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Abstract

Hidden Markov models (HMM) have been proposed as a method of analysis for noisy single 

molecule fluorescence resonance energy transfer (SM FRET) data. However, there are practical 

and fundamental limits in applying HMM to SM FRET data due to the short photobleaching 

lifetimes of fluorophores and the limited time resolution of detection devices. The fast 

photobleaching fluorophores yield short SM FRET time traces and the limited detection time 

resolution generates abnormal FRET values, which result in systematic underestimation of kinetic 

rates. In this work, an HMM algorithm is implemented to optimize one set of HMM parameters 

with multiple short SM FRET traces. The FRET efficiency distribution function for the HMM 

optimization was modified to accommodate the abnormal FRET values resulting from limited 

detection time resolution. Computer simulations reveal that one set of HMM parameters is 

optimized successfully using multiple short SM FRET traces, and that the degree of the kinetic 

rate underestimation is reduced by using the proposed modified FRET efficiency distribution. In 

conclusion, it is demonstrated that HMM can be used to reproducibly analyze short SM FRET 

time traces.

Introduction

Single molecule fluorescence resonance energy transfer (SM FRET) is a powerful tool 

that can probe sub-population dynamics of complex biological processes 1,2 involving 

DNA 3, RNA 4,5 proteins 6,7 and macromolecular assemblies 8. Monitoring dynamic single 

molecules in real time has generated information previously unavailable with static or bulk 

methods 3,7,8. Analyses of SM FRET data rely mostly on simple threshold discrimination. 

Although threshold discrimination works relatively well on data with a high signal to noise 

ratio (SNR), it suffers large errors and uncertainty with a typical experimental SNR which 

ranges from 5 to 10.

Hidden Markov model (HMM) is a finite state machine defined by an observation sequence 

(O) and a model (λ) comprising a transition matrix defining transition probabilities between 

states (a) with single exponential lifetimes, emission probabilities (b) of states to map the 

observations to the hidden events, and the initial state (π) 9. The prerequisites for applying 

HMM to an experimental system are i) the system must dwell on finite states each of 

which can be observed directly or indirectly with certain errors and ii) the conditional 

probability distribution of future states of the system depends only on the current state, 
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i.e. transition probabilities between two states can be defined by a single value. Based on 

HMM, one can calculate the probability of a future event with a past observation sequence 
9,10. The probability of obtaining an observation sequence O with a model λ is represented 

by P(O\λ), where λ={a, b, π}. HMM model parameters incorporate all the information 

on the kinetics of a system. One can use Viterbi’s algorithm to find a hidden sequence of 

states emitting the observation sequence 9,11,12. Baum-Welch’s iteration method or gradient 

techniques can be used to find the optimum model parameters for a given observation 

sequence 9,10. HMM has been utilized to analyze single ion channel dynamics and motor 

protein dynamics 13–15. Although SM FRET data from many enzymatic processes are good 

targets for HMM, HMM optimization for SM FRET data was implemented only recently 

with limitations 16.

There are fundamental and practical limitations when applying HMM to SM FRET signals. 

First, longer signal integration time than the event duration yields artifacts in signal 17, 

i.e. short lifetime events register lower or higher FRET values than normal that can be 

seen as either a different state or noise (Fig. 1). Second, the unsynchronized detection to 

enzyme dynamics also causes artifacts (Fig. 1). The first and the last detection frame of 

a single FRET event include only a partial frame event because the enzyme dynamics is 

not synchronized to detection frames. Transitions between two states, therefore, generally 

leave a small population of FRET events between two FRET peaks (Fig. 1). Short lifetime 

events elongate the detected lifetime of a FRET state, and unsynchronized detection shortens 

it. A formula to fit FRET distribution histograms with these artifacts has already been 

reported 17 However, the reported formula yields an analytical solution only in the case of 

a two-state model. Moreover, the solution takes an unfeasibly long time to be employed in 

an HMM optimization algorithm, where the probability distribution of a state is typically 

calculated a million times or more to optimize a reasonable amount of experimental data. 

Lastly, due to the limited photobleaching lifetimes of conventional dyes, SM FRET traces 

in many experiments are short fragments, each of which contains only a portion of all 

possible transitions between states. Therefore, individually optimized HMM parameters per 

individual trace contain partial information. Recently, it was shown that the average of the 

logarithm of individual transition matrices can represent the universal transition matrix in 

some cases 16. For another instance, computer simulations reveal that a Winsorized mean of 

the lower 70% of transition matrices can approximate the representative universal transition 

matrix fairly well in some random cases (data not shown). However, all of the averaging 

methods yield an unknown level of uncertainty due to the empirically determined weights 

on individual transition matrices. In order to address these three problems, algorithms of 

HMM with a modified FRET efficiency distribution and a combined probability of multiple 

observation sequences were implemented.

Experimental Methods

HMM model parameter optimization

In order to extract the kinetic scheme from SM FRET traces, HMM parameters were 

optimized with the given set of FRET traces. Baum-Welch’s iteration algorithm was 

used to perform the optimization 9. A technical problem of underflow in probabilities 
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can be easily fixed with the known rescaling procedure 9. Equations 1 and 2 are the 

re-estimation formulae for the transition matrix a and the initial state π. For emission 

probabilities b, continuous observation densities were used to avoid any artifacts arising 

from digitizing FRET traces 9. Observation density distributions of SM FRET traces were 

assumed to be Gaussian, which is widely used in fitting SM FRET histograms 18. To 

consider different background fluorescence intensities and slight shifts in FRET efficiencies 

due to environmental heterogeneity, multiple Gaussian distributions per state were used. 

The re-estimation formula for the emission probabilities, then, is given as in Eq. 3. For 

the re-estimation formulae of μj and σj, one can follow the procedure for the maximum 

likelihood estimation of multivariate mixture observation as reported 9,19

aij =
∑t = 1

T − 1ξt(i, j)
∑t = 1

T − 1γt(i)
(Eq. 1)

πi = γ1(i) (Eq. 2)

, where T is the number of time points in the trace, ∑t = 1
T − 1ξt(i, j) is the expected number of 

transitions from state i to state j, and ∑t = 1
T − 1γt(i) is the expected number of transitions from 

state i.

bi(O) = ∑
j = 1

m
cj

1
2πσj2

exp(− O − μj
2

2σj2 ) (Eq. 3)

, where O is the observation, m is the number of Gaussian distributions per state, μj is the 

peak position of jth Gaussian component of state i, and σ j is the width of jth Gaussian 

distribution of state i. To accommodate the scattered FRET efficiencies between peaks (Fig. 

1), one more asymmetric Gaussian distribution is added to Eq. 3. The Gaussian component 

is approximated to

∑
j

2cj
nj + 1 ∑

m

km
ktotal

2

2π(σj + ( μj − μm
3 ))

exp(− (O − μj)2

2σj2 ) or exp(− (O − μj)2

2(μj − μm
3 )

2 )

(Eq. 4)

, then that for the main peak is normalized to

∑
j

nj − 1 cj
nj + 1

1
2πσj2

exp(− O − μj
2

2σj2 ) (Eq. 5)

, where k are the rate constants defining rates out of the state j, and n is the biggest 

integer smaller than the average number of consecutive data points for the state (e.g. average 

duration of the state in terms of signal frames). The first exponential term in Eq. 4 is applied 
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when O is not related to state m, while the second term is applied when O falls between state 

j and m. These two equations are valid only when the state lifetime is equal to or longer than 

the signal integration time. The denominator 3 in the width of the new Gaussian in Eq. 4 is 

chosen to have negligible probability of one FRET state j beyond the other FRET state m 
(<0.27%) while there are still significant FRET distribution between the FRET peaks. It is 

confirmed by HMM optimization that a denominator of 3 works best among 2, 3 and 4 (data 

not shown). The final formula for b is then as follows.

bi(O) = ∑
j

cj
nj + 1

∑
m

kt
ktotal

4
2π(σj + ( ∣ μj − μm ∣

3 ))
exp(− (O − μj)2

2σj2 ) or exp(− (O − μj)2

2(μj − μm
3 )

2 )

+ (nj − 1)
2πσj2 exp(− (O − μj)2

2σj2 )

(Eq. 6)

A straight line between the FRET peaks convolved with Gaussian distributions is found to 

yield less accurate results with significantly longer optimization time than the asymmetric 

Gaussian distribution.

In addition to the above modifications in the FRET efficiency distribution, a single transition 

matrix and a single set of emission probabilities are used to maximize the total probability 

of individual P(O\A), i.e. ∏l = 1
n Pl Ol ∣ a, b, πl , instead of optimizing P(O\λ) of individual 

traces, where l is the index of individual SM FRET traces of which the total number is 

n. Rabiner’s re-estimation formulae for multiple observation sequences are used with unit 

weighting instead of P−1 weighting 9. It is more logical to use unit weighting for SM FRET 

data because a mere number of time points in a trace does not necessarily increase the 

information content of the trace. The number of transitions can better represent the amount 

of information contained in a trace. Therefore, P−1 weighting in cases where many time 

points are steady instead of dynamic, as in SM FRET, is inappropriate. One optimization of 

HMM model parameters generally takes several tens of seconds to several hours depending 

on the number of Gaussian mixtures and the total length of SM FRET traces, but it rarely 

exceeds an hour with a practical amount of data and a reasonable number of Gaussian 

distributions per state (< 5) on a Windows system (Microscoft Corp., USA) with a Pentium 4 

processor (Intel Corp., USA) or on a Linux system with a Pentium D processor (Intel Corp., 

USA). The algorithm is implemented in IDL (ITT Industries, Inc., USA).

SM FRET trace simulations

Monte Carlo simulations were carried out to generate SM FRET traces to evaluate the 

algorithm. The total photon emission rate from a FRET pair of a donor and an acceptor 
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was varied to adjust the Poissonian noise level. FRET dynamics are independent from the 

photon emission and detection. Time resolution of photon detection is 1 μs and detector 

integration time is 25 ms, i.e. the observation frame rate is 40 /s. Photon detection efficiency 

is assumed to be 100%. Independent system dynamics from the monitoring scheme insures 

the incorporation of the abnormal FRET values due to the limited detection time resolution 

(Fig. 1).

Results and Discussion

Comparison between a Gaussian distribution and the modified mixed Gaussian 
distribution for the HMM optimization

First, the two FRET efficiency distributions (Eq. 3 and Eq. 6) were used to fit histograms 

from simulated FRET traces (Fig. 2). The histograms were constructed from 100 traces 

of 500 data points. The fitting parameters are the width and the amplitudes of the FRET 

peaks. The probability distribution between the Gaussian peaks is well approximated by Eq. 

6 as clearly seen in Fig. 2. Although the fitting is not as good as the reported analytical 

solution 17, Eq. 6 can be used to fit multiple state models and the computational time is short 

enough to be employed in an HMM optimization algorithm. It should be noted that as the 

kinetic rate is higher than half of the observation frame rate, the fitting becomes significantly 

deviated. Nonetheless, it is clearly shown in Fig. 2 that the modified distribution (Eq. 6) fits 

the FRET distribution better than Gaussian distributions (Eq. 3).

Next, the performance of the two distributions in the HMM optimization is evaluated. The 

number of states and the kinetic scheme of the system were assumed to be known, i.e. the 

size of the transition matrix was set constant and some transition matrix elements were set to 

zero by using a mask matrix. Kinetic rates are the product of the optimized transition matrix 

and the observation frame rate (= 40 /s). A set of 2500 SM FRET traces were generated per 

case (varying SNR and kinetic rates) where one trace contains 350 data points. The system 

switches between 0.3 and 0.7 FRET state, and the rate going from 0.3 to 0.7 state is fixed 

at 0.5 /s while the rate going from 0.7 to 0.3 state is varied. The optimization is carried 

out with 175000 data points per case (500 traces per optimization). The plotted results in 

Fig. 3 are obtained from 5 optimizations per data point. The 175000 points of data were 

chosen to ensure that the difference in the results is likely due to the difference in the 

probability distribution functions (the effect of the number of data points on the optimization 

performance follows in a later section). It is shown in Fig. 3 that the Gaussian distribution 

(Eq. 3) and the modified Gaussian distribution (Eq. 6) underestimate both the kinetic rate 

and the FRET efficiency. The most pronounced difference between the two distribution 

functions is the high uncertainty in the kinetic rates optimized with the unmodified Gaussian 

distribution in case of high SNR traces. This abnormally high optimization uncertainty is 

likely due to the fact that as the peaks get narrower (i.e. as the SNR improves and the rate 

becomes lower), the probability distribution between the FRET peaks according to Eq. 3 

becomes effectively zero. The lower uncertainty of the modified distribution (<10% in most 

of the cases) makes it a better choice for the SM FRET data analysis. It is also clear that 

FRET efficiency is more accurate when the modified distribution (Eq. 6) is used although 

the difference becomes smaller as the kinetic rate decreases and SNR becomes more realistic 
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(6~8) because the unmodified Gaussian distribution (Eq. 3) would be accurate enough to 

model the system under these conditions. The results for the rate 0.5 /s and FRET efficiency 

0.3 are omitted because the performance were equally good with Eq. 3 and Eq. 6 within the 

error of 5% in the kinetic rate and the FRET efficiency.

Effect of number of data points on the performance of the algorithm

The effect of the number of data points used in the optimization is examined (Fig. 4). A 

set of FRET traces with FRET efficiencies of 0.3 and 0.7 was simulated. The rate going 

from 0.3 to 0.7 is 0.5 /s, and the rate going from 0.7 to 0.3 is 5.0 /s. Five optimizations 

were performed per case. It is shown in Fig. 4 that the 3500 data points which contains 79.5 

transitions with the given transition rates are good enough to yield optimization results with 

<3% error in FRET efficiency and <21% error in the rates on average. As the number of the 

data points increases, the uncertainty in the rates decreases, but the benefit is not sufficient 

to compensate for the increase in the number of data points after 7000 data points (159 

transitions).

Effect of ΔFRET on the performance of the algorithm

A set of FRET traces with two states of varying FRET efficiencies – (0.1, 0.9), (0.2, 0.8), 

(0.3, 0.7) and (0.4, 0.6) – was simulated. The rate going from a lower FRET state to a 

higher FRET state is 0.5/s, and the rate going the other direction is 1.5 /s. The optimization 

is carried out three times on 7000 total data points per case. Fig. 5 shows errors in the 

kinetic rates for different ΔFRET cases. It is clearly shown that the optimization yields more 

accurate results as ΔFRET increases.

Performance of the algorithm with multiple states and multiple Gaussian distributions per 
state

Thirty SM FRET traces with 350 time points each were simulated to evaluate the algorithm 

in the optimization with multiple states. Traces follow given kinetic scheme and rates as 

shown in Fig. 6(a). SNR is 6.0 and the noise originates solely from Poissonian photon 

emission statistics. The amount of data simulated per case is about half of what is typically 

taken to extract kinetics information (kinetics scheme and kinetic rates) from experiments. 

Fig. 6(e) shows the optimized kinetic rates and the FRET efficiencies. The highest error in 

the FRET efficiency is 1.4% for state 3. Errors in the estimated kinetic rates are also low (< 

6.7 %). Overall, it is confirmed that the maximization of ∏l = 1
n Pl Ol ∣ a, b, πl  yields the 

optimum model parameters for a system with multiple FRET states.

In experiments, the FRET efficiency of a state can vary slightly from trace to trace due to 

different background fluorescence levels and other environmental heterogeneity that affects 

the photophysics of fluorescence labels. To examine how this slight variation in FRET 

efficiency affects the performance of the algorithm, the optimized model parameters with 

different numbers of Gaussian distributions per state were compared. The model parameters 

were optimized for FRET traces with 4 states. These FRET traces are composed of three sets 

of slightly varying FRET efficiencies (Fig. 7). Based on the optimized model parameters, 

it was revealed that the algorithm does not discriminate slightly varying FRET efficiencies 
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belonging to one state. Instead, it finds the overall average FRET efficiency and standard 

deviation of the state from all of the FRET traces used in the optimization. Therefore, 

different background level and other environmental heterogeneity that causes slight shifts in 

FRET efficiency do not lower the accuracy of the model parameters optimized with single 

Gaussian distribution per state.

Deducing the number of states and kinetic scheme

In previous sections, model parameters were optimized with known kinetic scheme and 

the known number of states. In reality, kinetic schemes and the number of states are 

normally unknown. To deduce the number of states of a system, one can compare 

∏l = 1
n Pl Ol ∣ a, b, πl  optimized with a series of different numbers of states. As the number 

of states in the optimization increases, ∏l = 1
n Pl Ol ∣ a, b, πl  will always increase following 

the power law because it is the product of individual probabilities each of which is linearly 

affected by the increase in the number of states. By plotting log[∏l = 1
n Pl Ol ∣ a, b, πl ] with 

respect to the number of states, it is expected that there will be a distinct point where 

Δlog[∏l = 1
n Pl Ol ∣ a, b, πl ] abruptly decreases (Fig. 8). As shown in Fig. 8, the point of 

abrupt change in Δlog[∏l = 1
n Pl Ol ∣ a, b, πl ] is the smallest number of states that can 

model the system and is identified as the number of states of the system. As the noise level 

of SM FRET traces becomes higher, the residual increase in log[∏l = 1
n Pl Ol ∣ a, b, πl ] past 

the smallest number of states becomes bigger (Fig. 8(c)). Nevertheless, it is straightforward 

to determine the number of states. Once the right number of states is identified, the kinetic 

scheme can be easily deduced from the optimized transition matrix. For instance, if there is 

no direct transition between two states in FRET traces, the corresponding transition matrix 

element will be unfeasibly small as demonstrated in the next section.

Demonstration of extracting kinetics information from SM FRET traces

Based on the procedure described above, a process of extracting kinetic information from 

SM FRET traces is demonstrated in Fig. 9. A very noisy set of data (SNR calculated from 

Poissonian photon emission statistics = 4.0) from a three-state system was simulated. Two 

sets of FRET efficiencies were used to simulate two different sets of data taken in two 

different environments. First, the maximum ∏l = 1
n Pl Ol ∣ a, b, πl  is calculated with the 

optimized model parameters with 2, 3, 4, and 5 states and a single Gaussian distribution per 

state. As shown in Fig. 9(c), it is clear that the system dwells on three states. An example 

of idealized FRET traces from optimum model parameters with three states is shown in Fig. 

9(d). From the simulation, it was found that state 1 and state 3 are not connected to each 

other since the transition matrix elements are too small (< 0.0001 /s) to be real – i.e. based 

on the length of the longest trace (= 8.75 sec), the slowest possible transition rates between 

states should not be much lower than 1/8.75 = 0.11 /s. Estimated kinetic rates are in good 

agreement with the given rates within 10% error.
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Conclusions

Using HMM, a systematic way of extracting kinetics information from noisy SM FRET data 

is demonstrated. There are three distinct sources of noise in SM FRET signal: i) Poissonian 

noise from photon emission statistics, ii) noise from environment such as background 

fluorescence, stray light, and noise in detection devices, and iii) short lifetime events and 

the unsynchronized detection. It is demonstrated that the errors from the first two sources 

can be suppressed by using the proposed algorithm. The third source of noise, however, is 

unavoidable although HMM with the proposed modified FRET distribution can reduce the 

error. Nevertheless, thanks to the reasonably high precision of the proposed method, HMM 

optimization results can be used to report the kinetic rates of an SM FRET system when the 

report accompanies the information on the level of error due to the limited detection time 

resolution.
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Fig. 1. 
The effect of short lifetime events and the unsynchronized detection on FRET efficiency 

distribution. (a) Kinetic scheme of the simulated traces. Two sets of SNR (20.0 and 6.0) 

were simulated. (b) Illustration of real events and detected events showing examples of 

short lifetime events and the unsynchronized events to the detector time bin. The first and 

the last detected frame of the first long lifetime event do not have the same fluorescence 

intensity level as the rest of the frames in the middle. The second event with a lifetime 

similar to the detection integration time also registers two frames with lower fluorescence 

level than normal. The third short lifetime event will register a single frame with a lower 

fluorescence intensity level than normal. The gray ellipses indicate these abnormal low 

fluorescence intensities resulting from either the unsynchronized detection or short lifetime 

events. (c) SM FRET histograms from simulated traces with the kinetic scheme in (a). As 

SNR becomes higher, randomly scattered FRET efficiency counts between the two FRET 

peaks become evident (counts in gray ellipses). These counts are due to short lifetime events 

and the unsynchronized detection.
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Fig. 2. 
The unmodified (Eq. 3) and modified (Eq. 6) Gaussian distributions as an approximated 

FRET efficiency distribution. (a) The two distribution functions are used to fit histograms 

constructed from simulated SM FRET traces with a 2-state model (solid line: fit using Eq. 6, 

dotted line: fit using Eq. 3). Each panel represents a case of 100 SM FRET traces (500 time 

points per trace). FRET efficiencies of the two states are 0.3 and 0.7. SNR is controlled by 

changing photon emission rate. The kinetic rates between the two states are also varied as 

labeled on each panel. Signal integration time is 25 ms (observation frame rate = 40 /s). SNR 

range (6.0, 8.0 and 11.0) is chosen to simulate experimental data with reasonable quality 
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attainable in a laboratory. (b) A 3-state model with two different SNR values fit with the 

two distribution functions (solid line: fit using Eq. 6, dotted line: fit using Eq. 3). Each panel 

represents a case of 100 SM FRET traces of 500 time points. FRET efficiencies for the 

three states are 0.2, 0.5, and 0.8. Kinetic rates between the three states are k1=10.0, k−1=5.0, 
k2=10.0, k−2=12.0. SNR for the left panel is 11.0, 8.0 for the center panel, and 6.0 for the 

right panel.
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Fig. 3. 
The effect of the rate constant on the HMM optimization performance of the two probability 

distribution functions (Eq. 3 and Eq. 6). Five sets of 500 simulated traces with 350 time 

points per trace were optimized to give one data point with an error bar. The system is 

composed of 2 FRET states with FRET efficiencies of 0.3 and 0.7. The rate going from 

0.3 to 0.7 state is fixed at 0.5 /s and the backward rate is varied (0.5, 1.0, 3.0, 5.0, 10.0, 

20.0, 30.0, 40.0 /s). Signal integration time is 25 ms (observation frame rate = 40 /s). SNR 

(i.e. photon emission rate from the fluorophore) was varied in order to examine its effect 
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on the results. A data label starting with “Gaussian” indicates that the optimization is 

performed with Eq. 3. “Modified” is used if the optimization was performed with Eq. 6. 

(a) Optimized backward rates plotted against the given rate constants. (b) The error in the 

optimized backward rate constants plotted against the given rate constants. (c) Optimized 

FRET efficiency of the 0.7 FRET state plotted against the backward rates. (d) Errors in the 

optimized FRET efficiency of the 0.7 FRET state plotted against the backward rates.
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Fig. 4. 
The effect of the amount of data on the performance of HMM optimization. The simulation 

conditions are the same as in Fig. 3 except that the optimization was performed using 

only the modified distribution function (Eq. 6) and the kinetic rates are fixed at 0.5 /s and 

5.0 /s respectively for the forward and the backward rates. The amount of data used in 

the optimization was varied (10, 20, 30, 40, 50, 100, 150, 200, 300, and 500 traces which 

are equivalent to 3500, 7000, 10500, 14000, 17500, 35000, 52500, 70000, 105000, and 

175000 data points) and the SNR was also varied (4.0, 6.0, 8.0, and 11.0). “SNR” is further 
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abbreviated to “SN” in charts (a)~(d). (a) The optimized backward rates (5.0 /s) plotted 

against the number of data points used in the optimization. (b) The errors in the optimized 

backward rates plotted against the number of data points. (c) The optimized forward rates 

(0.5 /s) plotted against the number of data points used in the optimization. (d) The errors in 

the forward rates plotted against the number of data points. (e) Errors in the optimized FRET 

efficiency levels plotted against the number of data points used in the optimization.
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Fig. 5. 
The effect of ΔFRET efficiency on HMM optimization performance. 1500 SM FRET traces 

were simulated with SNR of 20.0 and the FRET efficiencies are varied (0.4/0.6, 0.3/0.7, 

0.2/0.8, and 0.1/0.9 for the two FRET states to simulate ΔFRET of 0.2, 0.4, 0.6, and 0.8 

respectively). Rates between the two states are 0.5/s and 1.5/s. A high SNR and low rates 

ensure that any difference in the optimization performance can be attributed to the different 

ΔFRET. (a) Optimized rate constants plotted against the ΔFRET efficiency. (b) Errors in the 

optimized rate constant plotted against the ΔFRET efficiency.
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Fig. 6. 
Demonstration of SM FRET data analysis with the proposed HMM algorithm. (a) Kinetic 

scheme of the 3-state system simulated. FRET efficiencies for each state are shown below 

the state label and kinetic rates are also shown in the kinetic scheme. Thirty SM FRET traces 

with 350 time points each (about a half of the typical amount of experimental data to extract 

kinetics information) were simulated. Signal integration time is 25 ms (observation frame 

rate = 40 /s). Photon emission rate of 1440 Hz was used to simulate traces with SNR 6.0. 

No additional background was added. (b) The histogram of 30 SM FRET traces simulated. 

(c) An example of simulated SM FRET traces and idealized FRET state transitions by 

the proposed HMM optimization. The thick gray line in the upper panel is the donor 

fluorescence count and the thin black line is the acceptor fluorescence count. Noisy signal 

in the bottom panel is the calculated FRET efficiency (= acceptor fluorescence intensity / 

(acceptor fluorescence intensity + donor fluorescence intensity)). The solid straight line is 

the idealized FRET efficiency trace with the optimized HMM model parameters. The dashed 

straight line is the hidden state trace. The dashed line is shifted slightly upward to clarify 

the view. (d) The optimized model parameters of HMM. Transition matrix was restricted to 

the kinetic scheme as shown in (a), i.e. off-diagonal elements were set to zero by using a 
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mask during the optimization. (e) Kinetic rates and FRET efficiencies calculated from the 

optimized model parameters in (d). Transition matrix elements multiplied by the detection 

frame rate (= 40 /s) yields the corresponding kinetic rates. μ is the set of FRET efficiencies 

of each state. σ is the noise in FRET efficiency and is in good agreement with the calculated 

FRET efficiency noise for each state according to the Beta distribution, which are 0.075, 

0.082, and 0.075 for state 1, state 2, and state 3, respectively. The slight discrepancy between 

the estimated and the given FRET efficiency noise of state 1 or state 3 is likely due to the 

approximation of the Beta distribution to a Gaussian distribution.
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Fig. 7. 
The effect of variations in FRET efficiencies due to environmental heterogeneity on the 

accuracy of the optimized HMM model parameters. A 4-state system was simulated with 

the same simulation conditions as in Fig. 6 except the kinetic scheme and the number 

of traces used. Three different sets of traces were simulated with different sets of FRET 

efficiencies to simulate FRET efficiencies varied by environmental heterogeneity. Shown 

FRET efficiency histogram is constructed from 190 simulated traces. Among the 190 traces, 

70 traces have one set of FRET efficiencies, another set of 70 traces has a different set of 
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FRET efficiencies, and the other 50 traces have another different set of FRET efficiencies 

as shown in the table of “Estimated FRET efficiencies”. One, two, or three Gaussian 

distributions per state were used to optimize the HMM model parameters to see the effect of 

the variations in FRET efficiencies on the accuracy of the parameters. The transition matrix 

was restricted to the kinetic scheme (i.e. off-diagonal elements were set to zero by using a 

mask during the optimization). Results in the table of “Estimated kinetic rates” show that 

one Gaussian distribution per state can optimize the model parameters as well as two or 

more Gaussian distributions per state.

Lee Page 21

J Phys Chem B. Author manuscript; available in PMC 2022 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Demonstration of deducing the number of hidden states from SM FRET traces. Two 

3-state systems and one 4-state system were simulated with the given rates and FRET 

efficiencies. SNR 6.0 was used (noise solely from Poissonian photon emission statistics). 

Fifty traces per each were simulated for (a) ~ (c) (350 time points per trace). In 

(c), two sets of FRET efficiencies (30 and 20 traces) were simulated. Each set of 50 

traces were used to optimize the model parameters with 3 ~ 6 states. Each chart in 

(a) ~ (c) shows log[∏l = 1
n Pl Ol ∣ a, b, πl ] plotted against the number of states used in 

Lee Page 22

J Phys Chem B. Author manuscript; available in PMC 2022 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the optimization. In each case of (a) ~ (c), there is a distinct number of state where 

Δlog[∏l = 1
n Pl Ol ∣ a, b, πl ] drops abruptly informing the smallest number of required states 

to model the observation sequence. These points are indicated with arrows. In a noisier 

data set (c), Δlog[∏l = 1
n Pl Ol ∣ a, b, πl ] change is not as abrupt as in cases (a) and (b). 

Nevertheless, it is straightforward enough to identify the number of states in (c). In charts, 

∏l = 1
n Pl Ol ∣ a, b, πl  is abbreviated to ∏Pi Oi ∣ Λ .
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Fig. 9. 
Demonstration of extracting kinetics information from SM FRET traces. A set of 30 SM 

FRET traces (350 time points each) with SNR 4.0 (noise solely from Poissonian photon 

emission statistics) was simulated and used to optimize the model parameters of HMM. 

SNR is set to be worse than a typical experimental SNR in order to test the robustness of 

the algorithm. (a) Kinetic scheme used in the simulation. (b) FRET Efficiency histogram of 

the simulated traces.(c) log∏l = 1
n Pl Ol ∣ a, b, πl  vs. the number of states indicating that the 

system dwells on 3 states.(d) An example of SM FRET traces (upper panel: the gray line 
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is the donor fluorescence intensity and the black line is the acceptor fluorescence intensity), 

FRET efficiency (the noisy signal in the lower panel), and the idealized FRET efficiency 

sequence (the solid line over the noisy FRET signal in the lower panel) by the algorithm 

with 3 states. The dashed line in the lower panel is the given event sequence shifted slightly 

upward to clarify the view. (e) Reconstructed kinetic scheme from the optimized transition 

matrix. Gray lines show null transitions found by the algorithm as explained in the text.
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