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André F. Rendeiro,3,9 Yaron Bram,8 Vasuretha Chandar,8 Heather Geiger,6 Arryn Craney,7 Priya Velu,7 Ari M. Melnick,8

Iman Hajirasouliha,1,3,9 Afshin Beheshti,10,11 Deanne Taylor,12,13 Amanda Saravia-Butler,14,15 Urminder Singh,16

Eve Syrkin Wurtele,16 Jonathan Schisler,17,18 Samantha Fennessey,6 André Corvelo,6 Michael C. Zody,6 Soren Germer,6
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SUMMARY
The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19),
and what distinguishes them from common seasonal influenza virus and other lung injury states such as
acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine
transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-
wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and
expression profiling across 357 tissue sections from 16 representative patient lung samples and identify
tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection
and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical
cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat
the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other
respiratory infections.
INTRODUCTION

In March 2020, the World Health Organization (WHO) declared a

novel pandemic of coronavirus disease 2019 (COVID-19), an
Cell Repo
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infection caused by the betacoronavirus severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2), which is currently

attributed to over 320 million cases and over 5.5 million deaths

globally (https://coronavirus.jhu.edu).1 Since the presenting
rts Medicine 3, 100522, February 15, 2022 ª 2022 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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symptoms of COVID-19 resemble those of common viral respira-

tory infections, a molecular diagnosis is required to distinguish a

SARS-CoV-2 infection from influenza and other respiratory ill-

nesses,2,3 and ongoing questions remain about the host re-

sponses to SARS-CoV-2 relative to other respiratory pathogens.

As severe illness and death continue to impact a segment of

COVID-19-positive individuals, urgent questions persist about

the molecular drivers of morbidity and mortality associated

with SARS-CoV-2 infection. This knowledge could lead to im-

provements in both the acute treatment and the long-term

management of pathological changes in multiple organs.

Prior work has shown that COVID-19 leads to high systemic

interferon responses (both alpha and gamma) and that co-infec-

tion with other pathogens is relatively rare (3%–15%).4–6 Yet there

are limiteddata fordiscriminating themolecular responsebetween

different kinds of respiratory infections or pulmonary conditions

(e.g., influenza A (IAV) versus SARS-CoV-2 infections) and almost

no data on the variegated impact of different pathogens across

different human tissues other than clinical observations from

intensive care unit (ICU) patients.7 Delineation of pathogen- and

tissue-specific differences is critical for understanding the molec-

ular determinants of mortality associated with COVID-19 and for

developing novel diagnostics and therapeutic interventions.

To address this knowledge gap, we used shotgun metatran-

scriptomics (total RNA sequencing [RNA-seq]) to comprehen-

sively profile human tissues in 39 patients who died from

COVID-19 (185 total autopsy samples), including heart, liver,

lung, kidney, and lymph nodes, analyzed gene expression, and

assessed the system-wide impact of SARS-CoV-2 infection.

We also used a spatial protein and transcript mapping platform

(GeoMx) to visualize the cartography of the infection in these tis-

sues and to discover disruption of regional and cell-type-specific

expression. The spatial transcriptomics data examined 357 total

regions of interest (ROIs), which were selected from 13 patients

who had SARS-CoV-2, influenza, or bacterial infections and from

3 normal patients as controls, revealing the cellular and regulato-

ry signatures that define these distinct pathological states.

Finally, to provide context to earlier stages and sites of infection,

we compared these in-depth spatial and tissue-specific tran-

scriptome maps with an independent cohort of nasopharyngeal
2 Cell Reports Medicine 3, 100522, February 15, 2022
(NP) swabs from 216 COVID-19-positive patients and 430

COVID-19-negative controls, which revealed a significant and

distinct disruption of cellular and transcriptional programs

induced by SARS-CoV-2 infection in the patients who unfortu-

nately succumbed to the disease. As a resource for the field,

these data have also been placed in an online portal (https://

covidgenes.weill.cornell.edu/) for additional data mining and

visualization.

RESULTS

System-wide host responses and transcriptome
changes by COVID-19
We first used shotgun metatranscriptomics (total RNA-seq) for

host and viral profiling on 39 patients who died from COVID-

19, including 185 organ-specific tissue samples from the respec-

tive autopsies and 22 healthy control samples from organ donor

remnant tissues (Figure 1A; Table S1). We examined the COVID-

19-specific host responses and transcriptome changes across

various organs (heart, kidney, liver, lung, and lymph nodes) to

ascertain the differentially expressed genes (DEGs) between

COVID-19 and control sample sets (q < 0.01, expression fold

change > 1.5 by the differential expression analysis method [DE-

Seq2]; Figure 1B; Table S2). Separately, SARS-CoV-2 RNA

reads were aligned to the SARS-CoV-2 genome and the number

of reads was discerned across multiple tissues including the

lung, lymph node, kidney, liver, and heart (Figure S1) but mostly

in the lung. Viral reads were robustly detected in NP swab sam-

ples from COVID-19 patients, consistent with previous re-

ports.4,8 Normalized coverage values in SARS-CoV-2-positive

autopsy tissue samples revealed a detection bias toward the

SARS-CoV-2 30 end sequences, which is consistent with the

known viral transcript abundance (Figures S1A and S1B).9

Reconstruction of the viral genomes revealed known and un-

known variants common to many patients and some evidence

of intra-host variability (Figure S1C). Coverage limitations

notwithstanding, we generally saw evidence of the same viral

strain across the organ systems within each patient. We also as-

sessed the variability of the COVID-19 patient samples by clus-

tering based on the SARS-CoV-2 viral loads (and noted as SC2

https://covidgenes.weill.cornell.edu/
https://covidgenes.weill.cornell.edu/
mailto:alb9003@med.cornell.edu
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A

B

Figure 1. Tissue- and duration-specific dysregulation of gene expression from SARS-CoV-2 infection

(A) Sample overview by tissue for RNA-seq and GeoMx experiments. Number of regions of interest (ROIs) and patient numbers (n) are summarized, and a

representative tissue slide image for GeoMX spatial profiling is presented along with the tissue types.

(B) Volcano plots of the COVID-19-positive versus normal tissues are shown for the five tissues from autopsy: heart (n = 41), kidney (n = 27), liver (n = 40), lung (n =

40), and lymph node (n = 27). Differentially expressed genes (>1.5-fold, q < 0.05, DESeq2) are shown as purple spots (downregulated in COVID-19) and orange

(upregulated in COVID-19).
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high and SC2 low), and the viral loads were inversely correlated

with the duration of disease and independent of factors such as

race, age, or gender (Figures S1D and S1E). In addition to the an-

notated clinical metadata table (Table S1), we summarized the

clinical courses of a few representative COVID-19 patients

from hospitalization to intubation to death (Figure S1D).

COVID-19 pathway enrichment analysis revealed significant

changes (q < 0.01) in pathways for viral infection (regulation

of viral genome replication and viral entry into host cell) and im-

mune response (regulation of type 1 interferon response and

regulation of tyrosine phosphorylation of Stat protein, Gene

Ontology (GO) Regulation of toll-like receptor signaling
pathway), and the enrichment varied as a function of the viral

load (Figure 2A; Table S2). We observed that each tissue

showed its own distinct transcriptional disruption in response

to SARS-CoV-2 infection, with the lymph node exhibiting the

greatest number of DEGs when compared with controls (in

both high- and low-viral-load groups). Of note, both tissue-spe-

cific and pan-tissue disruptions of normal-expression programs

were observed (Figure 1B), and these were then summarized

using gene set enrichment analysis (GSEA; Figures 2A and

S2A). Some pathways were consistently dysregulated in all tis-

sues during early infection (SARS-CoV-2 high), such as the

G2M checkpoint (q values of 6.4 3 10�19, 3.0 3 10�5, 1.2 3
Cell Reports Medicine 3, 100522, February 15, 2022 3
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Figure 2. Pathways and cell population changes of COVID-19

(A) The pathways that show significant differences in all or the majority of the five tissue types are shown, with statistical significance from GSEA testing across

five kinds of tissue (colors in legend), including heart (n = 41), kidney (n = 27), liver (n = 40), lung (n = 40), and lymph node (n = 27). The x axis shows the normalized

enrichment score for COVID-19-positive versus control, SARS-CoV-2 high or low versus control, and SARS-CoV-2 high versus Low comparisons.

(B) Cellular deconvolution distribution violin plots for the heart, kidney, liver, and lung. SARS-CoV-2 high (red), low (orange), and normal (blue) tissues are shown

using a square root scale. The number of biological replicates is the same as in (A).
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10�8, 9.7 3 10�8, and 0.002 for lung, liver, kidney, lymph

node, and heart, respectively; Table S2), E2F targeting (q

values of 2.8 3 10�26, 0.00672, 1.9 3 10�7, 9.9 3 10�9, and
4 Cell Reports Medicine 3, 100522, February 15, 2022
0.047, respectively), and epithelial mesenchymal transition

(EMT; q values of 2.1 3 10�22, 3.0 3 10�4, 2.9 3 10�7, 1.4 3

10�7, and 0.0287, respectively), but in the late infection
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(SARS-CoV-2 low), gene networks showed more inter-tissue

heterogeneity in their disrupted pathways, including cytokine

activity and inflammatory response. However, in both the

SARS-CoV-2 high- and low-viral-load groups, the G2M check-

point and E2F networks were consistently upregulated,

indicating a core, persistent set of dysregulated cell-cycle regu-

lation genes during early and late stages of infection.

TheDEGs andGSEA results were then examined for the largest

differences between the infection level and stage (SARS-CoV-2

high, early COVID-19 infection versus SARS-CoV-2 low, late

COVID-19 infection). Interestingly, the heart tissues showed the

largest transcriptional differences, revealing that the later stage

of the infection had amuch greater impact on cardiac tissues (Fig-

ure S2A). To place these results into a larger context and to

compare them with the findings of other data sets, we compared

DEGs from each tissuewith RNA-seq data fromNP swabs aswell

as RNA-seq data from a publicly available data set on monocytes

from COVID-19-positive and -negative patients (Figure S2B).4

While the highest correlations were seen within the same tissue

types, most of the tissues with a high viral load showed a statisti-

cally significant, positive correlationwith the DEGs in theNP swab

samples (q < 0.01) when compared with normal/negative pa-

tients. In contrast, the later infection (low-viral-load) patients’

tissues showed a negative correlation with the NP swab samples,

indicating that the systemic impact of SARS-CoV-2 can be

missed when not considering the biological impact on different

organs. Interestingly, when matched with disease severity

(high-, medium-, and low-viral-load groups within NP swab sam-

ples), the difference was bigger in the low and medium groups

than in the high groups.

To create a more fine-grained analysis of the cellular gene

expression states in each tissue, we used the cell deconvolution

multiple signal classification algorithm (MuSiC) on each tissue’s

RNA-seq data (see STAR Methods). The MuSiC results showed

distinct disruptions of the transcriptional programs for each type

of tissue in the COVID-19 patients and in the gain or loss of cell

types (Figure 2B). Consistent with previous reports, the lung

showed a loss of the capillary intermediate cells and alveolar

epithelial cell types.10,11 Strikingly, we also found decreases in

the major cell types in each organ type, suggesting a systemic

disruption of the COVID-19 response. The kidney and liver

showed a loss of proximal tubule in the kidney and of hepatocyte

marker expressions in the liver but an increase in T cells in both

organs. Furthermore, the heart showed a near-complete loss of

the cell signatures for cardiomyocytes in both SARS-CoV-2 high

and low viral loads (Figures 2B and 3A), despite no obvious gross

or histologic changes in the heart (Figure 3B). This observation

extends from previously reported cardiovascular involvements

in COVID-19 and further defines the SARS-CoV-2-specific tran-

script and cellular changes in lung as well as other organs such

as heart, liver, and kidney.12,13

We then looked at several markers related to the functions and

processes of each organ (Figure 3C). While the lung showed the

biggest changes in response to COVID-19, the loss of functional

markers was specific to organ type. For example, surfactant pro-

teins (i.e., SFTPA1, SFTPB, SFTPC), which are components of

the alveolar lipoprotein complex crucial for gas exchange, were

lost in the lung but increased in other organs. Similarly, markers
associated with liver function (i.e., liver enzymes and proteins

such as ALB, HAO1, and ALDOB) and solute carrier family pro-

teins (i.e., SLC22A13, SLC34A1, uromodulin [UMOD]) were

specifically lost in liver and kidney, respectively. In addition to

the cardiomyocyte markers (Figure 3A), we also found that

markers such as phospholamban (PLN, calcium pump inhibitor),

heart and neural crest derivatives expressed 1 (HAND1), and

troponin cardiac type (TNNT2) were specifically lost in the heart.

This observation suggests that in addition to cell type losses, the

disruptions due to COVID-19 affect the biological processes and

functions for which each organ system is responsible. Consistent

with recent reports related to virus-induced senescence found in

COVID-19 lung models,14 these data also show that each organ

system (lung, heart, liver, and kidney) exhibits its own distinct in-

flammatory response and resultant change of tissue identity.

Spatial and expression profiling of high and low SARS-
CoV-2 infection in the lung
For a deeper examination of COVID-19 lung tissue, we then used

the GeoMx Digital Spatial Profiling (DSP) platform to perform

multiplexed high-resolution spatial transcriptomic profiling of

357 lung tissue ROIs from 16 patients. The ROIs were selected

from deceased patients with COVID-19 (n = 8), nonviral acute

respiratory distress syndrome (ARDS) (n = 2), influenza-induced

ARDS (n = 3), and healthy tissues from individuals without infec-

tions as controls (n = 3) using nCounter Multiplex Analysis incor-

porated with targets for SARS-CoV-2 (i.e., IO360 panel plus

COVID-19 Spike-in; Figure 1A). Among COVID-19 patients char-

acterizedwith total RNA-seq, we identified patients that had high

overall SARS-CoV-2 expression (SC2 high) or had low overall

expression of SARS-CoV-2 (SC2 low) from their lung-tissue sam-

ples, and four representative samples from each group were

selected for further downstream analysis. Serial sections were

stained with an RNA scope probe against the viral Spike (S)

gene, Syto13 (nuclear DNA), macrophages (CD68), immune cells

(CD45), and epithelial cells (pan-cytokeratin) along with the

GeoMx Cancer Transcriptome Atlas Panel (CTA, 1,811 targets)

supplemented with 23 human genes associated with lung

biology and two open reading frames (ORFs) from the SARS-

CoV-2 genome (Figures 1A and S1). We chose tissue ROIs that

captured three structural components of the lung, including

vascular, airway, and alveolar regions (Figure S3).

We observed significant differences across tissue types within

the lung (DEGs with q < 0.05 and > 1 fold change by DESeq2).

For example, vascular ROIs showed an increase in ACTA2 and

FLNA, while alveolar regions exhibited a mixture of signals

from macrophage and monocyte genes (CD163 and CD68)

with collagen (COL1A1, COL1A2, COL6A3). In large airway tis-

sues, genes related to the mucosal layer (MUC4, MUC5AC,

MUC5B) as well as cytokine-mediated signaling pathway genes

(CCL20, CXCL1, CXCL6, CXCL6, MMP1) and type I interferon

genes (IFIT3, ISG15, STAT1, MX1) were upregulated in COVID-

19. Regardless of the tissue type, we saw consistent increases

in genes such as B2M, CD81, GNAS, HLA.B, HSPA1A,

HSPB1, and SERPING1 in COVID-19 lungs (Figure 4A; Table

S3). When we summarized these genes using GO terms, tis-

sue-type-specific processes in response to COVID-19 were

distinct from overall inflammation (Table S3). While inflammatory
Cell Reports Medicine 3, 100522, February 15, 2022 5
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Figure 3. Cellular disruption and tissue identity loss from SARS-CoV-2 infection

(A) Specific gene expression distributions for cardiomyocyte-related genes (from patient autopsy samples, n = 41).

(B) Sample collection strategy for COVID-19 autopsy samples from complete adult cases.

(A–J) Two cases with representative hematoxylin and eosin (H&E) images are shown: (A–E) Cases 58 and (F–J) 73. (A and F) Lung, (B and G) kidney, (C and H)

heart, (D and I) liver, and (E and J)mediastinal lymph node (H&E stain). (B, D, E, I, and J) Original magnification350. (A, C, F, G, and H) Original magnification3100.

(C) Gene expression changes of representative functional markers for each organ: heart (n = 41), kidney (n = 27), liver (n = 40), and lung (n = 40). Five genes related

to the organ function were chosen (from the Human Protein Atlas), along with five housekeeping genes on the rightmost side. Darker gray shaded area represents

the ranges of the housekeeping gene changes (baseline noise) and error bars show standard error from DESeq2 output, relative to the uninfected control.
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responses were present in all tissue compartments, macro-

phage and monocyte activation were prominent in alveolar

regions, while fibrosis occurred near the vascular region. More-
6 Cell Reports Medicine 3, 100522, February 15, 2022
over, type I interferon- and cytokine-related pathways were

found significant in large airway tissues, while complement acti-

vation was found in vascular tissues.
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Figure 4. Spatial transcriptomics identifies tissue- and disease-specific differences

(A) Venn diagram of tissue-specific COVID-19 DEGs (relative to normal, adjusted p values < 0.01, >1-fold) from 16 patients across 357 ROIs in total.

(B) UpSet plot depicting intersections of disease-specific DEGs (p values < 0.05, fold change [|FC|] > 1), also from 16 patients across 357 ROIs in total.

(C) Volcano plot showing differences between normal (n = 3, 64 ROIs) and SARS-CoV-2 high-viral-load samples (n = 4, 86 ROIs) after accounting for

compartmental differences. Top genes, in terms of p value or FC are indicated in gray, and COVID-19 Spike-in genes are labeled in black.

(D) Ternary plot of a combined analysis of SARS-CoV-2 high (n = 4, 86 ROIs), low (n = 4, 97 ROIs), and normal (n = 3, 64 ROIs), where genes are projected away

from the center based on their marginal means. Genes upregulated in a single group approach that group’s corner. Top genes in terms of p value or FC are

labeled. Genes with color were significant with p < 0.05. Genes with outlines are significant after correcting for multiple hypothesis testing.

Article
ll

OPEN ACCESS
We also compared differences across injury sources (SARS-

CoV-2 infection, influenza, and nonviral ARDS) and found

significant differences between normal and SARS-CoV-2-high
samples, even after accounting for compartmental variability

(Figures 4B and S4). These differences included a decrease in

the expression of surfactant genes (SFTPA1, SFTPB, and
Cell Reports Medicine 3, 100522, February 15, 2022 7
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(legend continued on next page)
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SFTPC) associated with type 1 and type 2 pneumocytes as well

as an enrichment for genes associated with basal cells (TP63)

and club cells (SCGB1A1), and several immune markers (e.g.,

HLA-B, HLA-E, p all < 0.05, mixed effects model) in SARS-

CoV-2-high patients compared with both normal and SARS-

CoV-2-low patients. Ternary plots of a combined analysis of

normal, SARS-CoV-2-high and -low tissues—where transcripts

are projected away from the center based on their marginal

means—revealed upregulation of several genes enriched in

each set of lung tissues. Enrichments included SFTPA1, SFTPB,

and SFTPC (alveolar epithelial cell markers) in normal lungs, CLU

(lung injury and repair) and S100A9 (enriched in activatedmacro-

phages) in SARS-CoV-2-low lungs, and TP63 (basal cell), ID1

(upregulated and a key regulator of lung injury and repair), and

interferon-regulated genes including IFI6, IFI27, ISG15, and

LY6E in SARS-CoV-2-high lungs (Figures 4C and 4D). Enrich-

ment of interferon-stimulated genes was observed only in

SARS-CoV-2-high samples, which corresponds to early stages

of the infection, by timing of disease onset and histopathology

(Figures S1D and S1E). Moreover, we observed enrichments of

CASP3 and ID1, suggesting ongoing cellular injury and repair re-

sponses in SARS-CoV-2-high patients. In contrast, we find an

enrichment of several markers of pulmonary fibrosis (CLU,

COL1A1, COL1A2, and COL3A1) in SARS-CoV-2-low patients

(these correspond to the later stages of infection), indicating

that there are two distinct stages of infection.15

We also examined the spatial transcriptome data for

differences between the high- and low-SARS-CoV-2- and the

IAV-infected lung samples. This analysis revealed a significant

enrichment of THBS1 and NR4A1 in the influenza samples,

which are both genes that have been shown to be engaged in

response to influenza-induced lung injury (Figure S4B). When

lung tissues from SARS-CoV-2-high and -low samples were

compared with those from nonviral ARDS, enrichment for

S100A8 and S100A9 was observed, which is consistent with

the significant enrichment of neutrophils in these samples and

was previously suggested to be a driver of COVID-19 pathogen-

esis (Figure S4A).3,16 Importantly, an enrichment for genes

involved in lung injury and repair (ID1), as well as those involved

in type I interferon responses including IFI6, IFI27, ISG15, and

LY6E in SARS-CoV-2-high lungs, is observed even when

compared with IAV infection of the lung and nonviral lung injury.

Similarly, we find enrichment of several markers of pulmonary

fibrosis (CLU, COL1A1, COL1A2, and COL3A1) in SARS-CoV-

2-low samples as compared with nonviral and viral ARDS sam-

ples, exemplifying the profound lung injury and fibrosis during

later stages of COVID-19.

COVID-19-specific heterogeneity and spatial tropism in
the lung
Regardless of specific lung-tissue types, the expression profiles

and respective cell-type proportions were enough to distinguish
(C) Genes identifying disease- and tissue-specific conditions.

(D) Cell-type proportions in normal versus COVID-19. The median and quartiles ar

the means (ns, *p % 0.05, **p % 0.01, ***p % 0.001, and ****p % 0.0001).

(E) Enrichment of cell type- and COVID-19-specific gene signatures from 11 pat
and cluster normal versus COVID-19 (high and low SARS-CoV-2

viral loads) lung ROIs (Figure 5A), which indicates that the SARS-

CoV-2 infection is altering the cellular interaction landscape and

composition of the lung tissue. To gain additional insights into

the heterogeneity and spatial tropism of lung infection indepen-

dent of ROI origins, we assessed how each ROI compares with

the typical healthy tissue. Some ROIs (especially of alveolar re-

gions) in COVID-19 showed significantly diminished similarity

to those of healthy lungs (Figures 5B, S5A, and S5B). Interest-

ingly, the loss of this similarity did not result in convergence to

other tissue types we observed (i.e., loss of alveolar similarity

score did not increase the vascular or large airway scores). To

evaluate the cause of this loss of similarities, we discovered

genes attributing disease- and tissue-specific clustering and

identified 35 genes with the highest contrast (Figure 5C). For

example, some of these genes were related to regulatory T cell

differentiation in COVID-19 high- and low-viral-load alveolar tis-

sues (PLK1, ATM) and IL6/JAK/STAT3 signaling in SARS-CoV-2-

low vascular regions (SOCS1, CXCL11; Table S3). In addition to

the known molecular responses to COVID-19, these genes can

be used as a set to locate infection response within the lung

and disease states.

To pinpoint specific changes in different lung tissue types,

count estimates of 15 distinct cell types were imputed based

on gene expression profiles from the Human Cell Atlas (HCA)

adult lung dataset, including neutrophil profiles derived from sin-

gle-nucleus RNA-seq (snRNA-seq) of lung tumors (see STAR

Methods). Consistent with other studies,17,18 we observed that

COVID-19 was associated with an increase in tissue-infiltrating

immune cells, including T cells, natural killer (NK) cells, mono-

cytes, and macrophages (Figures 5D and S5C). Some immune

cell types, such as monocytes, NK cells, and regulatory T cells,

showed a statistically significant increase only in the SARS-

CoV-2-high conditions. Also, while fibroblasts and endothelial

cells increased in both high- and low-viral-load samples (52%

and 65% increase, respectively), type 1 and type 2 alveolar

epithelial cell proportions decreased (26% and 16% decrease,

respectively), reflecting the ongoing tissue remodeling or selec-

tive epithelial cell death induced by infection (Figure S5C). We

validated these findings by comparing the expression levels

with cell-type-specific COVID-19 gene signatures derived from

snRNA-seq,19 which showed enrichments across different cell

types (Figure 5E; Table S3). Using an orthogonal approach, we

stained the lung tissues with Masson’s trichrome and observed

a statistically significant increase (p < 0.01) in cellular collagen-

rich areas, confirming the increase in lung fibroblasts

(Figure S3A).

Given the observed changes in cell proportions that are

induced during SARS-CoV-2 infection, we next examined the

impact on the co-occurrence of these changes as a metric of in-

trapulmonary cellular heterogeneity (Figure 6). Pairwise correla-

tions of all detected cell types under five different conditions
e noted by the box plot inside. p value two-tailed t tests were done to compare

ients across 247 ROIs.
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Figure 6. Cellular tropism and heterogeneity in response to COVID-19
(A) Correlationmatrix of pairwise cell-type correlations. Statistically insignificant correlations were not displayed (gray area, p < 0.05); from 16 patients across 357

ROIs in total, as shown in Figure 1A.

(B) Average proportion changes of the cell types relative to normal. The cell types were ordered by average increase in proportions across 357 ROIs. Error bars

indicate 0.5*SD. On the left, stacked bar plot depicts the overall proportions by conditions.

(C and D) Entropy estimates of the (C) tissue types and (D) cell typeswithin the normal (n = 3, 64 ROIs), SARS-CoV-2-high (n = 4, 86 ROIs) and -low (n = 4, 97 ROIs),

influenza (n = 2, 46 ROIs), and ARDS (n = 3, 67 ROIs) conditions.
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(SARS-CoV-2 high and low, IAV, nonviral ARDS, and control)

were calculated and visualized (Figure 6A). In normal lungs, we

observed three clear cellular correlation clusters: (1) monocytes,

fibroblasts, T cells, andNK cells, (2) neutrophils and ciliated cells,

and (3) plasmacytoid dendritic cells (pDCs), macrophages, and

B cells. While perturbations of these cellular clusters were

observed across all injury conditions, the NK cell-T cell correla-

tion was lost only in the SARS-CoV-2 high-viral-load patients

and was not present in low-viral-load patients, with the low viral

load corresponding to the later stages of infection (Figures 6A

and 6B). We then quantified the correlation differences in the
10 Cell Reports Medicine 3, 100522, February 15, 2022
lungs’ cellular landscapes between SARS-CoV-2-high and

-low patients, which indicated that the greatest changes were

in the monocyte-T cell correlations and dendritic-neutrophil cor-

relations (Figure S6A), further supporting the view that SARS-

CoV-2-specific T cell activity may be disrupted. Of note, it may

be possible that the changes in correlation reflect both the gen-

eration of long-term memory and T cell-mediated killing of in-

fected epithelial cells.20

To compare changes across the disease states (COVID-19,

influenza, ARDS), we visualized the average proportions of

each cell type. Macrophage and neutrophil population levels
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were found to be much higher in the COVID-19 lungs (both high

and low viral loads), while T cell, monocyte, and epithelial cell

numbers were much lower than normal. The entropy estimates

of the given cell types (Figure 6C), which are a function of vari-

ance, showed that macrophages and neutrophils commonly dis-

played increased heterogeneity (across ROIs and patients)

across all injury conditions. Entropy in fibroblast, epithelial,

vessel, and T cell populations was greater in SARS-CoV-2-high

and -low lung tissue than in IAV infection and ARDS (121.5%,

104.7%, 111.9%, and 124.7% changes, respectively, when

compared with the average of SARS-CoV-2 high/low and that

of IAV/ARDS; Figure 6D), suggesting an increase in cellular het-

erogeneity. When measuring and comparing cellular tropism

within the tissue, nearly all COVID-19-positive ROIs showed an

increase in heterogeneity of the cell populations, with the sole

exception being vascular regions with high COVID-19 (Fig-

ure 6D). The decrease in heterogeneity in the vascular regions

of high-viral-load conditions is mainly from the decrease of fibro-

blasts and epithelial, T, and NK cells (Figure S6B). The signals

from B cells are also specific to large airway tissues, and this

observation is consistent with the cell fraction increase in large

airway ROIs of COVID-19 samples (Figure S6B). Such changes

in heterogeneity are related to specific damages and tissue dys-

regulations. Single-sample GSEA (ssGSEA) of macrophage,

neutrophil, and T cell regulatory pathways showed enrichment

in COVID-19, even when compared with influenza and ARDS,

including macrophage activation and apoptotic process (1.3-

and 2.8-fold increase in averaged ssGSEA scores relative to

normal, with p values of 2.91 3 10�8 and 0.001) in patients

with high viral loads (Figures S6C and S6E).

DISCUSSION

In this study, we established a clinical analytical pipeline to collect

and examine autopsy samples to elucidate and compare the

spatial transcriptional landscape induced by SARS-CoV-2, IAV,

andnonviral ARDS.Bycombining transcriptional profiles of 39pa-

tient autopsy tissues from heart, liver, lung, kidney, and lymph no-

des,wepresented body-wide transcriptome changes in response

to COVID-19. Across all tissues, we found system-wide disrup-

tions of cellular and transcriptional pathways and matched the

lung data with spatial protein and expression profiling (GeoMx,

across 357 tissue sections from 16 representative patient lung

samples). We also identified tissue-compartment-specific dam-

age (alveolar, vascular, and large airway compartments within

the lung tissue) and the loss of tissue type identity caused by the

SARS-CoV-2 infection, which correlated with viral loads (high

versus low) and the clinical course of infection.

Patient lung tissue samples containing significant levels of

SARS-CoV-2 showed enrichment for genes related to a variety

of immune markers specific to certain immune cells and lung in-

juries as well as for interferon-stimulated genes (e.g., IFI27,

IFITM1, and LY6E) and macrophage activation (S100A9,

TYMP, and SERPING1). In contrast, patient lung tissue samples

containing low levels of SARS-CoV-2 RNA show enrichment for

COL1A1 and other markers of pulmonary fibrosis. Compared

with other viral-related diseases (influenza), COVID-19 tissue

samples still show significant enrichment for genes involved in
lung injury and repair, interferon-signaling genes, and pulmonary

fibrosis. Of note, COVID-19 (high-viral-load samples), influenza,

and ARDS each show differential HLA-B and -C expressions,

which are known mediators of NK and T cell activation21,22 and

which can mediate host risk of infection; one example is enrich-

ment for HLA-DRB5, whose expression and specific gene poly-

morphisms are associated with pulmonary fibrosis and

severity.23,24 Compared across different disease types, all dis-

eases, COVID-19 (low viral load), influenza, and ARDS showed

enrichment for DMBT1, a gene known to be upregulated and

dysregulated in pulmonary injury and fibrosis.25,26 Virus-related

diseases (SARS-CoV-2 high viral load and influenza) in particular

showed significant changes on the expression of lung epithelial-

cell-related transcripts (i.e., ACTB, C1R, and FN1); such changes

are known markers of lung-injury gene signatures.27,28

The spatial analysis platform (Nanostring GeoMx) enabled us

to investigate the impact of the disease by incorporating cellular

and spatial organization. Consistent with recent reports from

bulk cellular profiling, we observed an increase in immune cell

types and fibroblasts in COVID-19 but a decrease in alveolar

epithelial cells.10 In SARS-CoV-2 low-viral-load tissues, the pro-

portions of some immune cells (i.e., monocytes, NK cells, or reg-

ulatory T cells) were normal, but fibroblasts and vessel cells still

exhibited an increase similar to those observed in the high-viral-

load samples. Some of these cell types form a ‘‘cellular correla-

tion cluster,’’ and these co-occurrence clusters of cellular

changes are uniquely disrupted in COVID-19 (relative to influ-

enza and ARDS), particularly in the COVID-19 high-viral-load

sample group. While macrophages and neutrophils showed an

increase in entropy across all lung-related injury conditions, NK

and T cells showed an increase only in COVID-19 samples.While

few studies have interrogated the tissue environments, multiple

studies have examined the changes occurring during COVID-

19 infection in the peripheral blood and have identified poor

T cell responses and T cell dysregulation.27,29–33 Together, these

findings highlight the robust and dynamic nature of SARS-CoV-2

engagement with tissue homeostatic processes and that the

stage of COVID-19 infection impacts the pathophysiological

landscape of the lung.

When these spatial transcriptomics data were compared to

the multi-organ bulk RNA-seq data from the autopsy issues,

confirmatory as well as additional signatures of COVID-19

disease were found. First, fibroblasts and immune cells (i.e.,

macrophages) were increased in most tissue types, while tis-

sue-specific cell types, such as alveolar epithelial types 1 and

2 cells in the lung and cardiomyocytes in the heart, showed a

decrease in COVID-19 relative to controls. Increases in fibro-

blasts, endothelial cells, and immune cells may be impacted

by a variety of immune activations within each organ, particularly

as a long-term response to the infection. This observation may

also be related to the decrease in characteristic transcriptomic

signatures of the main cell type within each organ, which may

contribute to the morbidity and mortality of COVID-19. For

example, the reduction in the cardiomyocyte cell fraction corre-

lated with a reduction in several transcripts encoding sarcomeric

and contractile proteins (in both high and low viral loads),34,35

representing a persistent transcriptional perturbation and poten-

tially long-term, cardiac-specific impact of COVID-19.
Cell Reports Medicine 3, 100522, February 15, 2022 11
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These data support the view of both tissue-specific and time-

dependent biological responses to the stages of SARS-CoV-2

infection, and this is buttressed by orthogonal data. For example,

DEGs observed from NP swabs showed a high correlation to tis-

sue-specific DEGs in the early stages of infection but very little

correlation with later infection. The observed correlations likely

reveal monocyte migration and infiltration into tissues during

SARS-CoV-2 infection, as seen by others.36 It has also been re-

ported that monocyte depletion/migration is associated with kid-

ney disease, inducing lupus-like symptoms,37 which could

potentially explain the correlation with kidney tissue. For lymph

nodes, there exists evidence in the literature that SARS-CoV-2

will impact the lymph nodes at an early stage of infection, poten-

tially causing T cell lymphopenia and possibly being responsible

for focal necrosis seen in the lymph nodes.38 Nonetheless, the

lung, heart, and lymph nodes were the tissues most disrupted

by infection.

Overall, these data represent one of the largest autopsy series

of COVID-19 disease and synthesize several orthogonal

methods, including bulk transcriptomics, digital spatial tran-

scriptomics, multiple imaging technologies, and computational

analysis, to build a map of SARS-CoV-2 pathophysiology. Given

the ability to combine bulk transcriptomics data frommultiple or-

gan types, we find organ-specific changes to immune responses

and the loss of tissue functions unique to COVID-19 disease,

which can help additional studies and methods for mitigating

the systemic damage caused by the SARS-CoV-2 virus across

the body.

Limitations of the study
While the size of the cohort we used for spatial profiling is smaller

than that used for bulk transcriptomics, we believe an in-depth

characterization of patient tissues is crucial in directly validating

and supporting the findings from cellular and animal models.39,40

Spatial profiling technology captures key aspects of COVID-19

that bulk data cannot, including the locations of transcriptional

and cellular changes caused by the disease (especially in late

infection) and spatial heterogeneity of cell types. The compart-

ment-specific COVID-19 gene signatures would need further

validation (e.g. chromatin states and additional validation), as

we rely on computational methodologies and deconvolution

techniques, and could also benefit frommatched profiling of pe-

ripheral blood,41 examination of strain type,42 and also differ-

ences in vaccination status.43 Nonetheless, this molecular map

of COVID-19 represents a needed cellular and molecular atlas

for the community, which can inform future studies into

COVID-19 progression and SARS-CoV-2 pathology.
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Immune Cell Profiling Panel (Core) Nanostring Technologies, Inc GMX-PROCONCT-HICP-12, Item

121300101, Lot# 0474026

10 Drug Target Panel Nanostring Technologies, Inc GMX-PROMODNCT-HIODT-12, Item

121300102, Lot# 0474029

Immune Activation Status Panel Nanostring Technologies, Inc. GMX-PROMODNCT-HIAS-12, Item

121300103, Lot# 0474032

Immune Cell Typing Panel Nanostring Technologies, Inc GMX-PROMODNCT-HICT-12, Item
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0474053
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EPR3861; ACE2, clone EPR4436;

Cathepsin L/V/K/H, clone EPR8011; DDX5,
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Abcam ab273594, Lot# GR3347471-1

GeoMx Solid Tumor TME Morphology Kit Nanostring Technologies, Inc GMX-PRO-MORPH-HST-12; Item

121300310

Alexa Fluor� 647 alpha-Smooth Muscle

Actin Antibody, clone 1A4

Novus Bio IC1420R

Biological samples

Autopsy tissues Weill Cornell Medicine Department of

Pathology

https://pathology.weill.cornell.edu/

Chemicals, peptides, and recombinant proteins

TRIzol Invitrogen Cat. #15596026

10% neutral buffered Formalin Electron Microscopy Sciences Cat. #15712

DNAse I Zymo Research Cat. #E1010

Critical commercial assays

Super-Script III Platinum SYBR Green One-

Step qRT-PCR Kit

Invitrogen Cat. #12594025

BD Univeral Viral Transport Media System Becton, Dickinson and Company Cat. #220526

QIAsymphony DSP Virus/Pathogen Mini Kit Qiagen Cat. #937036

NEBNext� rRNA Depletion Kit v2 (Human/

Mouse/Rat) with RNA Sample Purification

Beads

New England BioLabs Cat. #E7405

NEBNext� UltraTM II Directional RNA

Library Prep Kit for Illumina

New England BioLabs Cat. #E7760

TapeStation 2200 Agilent Technologies Cat. #G2964AA

Kapa Biosystems Illumina library

quantification kit

Roche Cat. 07960140001

GeoMx DSP system Nanostring Technologies, Inc MAN-10088-03

Deposited data

Raw and analyzed RNA-seq data This paper dbGAP: accession #38851 and ID

phs002258.v1.p1
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e1 Cell Reports Medicine 3, 100522, February 15, 2022

https://pathology.weill.cornell.edu/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Analyzed Nanostring GeoMx data This paper GEO: GSE169504

Human reference genome NCBI build 38,

Gencode Human Release 33

(GRCH38.p13)

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Raw RNA-seq data Rother et al.44 GSE159678

Reference scRNA-seq data Travaglini et al.45; MacParland et al.46;

Stewart et al.47; Wang et al.8
https://www.humancellatlas.org/

Molecular Signatures for GSEA (MSigDB) Liberzon et al.48; Subramanian et al.49;

Kuleshov et al.50; Sergushichev et al., 2016

http://www.gsea-msigdb.org/gsea/

Oligonucleotides

Primers for RT-PCR; ACTB-Forward:

CGTCACCAACTGGGACGACA

This paper N/A

Primers for RT-PCR; ACTB-Reverse:

CTTCTCGCGGTTGGCCTTGG

This paper N/A

Primers for RT-PCR; SARS-CoV-2-TRS-L:

CTCTTGTAGATCTGTTCTCTAAACGAAC

This paper N/A

Primers for RT-PCR; SARS-CoV-2-TRS-N:

GGTCCACCAAACGTAATGCG

This paper N/A

Software and algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

nf-core/rnaseq pipeline Ewels et al.51 https://nf-co.re/rnaseq

FastQC Andrews52 https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

Trim Galore! N/A https://github.com/FelixKrueger/

TrimGalore

STAR Dobin et al.53 https://github.com/alexdobin/STAR

Salmon Patro et al.54 https://salmon.readthedocs.io/en/latest/

salmon.html

Picard N/A https://github.com/broadinstitute/picard

StringTie Kovaka et al.55 https://ccb.jhu.edu/software/stringtie/

Samtools Li and Durbin56 http://samtools.sourceforge.net/

DESeq2 R package Love et al.57 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

MuSiC R package Wang et al.58 https://xuranw.github.io/MuSiC/articles/

MuSiC.html

quanTIseq R package Finotello et al.59 https://icbi.i-med.ac.at/software/

quantiseq/doc/

Cocor R package Diedenhofen and Musch60 https://cran.r-project.org/web/packages/

cocor/cocor.pdf

synRNASeqNet R package Luciano Garofano https://github.com/cran/synRNASeqNet

Other

Resource page to visualize and explore

autopsy RNA-seq data

This paper https://covidgenes.weill.cornell.edu
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Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Christopher E. Mason

(chm2042@med.cornell.edu).

Materials availability
This study does not involve new unique reagents or materials.
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Data and code availability
All the raw sequence files andmetadata for specimens, including per-run metrics and QC data, have been submitted to the database

of Genotypes and Phenotypes dbGAP (accession #38851 and ID phs002258.v1.p1): https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs002258.v1.p1. Nanostring GeoMx data are also deposited in the GEO database (GSE169504). Pro-

cessed bulk RNA-seq data is also available online for simple visualization and exploration of gene expression and enriched pathways

(https://covidgenes.weill.cornell.edu/). This is also available from Mendeley Data: https://dx.doi.org/10.17632/f4wh42nshy.2. Any

additional information required to reanalyze the data reported in this work is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

IRB statement
Tissue samples were provided by the Weill Cornell Medicine Department of Pathology. The Tissue Procurement Facility operates

under Institutional Review Board (IRB) approved protocol and follows guidelines set by Health Insurance Portability and Account-

ability Act (HIPAA). Experiments using samples from human subjects were conducted in accordance with local regulations and

with the approval of the IRB at the Weill Cornell Medicine. The autopsy samples are considered human tissue research and were

collected under IRB protocols 20-04021814 and 19-11021069. All autopsies have consent for research use from next of kin, and

these studies were determined as exempt by IRB at Weill Cornell Medicine under those protocol numbers.

Patient sample collection
All autopsies are performed with consent of next of kin and permission for retention and research use of tissue. Autopsies were per-

formed in a negative pressure room with protective equipment including N-95 masks; brain and bone were not obtained for safety

reasons. All fresh tissues were procured prior to fixation and directly into Trizol for downstream RNA extraction. Tissues were

collected from lung, liver, lymph nodes, kidney, and the heart as consent permitted. For GeoMx, RNAscope, trichrome and histology

tissue sections were fixed in 10% neutral buffered formalin for 48 hours before processing and sectioning. These cases had a post-

mortem interval of less than 48 hours. For bulk RNA-seq tissues, post-mortem intervals ranged from less than 24 hours to 72 hours

(with 2 exceptions - one at 4 and one at 7 days - but passing RNA quality metrics) with an average of 2.5 days. All deceased patient

remains were refrigerated at 4�C prior to autopsy performance.

METHOD DETAILS

qRT-PCR
Total RNAwas extracted in TRIzol (Invitrogen) according to themanufacturer’s instructions. To quantify viral replication, measured by

the expression of sgRNA transcription of the viral N gene, one-step quantitative real-time PCR was performed using SuperScript III

Platinum SYBR Green One-Step qRT-PCR Kit (Invitrogen) with primers specific for the TRS-L and TRS-B sites for the N gene as well

as ACTB as an internal reference. Quantitative real-time PCR reactions were performed on an Applied Biosystems QuantStudio 6

Flex Real-Time PCR Instrument (ABI). Delta-delta-cycle threshold (DDCT) was determined relative to ACTB levels and normalized

to mock infected samples. Error bars indicate the standard deviation of the mean from three biological replicates. The sequences

of primers/probes are provided in the key resources table.

RNA-seq analysis
Patient specimens were processed as described in Butler et al.4 Clinical metadata is summarized in Table S1. Briefly, nasopharyn-

geal (NP) swabs were collected N using the BD Universal Viral Transport Media system (Becton, Dickinson and Company, Franklin

Lakes, NJ) from symptomatic patients. Total Nucleic Acid (TNA) was extracted from using automated nucleic acid extraction on the

QIAsymphony and the DSP Virus/Pathogen Mini Kit (Qiagen). Autopsy tissues were collected from lung, liver, lymph nodes, kidney,

and the heart and were placed directly into Trizol, homogenized, and then snap frozen in liquid nitrogen. At least after 24 hours these

tissue samples were then processed via standard protocols to isolate RNA.

For RNA library preparation, all samples’ TNAwere treated with DNAse 1 (Zymo Research, Catalog #E1010). Post-DNAse digested

samples were then put into the NEBNext rRNA depletion v2 (Human/Mouse/Rat), Ultra II Directional RNA (10 ng), and Unique Dual

Index Primer Pairs were used following the vendor protocols fromNewEngland Biolabs. Completed libraries were quantified byQubit

and run on a Bioanalyzer for size determination. Libraries were pooled and sent to theWCMGenomics Core or HudsonAlpha for final

quantification by Qubit fluorometer (ThermoFisher Scientific), TapeStation 2200 (Agilent), and qRT-PCR using the Kapa Biosystems

Illumina library quantification kit.

NYGC RNA sequencing libraries were prepared using the KAPA Hyper Library Preparation Kit + RiboErase, HMR (Roche) in accor-

dance with manufacturer’s recommendations. Briefly, 50-200ng of Total RNA were used for ribosomal depletion and fragmentation.

Depleted RNA underwent first and second strand cDNA synthesis followed by adenylation, and ligation of unique dual indexed

adapters. Libraries were amplified using 12 cycles of PCRand cleaned-up bymagnetic bead purification. Final librarieswere quantified

using fluorescent-based assays including PicoGreen (Life Technologies) or Qubit Fluorometer (invitrogen) and Fragment Analyzer

(Advanced Analytics) and sequenced on a NovaSeq 6000 sequencer (v1 chemistry) with 2x150bp targeting 60M reads per sample.
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Spatial transcriptomics analysis
Gene Expression profiling of freshly extracted RNA from formalin fixed paraffin-embedded (FFPE) lung samples was performed using

theNanoString PanCancer IO360 panel with customprobes for SARS-CoV-2 viral genes. After normalization, high and lowCOVID-19

clusters were identified by unsupervised analysis, and samples from each cluster were selected for additional profiling. GeoMx Dig-

ital Spatial Profiling (DSP) was performed on these samples, and control samples from non-viral ARDS, influenza, and normal lung

tissues following standard protocols using the COVID-19 Immune Response Atlas.61,62 Samples were stained with immunofluores-

cent antibodies for CD68, CD45, PanCK, and DNA (Syto-13). Regions profiled included vascular zone, large airway, alveoli zone, and

IF-guided segments focused specifically onmacrophages. Samples were sequenced on an Illumina NextSeq, processed and filtered

for quality as described in supplementary methods. Differential expression was assessed on the resulting normalized data using

mixed effect models, accounting for intra-patient heterogeneity to assess differences between SARS-CoV-2 high and low viral

load samples, and among distinct tissue structures profiled. Cell deconvolution of the GeoMx data was performed using the

SpatialDecon R package.63 Gene set enrichment analysis (GSEA) was performed to qualify coordinate gene expression changes

quantified during differential expression analysis.64

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq analysis
Differential gene analysis

RNAseq data was processed through the nf-core/rnaseq pipeline.51 This workflow involved quality control of the reads with

FastQC,52 adapter trimming using Trim Galore (https://github.com/FelixKrueger/TrimGalore), read alignment with STAR,53 gene

quantification with Salmon,54 duplicate read marking with Picard MarkDuplicates (https://github.com/broadinstitute/picard), and

transcript quantification with StringTie.55 Other quality control measures included RSeQC, Qualimap, and dupRadar. Alignment

was performed using the GRCh38 build native to nf-core and annotation was performed using Gencode Human Release 33

(GRCH38.p13). FeatureCounts reads were normalized using variance-stabilizing transform (vst) in DESeq2 package in R for

visualization purposes in log-scale.57 Cell deconvolution was performed using MuSiC on single cell reference datasets for lung, liver,

kidney, and heart.8,45–47,58 Immune cell deconvolution was performed on lymph node samples using quanTIseq.59 Differential

expression of genes was calculated by DESeq2. Differential expression comparisons were done as either COVID + cases versus

COVID- controls for each tissue specifically, correcting for sequencing batches with a covariate where applicable, or pairwise com-

parison of viral levels from the lung as determined by nCounter data. In the volcano plot protein coding genes were plotted using

Gencode classifications using -log10 (adjusted value) and log2 fold-change metrics. Genes with BH-adjusted p value < 0.01 and

absolute log2 fold-change greater than 0.58 (at least 50% change in either direction) were taken as significantly differentially

regulated.65 Genes were ranked by their Wald statistic and their log2 fold-change values and used as input for gene set enrichment

analysis (GSEA) on the molecular signatures database (MSigDB).64,48–50 Any signature with adjusted p value < 0.01 was taken as

significant. List of differentially expressed genes and significantly enriched pathways are reported in Table S2.

Pairwise correlations of cell types by conditions

Correlation matrix visualizes the Pearson correlation coefficient by cell types within each disease condition. Statistically insignificant

correlations (p-value > 0.05) are filtered and identified clusters of positive and negative correlation is marked. The correlations from

SARS-CoV-2 high and low viral load samples are compared with normal, using R package cocor (v1.1-3).60 Briefly, the correlation

coefficients are tested using Fisher’s r-to-Z transformation to quantify the differences between the two correlations. To quantify cor-

relations, each data point (or correlation coefficient) corresponds to a fisher-tested correlation (z statistics and –log(P-value) for x and

y axes, respectively). The entropy calculations were done with the synRNASeqNet R package (v1.0, entropyML function, https://

github.com/cran/synRNASeqNet). The deconvoluted cell counts were used as an input to run maximum likelihood entropy

calculations.

Similarity analysis

The consensus gene profiles for alveolar, large airway, and vascular healthy samples were built by taking the average gene profiles

from healthy ROIs of respective tissue origin. To validate gene profiles, healthy ROIs were randomly sampled (1, 5, and 10 ROIs) and

comparedwith the consensus profiles. With these gene profiles, we assessed the similarity of the profile from each ROI with the refer-

ence profile by taking cosine similarity (1 being closer to the reference, 0 being orthogonal, Figure S5A). To identify genes specific to

tissue- and disease- states, we performed logistic regressionwith L1 norm tomodel the gene expression profiles. The logistic regres-

sion was done with glmnet (v4.1-1).66 The genes with highest coefficients were filtered to identify 35 genes that may distinguish

diseased tissue types (Table S3).

GeoMx transcriptomic data normalization and quantification
Spatial transcriptomics analysis

Discerning viral load from bulk nCounter screening—Bulk expression profiling was performed to identify COVID-19 patients with high

vs low viral load. To do this, RNA from fresh TRIzol extracted and fixed lung tissue from 29COVID-19 autopsies, 4 non-COVID-19 lung

injury and 3 controls were evaluated by bulk expression analysis using NanoString’s nCounter PanCancer IO360 Panel plus custom

probes for eight SARS-CoV-2 viral genes (encoding ORF7a, surface glycoprotein, nucleocapsid phosphoprotein, ORF8, envelope
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protein, ORF3a, membrane glycoprotein, and ORF1ab) to assess viral content. At least 100 ng of RNA was loaded for hybridization

and quantified by the nCounter MAX Analysis System (NanoString Technologies, Seattle, WA, USA).

Transcript counts were normalized to ERCC positive controls and housekeeper reference gene expression prior to analysis.

Hierarchical clustering of nCounter results revealed two clusters of high and low severity and four ‘‘SARS-CoV-2 high’’ and four

‘‘SARS-CoV-2 low’’ patients were selected (Figure S1D). These eight samples were analyzed with two influenza-infected patients,

three non-viral ARDS patients, and three normal lung control patients using the GeoMx platform.

RNA/NGS slide preparation for GeoMx DSP

For GeoMx DSP slide preparation, we followed the GeoMx DSP slide prep user manual (MAN-10087-04). Briefly, tissue slides were

baked in a drying oven at 60 �C for 1 hour and then loaded to Leica Biosystems BONDRX FFPE for deparaffinization and rehydration.

After the target retrieval step, tissues were treated with Proteinase K solution to expose RNA targets followed by fixation with 10%

NBF. After all tissue pre-treatments were done, tissue slides were unloaded from the Leica Biosystems BONDRX and incubated with

RNA probe mix (COVID-19 Immune Response Atlas panel) overnight. The next day, tissues were washed and stained with tissue

visualization markers; CD68-647 at 1:400 (Novus Bio, NBP2-34736AF647), CD45-594 at 1:10 (NanoString Technologies), PanCK-

532 at 1:20 (NanoString Technologies) and/or SYTO 13 at 1:10 (Thermo Scientific S7575).

GeoMx DSP sample collections

For GeoMx DSP sample collections, we followed the GeoMx DSP instrument user manual (MAN-10088-03). Briefly, tissue slides

were loaded on the GeoMx DSP instrument and then scanned to visualize whole tissue images. For each tissue sample, we collected

4 types of functional tissue regions: vascular zone, large airway, alveoli zone, and macrophages. Each tissue region was carefully

selected by a board-certified pathologist. Regions of interest (ROIs) were then segmented with corresponding fluorescent tissue

markers, when available within the region. Twenty-four to twenty-three GeoMx DSP regions were selected per tissue and collected

following UV illumination within the defined segment as described in Merritt et al.62 Compartments that were segmented within a re-

gion of interest were collected separately as unique areas of illumination (AOIs).

GeoMx DSP NGS library preparation and sequencing

EachGeoMxDSP sample was uniquely indexed using Illumina’s i5 x i7 dual-indexing system. 4 mL of a GeoMxDSP sample was used

in a PCR reaction with 1 mM of i5 primer, 1 mM i7 primer, and 13 NSTG PCR Master Mix. Thermocycler conditions were 37 �C for

30 min, 50 �C for 10 min, 95 �C for 3 min, 18 cycles of 95 �C for 15 sec, 65 �C for 60 sec, 68 �C for 30 sec, and final extension of

68 �C for 5 min. PCR reactions were purified with two rounds of AMPure XP beads (Beckman Coulter) at 1.23 bead-to-sample ratio.

Libraries were paired end sequenced (2 3 75) on a NextSeq550 up to 400 million total aligned reads.

Processing and filtering raw NGS data

Three hundred seventy-nine AOIs plus non-template controls (NTCs) were sequenced, producing about 1.3B reads (with about

�11% unique). NextSeq-derived FASTQ files for each sample were compiled for each AOI using Illumina’s bcl2fastq program

and then demultiplexed and converted to Digital Count Conversion (DCC) files using Nanostring’s GeoMx DnD pipeline (v1). These

DCC files were then converted to an expression count matrix using a custom python script. Aminimum of 10,000 readswere required

for each non-NTC sample (2 AOIs removed). Probes were checked for outlier status by implementing a global Grubb’s outlier test

with alpha set to 0.01. The counts for all remaining probes for a given target were then collapsed into a single metric by taking

the geometric mean of probe counts. A count of 1 was added to any probe that yielded 0 counts before the geometric mean was

taken. For each sample, RNA probe pool specific negative probe normalization factor was generated based on the geometric

mean of negative probes in each pool.

Quality control and AOI filtering

Following initial screening above, there were 373 AOIs interrogated using DSP that span 16 patients and three compartments (288

alveolar, 48 large airway, and 37 vascular regions). Of these, 370 AOIs yielded greater than 50 nuclei. The 75th percentile of the gene

counts (i.e., geometric mean across all non-outlier probes for a given gene) for each AOI were calculated and normalized to the geo-

metric mean of the 75th percentile across all AOIs to give the upper quartile or Q3 normalization factors for each AOI. The distribution

of these Q3 normalization factors were then checked for outliers defined as any AOI greater than two standard deviations from the

mean log2 Q3 normalization factor. This criterion removed 15 AOIs that fell below the range and 1 AOI that fell above the range.

Following AOI filtering, 358 (of 373, �96%) AOIs were used for downstream analyses.

Removal of gene outliers and normalization

Gene outliers were detected by a limit of quantification (LOQ) approach. The LOQ for each AOI was defined as the sample’s

negative geometric mean multiplied by its negative standard deviation raised to the power of two. Any target (1,837 total)

that was not above LOQ in at least 2% of AOIs were deemed prohibitively low expressors and were removed from analysis.

This feature-based filtering approach discarded 171 genes (9.3%) leaving 1,666 genes. Genes were normalized by the Q3

approach as above.

Deconvolution of cell proportions using GeoMx

Cell deconvolution methods followed that of Desai et al.15 Cell mixing proportions were performed using the R package SpatialDe-

con63 using the cell profile matrix based upon the Human Cell Atlas adult lung 103 dataset and appended with a neutrophil profile

derived from snRNA-seq of lung tumors.67 ROIs were selected to be representative across the FFPE slides, based on morphology

and immunofluorescence of each tissue.
e5 Cell Reports Medicine 3, 100522, February 15, 2022
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Differential expression analysis

Two different sets of differential expression (DE) analyses were performed. Common in both sets of models were five groups (COVID-

19 SARS-CoV-2 high, SARS-CoV-2 low, influenza, Non-viral ARDS, and Normal) and three compartments (alveolar, large airway,

vascular). In DE set one, differences between all 10 pairwise groupingswere performed to look for differences between pairwise com-

parisons and to serve as the basis for downstream gene set enrichment analysis (GSEA). In the secondDE set, SARS-CoV-2 high and

low viral load groups were compared against one of three non-COVID groupings to identify genes that are up- or downregulated in

COVID-19 (sensu lato) relative to non-COVID-19 groups and to identify genes that are consistently differentially expressed in SARS-

CoV-2 high and in low separately.

In the first model, each 10 pairwise groupings were considered separately (e.g., SARS-CoV-2 low vs SARS-CoV-2 high). DE

analysis was performed by fitting each gene’s normalized log2 expression level using a Linear Mixed Effect model to account for

interpatient variation with the R package lmerTest.6 Patient ID was used as a random effect (random intercept) and grouping,

compartment, and grouping-by-compartment interactions were used as fixed effects. Satterthwaite’s approximation for degrees

of freedom for P-value calculation was used.68

In the second set of models, SARS-CoV-2 high and SARS-CoV-2 low AOIs were always included, and DE was used to determine

how genes were up- or downregulated compared to each of three non-COVID groups. As such, there were three different ‘‘sets’’

(influenza vs SARS-CoV-2 high vs SARS-CoV-2 low; Non-viral ARDS vs SARS-CoV-2 high vs SARS-CoV-2 low; and Normal vs

SARS-CoV-2 high vs SARS-CoV-2 low). For a given gene and a given set, AOIs were first filtered to exclude non-members (i.e.,

exclude normal and Non-viral ARDS in the set ‘‘influenza vs SARS-CoV-2 high vs SARS-CoV-2 low’’). The log2 expression of sample

for a given gene was fit to a mixed effect model with group (three levels) and compartment (three levels) and their interaction as fixed

effects and Patient ID as a random effect. The Least Squares (LS) means or ‘‘marginal means’’ were estimated for each comparison

(i.e., log2 means for levels of ‘‘group’’ which are averaged over the levels of other factors in the model68). In addition to the LSmeans,

the pairwise P-values for all 3 comparisons were computed.

To visualize the marginal means for each gene relative to SARS-CoV-2 high, SARS-CoV-2 low, and a given normal group, the three-

dimensional datawere collapsed into two-dimensional ternary plots. Specifically, for a givengene g in setS, the three-element vector of

marginalmeanscanbeexpressedasgs. Byconvention, theorder of theelementsofgswerenormal, SARS-CoV-2high, andSARS-CoV-

2 low.Elements ofgswere then rescaledwhile preserving their relative relationshipbymultiplyingbya scaling factor andconverting from

log2 space to linear space. Then gswas scaled further by dividing each element by the element with the minimum value. To convert gs
from a vector of three to a vector of two (representing points along a simplex plane), the new x coordinates were calculated by:

x =
gS2

+ 1
2
gS3Pi =3

i =1gSi

where represents the ith element in vector gS. Similarly, the y coordinates were calculated by:

y =
gS3

ffiffi
3
4

q
Pi = 3

i = 1gSi

A given gene is then assigned a ‘‘corner’’ by how close it is from each of the three simplex’s corners.

Each gene has three p-values associated with it (from the pairwise contrasts above). The contrast with the lowest p-value was

selected to represent a given gene (i.e., this corresponded well with the corner that the gene was assigned to). P-values were

then adjusted to account for multiple comparisons by using the Benjamini-Hochberg procedure.65 Differentially expressed genes

from this analysis is included in Table S3.

Gene set enrichment

MA plots69 from the 10 pairwise DE analyses (DE model 1) were used to ensure that low expressors were not accounting for the ma-

jority of the large fold changes. Gene Set Enrichment Analysis (GSEA) was conducted using the R package fGSEA64 with MSigDB

Hallmark and Reactome70 databases. Gene ranks were based on the log2 fold change from the individual DE analyses and gene

sets were bound between 15 and 500 genes. P-values for enrichment were estimated by 1,000 permutations of the data. The path-

ways were then sorted based on adjusted p-value first and then by their Normalized Expression Score (NES).

For the 10 most extreme pathways in each direction as well as the COVID-19 spike-in genes, single sample GSEA (ssGSEA) was

performed using the R package gsva71 with a min and max size of 15 and 500, respectively. Enrichment scores for a given pathway

were rescaled by dividing AOI’s enrichment score by the mean across samples and then rescaled between 0 and 1. These rescaled

enrichment scores were then visualized for each AOIs’ x and y coordinates from their respective FFPE slide.

Histology and imaging analysis

Sections from SARS-CoV-2 high (4), SARS-CoV-2 low (4) and normal lungs (3) cases used for the GeoMx analysis were stained using

hematoxylin and eosin and Masson’|’s Trichrome according to standard protocol. Four 203 regions were randomly selected from

each slide the Color deconvolution2 algorithm for ImageJ72 and cellular trichrome rich areas were manually selected and measured

for pixel area (cellular areas on red deconvolution, trichome on blue deconvolution). Total image pixel area was used to determine

percent fibroblast-rich trichrome positive zones.
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Correlation plot comparing different COVID-19 samples and tissues

To generate the correlation plot comparing the global changes for COVID-19 infection between different tissues, we utilized several

different RNA-sequence data. The collection of the RNA sequencing data for the NP swab samples were described previously.4 The

NP swab samples were analyzed with different methodologies with one comparing COVID-19 viral infection to the negative patients

and the other a regression on continuous variables as a function of SARS-CoV-2 sequence amount. The viral comparison was pre-

viously described in Butler et al.4 and the DESeq257 was utilized to generate the differential expression data.

The monocyte COVID-19 RNA-Seq data, published under the accession GSE159678,44 was downloaded from SRA and gene

expression was quantified using Salmon’s selective alignment approach.54 The RNA-Seq processing pipeline was implemented

using pyrpipe (https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Covid_RNA-Seq).73 Exploratory data analysis and dif-

ferential expression analysis were performed using MetaOmGraph.74 From the differential expression analysis for each group the

fold-change values for the genes were filtered with an adjusted p-value < 0.05. A correlation plot between the fold-change values

for the significantly regulated genes for each comparison of the COVID-19 samples were plotted using R program corrplot v0.84.

Viral genome analysis

Total RNA-seq reads were classified against a custom, pan-kingdom reference using kraken2.75 Reads that mapped uniquely to

SARS-CoV-2 were aligned to the Wuhan reference genome using bwa-mem.56 Alignments were deduplicated, assembled, and

called for major variants (Variant Allele Frequency > 0.6) using IVAR76 with a minimum coverage of 5 reads per site.
e7 Cell Reports Medicine 3, 100522, February 15, 2022
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