given the variability within and between
categories of each domain for the given image sets.

As can be seen in Fig. 1B, the trained model exhibits domain-
level topographic organization that is hierarchically linked across
corresponding sectors of each layer. This result reflects the fact
that the distance-dependent constraints on feedforward con-
nectivity pressured units that have minimal between-area dis-
tances to learn a similar tuning, which means that each layer
is roughly overlapping in its respective (separate) 2D topog-
raphy. The topographic organization gets somewhat smoother
moving from pIT to cIT, most likely because units in cIT and
aIT (but not pIT) have local feedforward receptive fields and
thus greater constraint on local cooperation. Further quantifi-
cation of topographic organization in each layer can be found
in SI Appendix, Fig. S6. Overall, the presence of domain-level
topography—but not its particular spatial arrangement—was ro-
bust to variation elicited by random initialization of model pa-
rameters (SI Appendix, Fig. S23) (67).

We next scrutinized the topography in aIT, where there are
very smooth domain-level responses, and where we can directly
compare responses with those of the recognition readout mech-
anism. We computed mean domain responses, plotted in Fig. 1
C, Left column, and domain selectivity, plotted in Fig. 1 C,
Center Left column, which demonstrates corresponding topo-
graphic organization. We confirmed the functional significance
of response topography by conducting a searchlight analysis
inspired by multivariate approaches to analyzing fMRI data (62).
We used searchlights containing the 10% (102) nearest units.
The results of this analysis, shown in Fig. 1 C, Center Right
column, revealed topographic organization of information for
discriminating between categories of each domain that is strongly
correlated with the domain selectivity maps for each domain
(all Ps< 0.0001). Importantly, every searchlight contained in-
formation substantially above chance level for discriminating
within each domain, pointing to partially distributed informa-
tion despite topographic domain selectivity, in line with human
and macaque neurophysiology (68, 69) (see SI Appendix, Fig. S3
for comparisons of searchlight decoding accuracy for each unit
across domains).

To further confirm the functional significance of the topo-
graphic organization, we analyzed the spatial organization of
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Fig. 1. The interactive topographic network produces hierarchical domain-level organization. (A) Diagram of the ITN. An ITN model consists of three
components: an encoder that approximates early visual processing prior to inferotemporal cortex, the IT areas that approximate inferotemporal cortex, and
the readout mechanism for tasks such as object, scene, and face recognition. The architecture of each component is flexible. For example, a four-layer simple
convolutional network or a deep 50-layer ResNet can be used as the encoder; whereas the former facilitates end-to-end training along with a temporally
precise IT model, the latter supports better learning of the features that discriminate among trained categories. In this work, topographic organization
is restricted to the IT layers. Shown is the main version of the ITN containing three constraints: a spatial connectivity cost pressuring local connectivity,
separation of neurons with excitatory and inhibitory influences, and the restriction that all between-area connections are sent by the excitatory neurons.
The final IT layer projects to the category readout layer containing one localist unit per learned category, here shown organized into three learned domains.
(Note that this organization is merely visual and does not indicate any architectural segregation in the model.) (B) Domain selectivity at each level of the IT
hierarchy. Selectivity is computed separately for each domain and then binarized by including all units corresponding to P < 0.001. Each domain is assigned
a color channel to plot all selectivities simultaneously. Note that a unit can have zero, one, or two selective domains, but not three, as indicated in the color
key. (C) Detailed investigation of domain-level topography in aIT. Each heatmap plots a metric for each unit in aIT. Left column shows the mean domain
response for each domain, Center Left column shows domain selectivity, Center Right column shows the within-domain searchlight decoding accuracy, and
Right column shows the mean of weights of a given aIT unit into the readout categories of a given domain.

readout weights from aIT to the localist category readout layer.
We evaluated whether each domain placed more weight in read-
ing out from the units for which there was greater selectivity,
by calculating the mean domain response weight for each unit,
averaged over classes in each domain. This produced a map for
each domain, shown in Fig. 1 C, Right column. We find a large
positive correlation between the mean readout weight and the
mean response for each domain (all rs > 0.7, all Ps< 0.0001),
further demonstrating the functional significance of the response
topography.

Excitatory and Inhibitory Units Operate as Functional Columns. In
the main ITN model, the E cells serve as the principal neurons
that exclusively project to downstream areas—thus, we have
focused entirely on the E cells. The I cells, in contrast, play
a local role in processing, receiving inputs from and sending
outputs to both E and I cells in the same cortical area. As
all the neurons are subject to the same spatial constraint, we
predicted that E and I neurons would have similar functional
topographic organization. We show the topography of response

selectivity of E and I neurons in area cIT in Fig. 2. The neuron
types demonstrate clearly similar functional topography, which
we quantify at the columnar level of a pair of E and I units in the
same location. We find that such E-I columns have highly corre-
lated activity, implying specific functional coupling, as has been
demonstrated in ferret visual cortex (70) and in cortical columns
more generally (71). Inhibitory neurons in aIT yielded sparser
selectivity and therefore weaker, but similar, coupling with E
units (SI Appendix, Fig. S11). One reason I units in aIT may
have sparser responses is that the network discovers that it can
reduce inhibitory weights (and thereby spatial costs) here, as aIT
units project onto readout units subject to a squashing softmax
nonlinearity. E/I columnar organization was not found in a model
trained without the spatial constraint (SI Appendix, Fig. S12).

Effects of Lesions Indicate Strong Yet Graded Domain-Level Special-
ization. We next performed a series of “lesion” analyses in the
model to compare with neuropsychological data on face and
object recognition (72–74). First, we performed focal lesions.
To simulate the impairment of patients with maximally specific
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Fig. 2. E and I cells act as functional columns. Shown are selectivity of cIT E units (Left) and I units (Center) for each domain (colored as in Fig. 1B) and
histograms (Right) of response correlations between colocalized E and I units over all images.

deficits, we centered circular focal lesions of various sizes at the
center of (smoothed) domain selectivity. Performance following
each lesion was measured separately for each domain.

A subset of results of this lesion analysis using a medium-
sized lesion is shown in Fig. 3A, with complete results in
SI Appendix, Fig. S2. These focal lesions centered on each
domain lead to an especially severe deficit in recognition for that
domain and milder but significant deficits for the other domains
as well. For such lesions, the deficit is significant for all domains
(all Ps < 0.05) and significantly stronger for recognition of the
target domain (all Ps < 0.05).

Are these more general effects of circumscribed lesions
on nonpreferred domains the result of imperfect (patchy) or
noncircular topographic organization of an underlying modular
organization? To answer this question, we performed selectivity-
ordered lesions, in which units were sorted by their selectivity
for a given domain and selected according to their sorting
index. Again, a subset of results is shown in Fig. 3B with
complete results across a broader range of lesion sizes shown
in SI Appendix, Fig. S2. The effects of damage in this case are
similar to those for focal lesions, with greater damage to the
domain on which sorting was performed and smaller but
significant deficits to other domains (all Ps < 0.05). This suggests

that some but not all of the damage to the nonpreferred domain
induced by focal lesions may be due to imperfect or noncircular
topographic functional organization. Importantly, these more
distributed effects of lesions indicate that the functional
organization, while highly specialized, is not strictly modular;
damage to those units purported to be a part of a given module
(e.g., for face recognition) nevertheless affects object recognition
(albeit to a weaker degree). SI Appendix, Figs. S3–S5 provide
additional data on the nature of domain specialization in the
network.

Domain Selectivity Exists within a Broader Organization Similar to
That of Primate IT Cortex. Previous empirical research has demon-
strated that the response correlations between pairs of neurons
fall off smoothly with increasing distance between the neurons
(15, 75), as shown in Fig. 4A. As discussed, this finding is the basis
of TDANN models that explicitly fits the spatial layout of units
to this relationship (15). We explored whether this relationship
emerged naturally in our network due to its constrained connec-
tivity, in line with the emergence of domain-selective topography.
We thus computed the correlations among pairs of unit activa-
tions across images as a function of the distance between the units
in each area. As shown in Fig. 4B, there is, indeed, a smooth decay

A B

Fig. 3. Lesion results in the ITN model. Each plot shows the relative effects of a set of medium-sized lesions (20% of aIT units) on recognition performance
for each domain, relative to the performance on the same domain in the undamaged model. Error bars show bootstrapped 95% confidence intervals over
trials; thus, the statistical significance of a given lesion can be assessed by determining whether the confidence interval includes 0. (A) Damage from circular
focal lesions centered on the peak of smoothed selectivity for each domain. (Left) Results for a variety of lesion sizes. (B) Damage from selectivity-ordered
lesions for each domain.
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Fig. 4. Generic topographic organization beyond domain selectivity emerges through task optimization under biologically plausible constraints
on connectivity. (A) Distance-dependent response correlation in macaque IT (reproduced from ref. 15, which is licensed under CC BY-NC-ND 4.0
[https://creativecommons.org/licenses/by-nc-nd/4.0/]). (B) Distance-dependent response correlation in the excitatory cells of each layer, using images from all
three domains (objects, faces, scenes). (C) Distance-dependent response correlation in aIT using images from the object domain only, highlighting within-
domain generic functional organization.

of response correlations with distance, matching the qualitative
trend in the empirical data.

This result is not simply due to differences between domains,
as it is also found when examining responses to images within
each domain separately (shown for objects in Fig. 4C). Along
with previous results (15), our findings suggest that the domain-
level topography may simply be a large-scale manifestation of a
more general representational topography in which the informa-
tion represented by neighboring units is more similar than that
represented by more distal units. Our results demonstrate that
this organization can arise under explicit wiring length and sign-
based constraints on connectivity.

Generic Organization Encompasses Interpretable Domain-Level and
Subdomain-Level Organization. Recently, Bao et al. (14) provided
evidence that IT cortex contains a map of object space that
corresponds well to the first two principal components (PCs)
of high-level visual representations in an ImageNet-trained con-
volutional neural network and that clusters in this object space
corresponded to topographic clusters in IT cortex, including
face-selective areas. We asked whether our network displayed a
similar relationship. Similarly, we found that each domain lies in
weakly overlapping clusters in the subspace spanned by the first
two PCs of aIT activations (hereafter PC1-PC2 space), where the
first PC mostly separated faces and scenes, and the second PC
separated objects from faces and scenes (Fig. 5 A, Left). When we
visualized the weights of these two PCs, we found that they were
topographically organized (Fig. 5 B, Right) and corresponded
well to the large-scale domain structure inherent to aIT (see
contour lines and Fig. 1). Notably, relatively little within-domain
clustering was seen along the first two PCs, and higher dimen-
sions were less interpretable (SI Appendix, Fig. S20), and so, to
seek finer-grained organization, we opted to visualize the princi-
pal components of activations to each domain separately, shown
in Fig. 5B. For each domain, we determined a within-domain
attribute that might induce further representational—and thus,
topographic—distinctions; we labeled whether the faces were
male or female, whether objects were animate or inanimate, and
whether scenes were indoors or outdoors. The PC1–PC2 space
of each domain appeared to discriminate each attribute well but
not necessarily exactly along either component, so we fitted a
logistic regression over the first two PCs to extract a line (2D
hyperplane) in PC1 to PC2 space that best discriminated between
exemplars of each attribute type [i.e., y(x ) = w1 × PC1(x ) +
w2 × PC2(x )]; this led to discriminability of 0.84 for gender,
0.92 for animacy, and 0.87 for scenes. We then visualized the
topographic weights from aIT onto these discriminating projec-
tions, revealing striking topographic organization. In each case,
there was an ON-OFF weight pattern localized within the sector
of domain selectivity, along with further, weaker weight outside
this sector—for example, orange-colored weight contributing

to the animate object attribute within the face-selective cluster
(Fig. 5 B, Bottom Center)—indicating graded contributions of
nonselective units. A complementary clustering analysis of each
domain yielded similar results, whereby categories with different
attributes clustered spatially (SI Appendix, Figs. S8–S10).

Sign-Based Constraints Combine with Wiring Length Constraints to
Produce Topographic Organization. Having established that the
main ITN architecture produces a host of empirically grounded
topographic organizational phenomena, we next performed a
constraint-removal analysis to determine which constraints—in
addition to the bias toward local connectivity—are necessary for
the development of topographic organization. We varied three
binary constraints: whether between-area feedforward connec-
tions were excitatory only (EFF), whether the model employed
separate E and I unit populations within each area (E/I), and
whether the model contained lateral (recurrent) connections
within each area (RNN vs. FNN [feedforward neural network]).
We thus constructed seven architectures (the I units in the E/I-
EFF-FNN model would exert no effect, making the E/I-EFF-
FNN model equivalent to the EFF-FNN model). Each of these
architectures was trained across a log-spaced range of λw values,
and the generic topography, domain-level topography, perfor-
mance, and wiring cost were analyzed (Fig. 6). For each ar-
chitecture, we selected an optimal λw , chosen to maximize the
measure of generic topography (Eq. 7) averaged over layers and
cell types, trained an additional instance of the architecture with
this λw , and visualized the learned topography, shown in Fig. 6E.
We found that models without sign constraints (RNN, FNN)
produced only weak topography, uncharacteristic of primate IT
cortex. In contrast, models with separate excitation and inhibition
(E/I-RNN, E/I-FNN) produced somewhat greater topographic
organization, and models with strictly excitatory feedforward
connectivity (EFF-RNN, EFF-FNN) produced topographic or-
ganization equivalent to that of the main model (E/I-EFF-RNN).
Moreover, temporal recurrence, mediated through learned lat-
eral connections, was not necessary to develop topography. In
terms of performance, we found that the accuracy of the various
recurrent models was very similar, with a very small advantage for
models in which feedforward connectivity was not constrained to
be excitatory. In contrast, accuracy for the feedforward models
was reduced more substantially (>4 percentage points), pointing
to a performance benefit of the recurrent connections. Moreover,
while wiring cost (next section) was determined much more by
λw than architecture (Fig. 6D), we found that, for the same λw

across variants, the variants that developed clear domain-level
organization had the smallest wiring cost (SI Appendix, Fig. S36).

Finally, we found that an identical set of models that did
not employ layer normalization typically was too unstable to
train, and those models in the set that did train performed
worse and exhibited weaker topography (SI Appendix, Fig. S38
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A

B

Fig. 5. Principal components analysis of activations. A plots the PC1 to PC2 space and PC1 and PC2 component weights across images from all three domains.
Dashed lines on component weight plots show the contour of selectivity for each domain, using selectivity maps smoothed with a local averaging kernel (5%
nearest units) corresponding to significance P < 0.001. B plots the PC1 to PC2 space for responses to each domain separately and the weight visualization
of a rotated axis in PC1 to PC2 space that maximized the discriminability of images according to a given subdomain attribute (gender for faces, animacy for
objects, and indoor/outdoor for scenes). Dashed lines show selectivity for the domain of interest, using selectivity maps smoothed with a local averaging
kernel (5% nearest units) corresponding to significance P < 0.001.

and associated text in SI Appendix). The broad but untuned effect
of layer normalization thus appears to both stabilize activity and
introduce a global competition that contributes to topographic
organization.

Overall, these results demonstrate the importance of sign-
based constraints for developing topography in the ITN frame-
work and highlight that several model variants can produce
topographic organization and be used for different purposes,
depending on the level of detail desired. More detailed analyses
for these variants are available in SI Appendix, Figs. S25–S32.

Networks Can Reduce Spatial Costs While Maintaining Performance
by Increasing Topographic Organization. The optimization prob-
lem of Eq. 4 explicitly works to both maximize visual recognition
performance through a task-based loss term Lt and minimize
overall wiring cost through a connection-based loss term Lw that
scales with the square of connection distance. To what extent
does minimizing the wiring cost term compromise performance?
To answer this question, we computed wiring costs for each
architecture and λw discussed in the previous section. We
computed wiring cost in two ways. The first way is by using the Lw

term, which takes into account both the length and strength of

connections. The second way is inspired by the wiring cost
minimization framework (64), which takes into account only
the length of connections, assuming sparse connectivity. To
compute this wiring cost Lw ,u , we sparsified the network to
contain only the 1% strongest connections (sparsity = 0.99) and
took the averaged squared distance of remaining connections
(65) (Eq. 8); this sparsification introduces minimal performance
deficits in the main ITN model (SI Appendix, Fig. S7). The
results, shown in Fig. 6D, demonstrate that increasing the
wiring cost penalty λw by an order of magnitude decreased
the first spatial cost Lw by roughly an order of magnitude.
Precisely, for the main architecture, the log-log plot in Fig. 6
D, Left revealed a power-law relationship of the form y = Axm ,
where m =−1.24 (P < 0.001). The unweighted wiring cost
Lw ,u similarly decays roughly linearly on the log-log plot up
to λw = 0.1, after which Lw ,u saturates and then rises for
increasing values of λw . Thus, an intermediate value of λw

appears sufficient to drive the network toward preferentially local
connectivity, and further increasing λw may minimize further the
optimization term Lw through other means, such as by further
shrinking small long-range weights and reducing participation
at the grid boundaries where mean connection lengths are
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Fig. 6. Topographic organization, performance, and wiring cost as a function of spatial regularization strength (λw ) and architectural constraints. Seven
architectures were tested, sweeping all unique variations of models containing or not containing separate excitation and inhibition (E/I), excitatory-only
feedforward connectivity (EFF), and learned lateral/recurrent connections (RNN vs. FNN); see D for a model-by-model constraint breakdown. Note that all
models contained a minimal form of recurrence induced by the layer normalization operation. (A) Generic topographic organization summary statistic (Eq.
7). (B) Domain-level topographic organization summary statistic (Eq. 6). (C) Final accuracy on validation images. (D) Two measures of wiring cost: (Left) Lw

(Eq. 4) and (Right) Lw,u (Eq. 8). (E) Domain-level and generic topographic organization visualizations for each architecture using the tuned value of λw that
maximized Tg. Each model was tested using a different random initialization from the one used to tune λw .

longest (SI Appendix, Fig. S6). In contrast to the wiring costs,
the final classification performance was only marginally affected
by λw (for the main model: log-log slope m =−0.0016, P <
0.001, explained variance r2 = 0.582; fit was not significantly
better than log-linear regression, m =−0.0028, P < 0.001,
explained variance r2 = 0.583). Finally, increasing the wiring
cost penalty gradually resulted in the emergence of domain-
selective topographic organization, along with generic topo-
graphic organization indexed by distance-dependent pairwise
response correlations (Fig. 6 A and B and SI Appendix, Fig. S6).
Thus, models with a large wiring cost penalty perform similarly
to models with unconstrained connectivity but achieve very small
wiring cost, through the development of topographic functional
organization.

Discussion
Is IT cortex a collection of independent, possibly hard-wired
domain-specific modules or a more general-purpose, interactive,
and plastic system? A central goal of the current work was
to determine whether seemingly domain-specific organization
can emerge naturally from domain-general constraints. The
simulations we report demonstrate that many of the key findings
thought to support a modular view of separable, innately
specified mechanisms for the recognition of different high-level
domains (faces, objects, scenes) can be accounted for within
a learning-based account operating under generic connectivity
constraints (23, 37, 76). By simulating a biologically plausible ITN
model of IT without domain-specific innate structure, we found
that we can “let the structure emerge” (77, 78). Specifically,
we observed that the model developed largely domain-selective

spatial clusters that contain preferential information for each
domain and that, when lesioned, produced largely (but not
purely) specific deficits.

The Equivalence of Domain-General and Domain-Specific Organiza-
tion. Beyond domain-level spatially clustered organization, the
model exhibited a more generic form of topographic organiza-
tion, whereby nearby units had more correlated responses over
images compared to more distant units, a relationship that has
been demonstrated in macaque IT cortex (15, 79). In concert
with other modeling work (15) that pressured neurons to obey
this relationship as a proxy for wiring cost, our work suggests
that this generic spatial functional relationship appears to both
underlie domain-level organization and emerge from wiring cost
minimization. Moreover, we found that the principal compo-
nents of image space were mapped across each area of model IT,
as in macaque IT (14). That many of the hallmarks of domain
specificity can be simulated in a domain-general experiential
account, and such domain-level organization exists within a more
generic organization, gives credence to domain-general accounts
that accommodate learned specialization (50, 80).

The Importance of Sign-Based Constraints alongside a Minimal Wiring
Constraint. Importantly, wiring cost and multitask optimization
(i.e., object, face, and scene image recognition), by themselves,
were not sufficient to produce substantial topographic organiza-
tion (Fig. 6 and SI Appendix, Fig. S32). However, we found that
two well-known biological details—excitatory-only between-area
communication and separate excitatory and inhibitory neural
populations—could induce greater topographic organization in
the context of wiring cost and task optimization. Notably, locally
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biased excitatory feedforward connectivity provides an inductive
bias that neighboring units should have positively correlated re-
sponse properties, without specifying how correlated they should
be. As widespread correlation impairs representational capacity,
the network is encouraged to learn in a fashion whereby pair-
wise correlation of neural representations decays with distance,
a hallmark of topographic organization (15, 75). Models with
separate excitatory and inhibitory neurons—but no restriction on
which neurons sent feedforward connections—produced greater
topography relative to non–sign-constrained models, but weaker
topography than models with the feedforward excitation re-
striction. Interestingly, the feedforward E/I variant (E/I-FNN)
produced stronger topographic organization than the recurrent
variant (E/I-RNN). Finally, future work examining other tasks
(81, 82) and architectures (83–86) that place greater functional
demands on lateral connectivity may find that local connectivity
constraints would make a greater contribution to topographic
organization in the absence of sign-based constraints.

Comparison with Other Topographic Algorithms. The SOM (36)
and other algorithms applied to early visual cortex topographic
organization (28, 30) each implement a form of local cooper-
ation alongside broader competition. Specifically, in the SOM,
global competition is implemented by selecting a winning unit
on each trial and suppressing the responses of all other units,
and local cooperation is mediated through Hebbian learning
scaled by a Gaussian neighborhood around the winning unit.
While the main ITN model is quite different from the SOM—
employing error-driven rather than Hebbian learning, optimized
rather than fixed lateral weights and receptive field sizes, and
hierarchical organization—one of the simple ITN variants can
be seen as conceptually similar to the SOM, and this may pro-
vide insight into the minimal components of topographic devel-
opment in ITN models. Specifically, we found that a feedfor-
ward model employing local excitatory-only between-area con-
nections and lateral connectivity limited to the layer normaliza-
tion operation (EFF-FNN) was capable of producing many of
the hallmarks of topographic organization in the main model
(Fig. 6 and SI Appendix, Fig. S31). In EFF-ITN models, includ-
ing this variant, the local excitatory feedforward connections
(SI Appendix, Fig. S10) implement a form of local cooperation,
ensuring that neighboring units are positively correlated; the
layer normalization operation then implements a global compe-
tition by attempting to convert the distribution of preactivations
to a standard normal distribution, which leads to sparser activity
following rectification (the degree of which can be controlled by
each unit’s bias term) and ensures that units represent different
aspects of the feature space. Thus, layer normalization imple-
ments both competition and interactivity that, when combined
with the local representational cooperation induced by local ex-
citatory feedforward connections, leads to a smooth topographic
organization whereby the unit feature tuning is systematically
more similar for nearby units than for farther units. In recurrent
ITN models, such as the main model, the learned lateral connec-
tions can adapt this competition and interactivity, allowing for
increased performance (Fig. 6C). Moreover, these learned lat-
eral connections may contribute to competition through learned
broad inhibition (SI Appendix, Fig. S17).

Despite some conceptual similarities, there are some distinct
advantages to ITNs relative to SOMs and other previous topo-
graphic mapping algorithms. First, ITNs are naturally hierarchi-
cal, allowing for multiple interacting levels of topographically
organized representations, rather than assuming a single feature
space to be arranged in a single topographic map. This allows
the ITN to account for the presence of multiple domain-selective
regions arranged in a stream from earlier to later parts of IT (1,
3, 87, 88) and (in future work) to incorporate connectivity with
upstream and downstream areas to IT. Second, and relatedly,

the connectivity constraints of the ITN can be incorporated
into generic task-optimized neural networks, without requiring
separate Hebbian updates to topographically organize the fea-
ture space following development of the feature space (as in the
SOM), yielding a functional rather than purely organizational
role for lateral connections. Finally, the ITN framework is very
flexible, allowing for future research to examine different en-
coders, different IT architectures and topologies including more
detailed modeling of neuronal circuitry, and different task train-
ing environments and readout mechanisms, yielding promise for
a variety of future directions.

Limitations and Future Directions. The current work addresses
only the topographic organization of high-level representations,
since the connectivity constraints were not applied within the en-
coder model of early and midlevel vision. Modeling topographic
organization in convolutional layers is a particular challenge for
the ITN framework, as doing so over both retinotopic location
and stimulus features—well-known organizing principles of early
visual cortex—would necessitate that each channel have poten-
tially different connections with other channels across different
retinotopic positions, precluding the convolution. In point of fact,
feature tuning in the brain is not actually uniform across the
visual field (89, 90), and thus relaxing the convolution assump-
tion has merits for advancing visual computational neuroscience
and would enable more detailed connectivity-based topographic
modeling of early and midlevel visual areas. It is now clear
that convolution is not strictly required—fully connected visual
“transformer” layers using multiplicative attentional interactions
(91, 92) have recently been shown to reach high performance
without convolution. These architectures, and other biologically
plausible variants, thus serve as an exciting opportunity to ex-
amine topographic organization from connectivity-based con-
straints.

Relatedly, despite its strength in explaining hierarchical
topographic organization owing to between-area spatial con-
straints, the ITN is not yet able to satisfactorily explain
certain aspects of hierarchical representational transformation—
specifically, increasing invariance to 3D rotation (14)—in
contrast to the earlier convolutional layers of the encoder
(SI Appendix, Figs. S13 and S14). This is related to the need to
use nonconvolutional layers in model IT, rather than a result of
the wiring or sign-based constraints, as an RNN-ITN model with
λ= 0 shows the same plateau of representational invariance in
the ITN layers (SI Appendix, Fig. S15). Thus, our work should
be seen as a demonstration that within- and between-area
connectivity constraints can give rise to within- and between-
area topographic organization, but future research will need
to bridge the gap to jointly explain the increasing invariance
commonly seen in standard convolutional neural networks. This
again points to the critical need for future work to extend the
ITN framework to more powerful computational architectures,
training environments, and learning rules (93), rather than
relegating this computational power to a distinct encoder.

We also discovered some differences between the overarching
representational space of the ITN models and primate IT.
Namely, while the main ITN trained to recognize categories
from three domains (faces, objects, and scenes) mapped
these domains smoothly, the representational space elicited
by a set of artificial object stimuli was less cleanly topo-
graphically organized (SI Appendix, Fig. S20A). In contrast,
an alternative ITN model trained only on ImageNet (general
results shown in SI Appendix, Figs. S18 and S19) mapped these
objects in a smoother fashion more similar to primate IT
(SI Appendix, Fig. S20B) (14). However, such a model cannot
account for human expertise in face recognition (SI Appendix,
Fig. S18B). Thus, each image set is limited in its ability to
fully explain the empirical data. Future work employing more
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naturalistic datasets in which faces appear in the context of
individuals in scenes alongside demands for individuation may
lead to the development of representations that can more fully
capture both the large-scale organization and behavioral de-
mands of primate vision. We also found that a weaker spatial
penalty resulted in less patchy topography for images outside
the distribution of training images, such as the stimuli of ref.
14 (SI Appendix, Fig. S22). Thus, a more detailed comparison of
how well different ITN models quantitatively and qualitatively
explain IT cortex is an exciting line for future research.

While our work advanced biological plausibility beyond pre-
vious works, by incorporating wiring constraints, the separation
of excitation and inhibition, and between-area excitatory connec-
tivity, additional biological details are likely to be important to
the computation and organization of the visual cortex. Future
work may seek to consider incorporating details such as E/I
neuron ratio, E/I balance, variability in neuronal time constants,
divisive vs. subtractive inhibitory cell types, etc. Notably, the layer
normalization operation is similar to divisive normalization and
its effects in activity stabilization and global untuned inhibition
might be modeled in a biologically plausible fashion in future
work.

Finally, we focused on constraints local to the IT circuit,
demonstrating that they can give rise to the presence of biologi-
cally realistic domain-level clusters and global generic organiza-
tion. But in humans and nonhuman primates, domain-selective
regions do not merely exist, but exist in consistent locations
across individuals of a given species (3, 19, 48, 94, 95), albeit with
modest yet reliable individual variability (96). The retinotopic
organization of upstream early visual cortical areas is thought to
encourage foveally biased cortex to support face representations
and peripherally biased cortex to support scene representations
(47, 97), and connectivity biases with downstream nonvisual areas
are thought to play a further role in shaping the global organiza-
tion of domain-selective areas in IT (47, 98–102). These biases,
such as left-hemispheric language biases, other more fine-grained

patterning of connections with domain-relevant downstream ar-
eas (i.e., socially responsive areas for faces, memory areas for
scenes, motor areas for manipulable objects), and cross-modal
map alignment (23, 80), should be explored in future work to
understand better the factors underlying IT organization both
within and between hemispheres. We hypothesize that modeling
long-range connectivity-based constraints with regions external
to IT (46, 47, 103) in an extended ITN architecture containing
two hemispheres will give rise to reliable within- and between-
hemisphere patterns of areal localization. Given that different
initializations and architectural variants can yield interesting
individual representational differences in deep-learning models
(67), we expect that a systematic study of architectural variation
in ITN models could lead to successful quantitative accounting
of individual differences in human cortical topography and rep-
resentation.

Conclusion
The interactive topographic network framework demonstrates
that generic connectivity constraints can produce the central
aspects of topographic organization in primate visual cortex.
Extensions of the approach hold promise in accounting for the
systematic localization of domain specialization both within and
between hemispheres.

Data Availability. Code to reproduce our results and to develop and test
new ITN models is available at https://www.github.com/viscog-cmu/ITN. Sim-
ulation results have been deposited in Kilthub (https://doi.org/10.1184/R1/
17131319).
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