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Abstract

Molecular metabolic imaging in humans is dominated by positron emission tomography (PET). 

An emerging non-ionizing alternative is hyperpolarized MRI of 13C-pyruvate, which is innocuous 

and has a central role in metabolism. However, similar to PET, hyperpolarized MRI with 

dissolution dynamic nuclear polarization (d-DNP) is complex, costly and requires significant 

infrastructure. In contrast, Signal Amplification By Reversible Exchange (SABRE) is a fast, 

cheap, and scalable hyperpolarization technique. SABRE in SHield Enables Alignment Transfer to 

Heteronuclei (SABRE-SHEATH) can transfer polarization from parahydrogen to 13C in pyruvate, 

however, polarization levels remained low relative to DNP (1.7% with SABRE-SHEATH vs. 
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≈60% with DNP). Here we introduce a temperature cycling method for SABRE-SHEATH that 

enables >10% polarization on [1-13C]-pyruvate, sufficient for successful in vivo experiments. 

First, at lower temperatures, ≈20% polarization is accumulated on SABRE-catalyst bound 

pyruvate, which is released into free pyruvate at elevated temperatures. A kinetic model of 

differential equations is developed that explains this effect and characterizes critical relaxation and 

build-up parameters. With the large polarization, we demonstrate the first 13C pyruvate images 

with a cryogen-free MRI system operated at 1.5 T, illustrating that inexpensive hyperpolarization 

methods can be combined with low-cost MRI systems to obtain a broadly available, yet highly 

sensitive metabolic imaging platform.

Graphical Abstract

New techniques and fundamental insights in hyperpolarization chemistry provide high nuclear 

spin polarization on pyruvate using parahydrogen, paving the way for applications in biophysical 

studies on proteins in vitro, on metabolism in cell cultures, or on disease states in vivo.

Introduction

Hyperpolarized magnetic resonance imaging (MRI) is emerging as a technique to track 

biomolecular metabolism without radioactive labels or ionizing radiation.1 Hyperpolarized 

(HP) MRI is currently under investigation in clinical trials to gain insights and diagnose 

metabolic disease states such as cancer1, diabetes2, or cardiovascular disease3,4. HP pyruvate 

is as a leading candidate as metabolic marker due to its safety and its central role in 

metabolism.1 Through measuring pyruvate metabolism, striking advancements have been 

made in the detection of cancer cells in prostate5,6, breast7, and brain8 tissues9. However, 

the leading method to hyperpolarize pyruvate, dissolution dynamic nuclear polarization 

(d-DNP), is limited in broad availability due to its high cost (≈$2.5M), long contrast agent 

production times (≈30 min or more), and instrument complexity.10,11 In contrast, Signal 

Amplification By Reversible Exchange (SABRE)12 is a fast (≈20 s), cheap (≈$25k), and 

scalable hyperpolarization technique using parahydrogen (p-H2) as a source of spin order to 

directly hyperpolarize small molecules in solutions, including pyruvate.12-15
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The hyperpolarization of heteronuclei (e.g., 13C) is optimized in magnetic shields that 

establish μT magnetic fields, called SABRE in Shield Enables Alignment Transfer to 

Heteronuclei (SABRE-SHEATH).16-18 Previous work has demonstrated 13C pyruvate 

hyperpolarization with SABRE-SHEATH, but remained limited in polarization relative 

to the high values of DNP (1.7% vs. ≈60%).13,14 Here, we present a combination of 

advances including the use of temperature cycling to overcome the in vivo polarization 

threshold of 10% with SABRE-SHEATH. The results of this study also indicate that 

further optimization is possible to maximize the critical molar polarization, defined as 

the product of concentration and polarization (introduced by Shchepin et al.19 and Knecht 

et al.20), ultimately the most important hyperpolarization parameter required for in vivo 
translation.5,11,21

Previous demonstrations of parahydrogen induced polarization with side arm hydrogenation 

(PHIP-SAH) on pyruvate have shown the feasibility of in vivo studies.22,23 These 

experiments demonstrate that an initial 13C polarization of 10%, which was purified to 

give a 35 mM 3.5% polarization solution at the time of injection, is sufficient for in vivo 
chemical-shift MRI.22 PHIP-SAH involves synthesis of a propargyl pyruvate precursor, 

hydrogenation, complex spin transfer, hydrolysis, and phase transfer steps to obtain HP 

pyruvate.22 In contrast, the facile nature of SABRE enables direct hyperpolarization of 

the 13C spins in pyruvate with reduced complexity. Figure 1 highlights the catalytically 

active species originally described by Iali et al., where optimized hyperpolarization levels 

of [1-13C]-pyruvate reached 0.96%,13 substantially below the 13C polarization achieved with 

DNP6 or the PHIP-SAH methods.22,24

In the present work, we highlight that sufficiently fast p-H2 exchange still occurs in the 

complex at low temperatures to efficiently polarize bound pyruvate. Using this feature, 

we implement time-dependent temperature gradients with SABRE-SHEATH on [1-13C]-

pyruvate to reach P13C (13C polarization) 10.8% on free pyruvate in solution, which is over 

six times greater than previous optimized results (Figure 2A). Additionally, this figure is on 

par with the initial polarization achieved on allyl pyruvate with SAH-PHIP,22 indicating that 

with simple purification methods20,24 a viable biocompatible injectable for in vivo imaging 

could be produced. This is enabled by starting with P13C ≈20% on catalyst-bound pyruvate 

at lower temperatures. We also provide detailed insights and a kinetic model to describe 

exchange dynamics and relaxation processes during temperature gradients, which modulate 

substrate and hydride exchange rates. As detailed below, further optimization yields even 

greater molar polarization levels (conc. × %P) as needed for in vivo studies.9,20,22

Results and Discussion

The spectrum and results shown in Figure 2A are the maximum achieved single-shot 

polarization. This data shows 14.3% polarization on bound pyruvate (after warm-up), and 

10.8% on the free pyruvate, corresponding to a total polarization of 11.8%. The calculation 

of %P uses the reference signal displayed in Fig. 2B, and is detailed in the SI. This result is 

enabled by, a) the use of high catalyst to substrate ratio (5 eqv. pyruvate, 3.3 eqv. DMSO), 

as done in previous work,14,25 b) the use of [1-13C]-pyruvate, (both [2-13C]-pyruvate and 

[1,2-13C2]-pyruvate give lower polarization under identical conditions), and c) pre-cooling 
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to slow exchange followed by bubbling at elevated temperature causing a time-dependent 

temperature gradient. To ensure reproducibility, we conducted the same experiment five 

times on different days and obtained an average of 10±1% polarization on free pyruvate (see 

SI section 8). On bound pyruvate, polarization levels approaching 20% are observed when 

bubbling at even lower temperatures as detailed below.

Using the high polarization on [1-13C]pyruvate, we acquired a 13C image, shown in Figure 

2C, utilizing a fast spin echo sequence at 1.5 T of a cryogen-free MRI system that can 

be operated at any field between 5 mT and 3 T. At the clinically relevant field of 1.5 T, 

we imaged the sample directly in an NMR tube with sub-mm resolution. The HP signal 

enables 3D multi-slice 13C-imaging of the 3.45 mm cross-sectional area of the NMR tube 

(full details are provided in the SI). As can be seen in the images, even the small, sub mm 

sized capillary can be resolved in the images.

To characterize the temperature dependence of the hyperpolarization, we conducted the 

experiments depicted in Figures 3A-E. We used a pneumatic shuttle,26 where the sample 

is first cooled in the probe and subsequently shuttled out of the cooled atmosphere into 

magnetic shields for SABRE-SHEATH13,27,28. Figure 3E shows the change in sample 

temperature as a function of bubbling time when starting at a sample temperature of 0 

°C. The temperature was assessed with the internal methanol thermometer (see SI).

At low initial temperature, the slower exchange promotes efficient polarization buildup 

on the catalyst-bound pyruvate. This effect is evidenced by up to 20% polarization 

on the catalyst-bound pyruvate achieved by starting at the lowest temperature of −10 

°C (see Figure 3C). With only 15 s of bubbling (Figure 3B) the polarization remains 

almost exclusively on the bound species 3b. In contrast to previous work,14 our data 

suggests that at low temperatures, efficient hydrogen exchange still occurs on 3b and 3a 
species yet at a sufficiently slow rate to allow the weak hydride-13C couplings to pump 

large degrees of polarization onto bound 13C pyruvate, which barely exchanges. As the 

sample warms during the bubbling period, [1-13C]-pyruvate can exchange off the catalyst 

more rapidly while SABRE continues, albeit with reduced efficiency, ultimately leading 

to high polarization on free pyruvate. As is evident from Figure 3B and 3C, at even 

further elevated temperatures the free and bound polarization numbers equilibrate due to 

efficiently exchanging polarization pools. To unequivocally confirm that experiments with 

a temperature gradient give higher polarization than experiments with constant temperature, 

we conducted the study shown in Figure 3F. For this direct comparison, we had to use 

manual sample transfer experiments with a 1.1 T benchtop NMR spectrometer. In these 

experiments, the sample is either bubbled in a water bath at constant temperature in a 

magnetic shield (purple, Figure 3F) or first pre-cooled in a water bath at a set temperature 

and then bubbled in the shield at ambient temperature (green, Figure 3F). The constant 

temperature experiments consistently stay below the experiments with temperature gradients

—lower relative polarization values in this data, compared to automated shuttling, are due 

to unavoidable inconsistencies in slow manual sample transfer. Additionally, the temperature 

gradient experienced in this setup is different than in shuttling. In the shuttling system, the 

sample is bubbled in an atmosphere of ≈14 °C (see Figure 3E), while in the manual transfer 

experiments the sample is just moved into a room temperature (≈23°C) atmosphere.
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Relaxation and polarization build-up data shown in Figure 4 additionally support and 

characterize the described dynamics. We fit the data to a two-state (bound - free) model, 

which we developed inspired by previous work.29 First, for relaxation dynamics in the 

absence of a pumping term (Figure 4 A), the model takes into account chemical exchange 

and relaxation of the bound and free pyruvate species.

dPB
dt = − (k + ρB) PB[t] + k ⋅ PF[t] (1)

dPF
dt = k ⋅ PB[t] − (k + ρF) PF[t] (2)

Here pB and pF are the free and bound polarization, k is the pyruvate exchange rate, and ρB 

and ρF are the relaxation rates of the free and bound pyruvates species. Solving the system 

of differential equations yields a fitting function for the bound and free spin relaxation. The 

full derivation of the fitting functions is given in the SI.

After solving these differential equations, we use the resulting model to fit the relaxation 

data in Figure 4A. At t=0 the bound polarization exceeds the free polarization. The 

difference of the two is illustrated by the purple curve in Figure 4A. Initially, bound 

polarization decreases quickly because of exchange and relaxation. In contrast, the free 

polarization only experiences very slow initial decrease because of the exchange with the 

highly polarized bound species. After about 8 s, the free polarization surpasses the bound 

polarization due to faster relaxation of the bound species.

A similar model is used to fit the polarization build-up data displayed in Fig. 4B. The only 

difference is that we introduce a temperature (i.e. bubbling-time) dependent polarization 

pumping rate, Γ.

dPB
dt = Γ − (k + ρB) PB[t] + k ⋅ PF[t] (3)

dPF
dt = k ⋅ PB[t] − (k + ρF) PF[t] (4)

Γ = b + a ⋅ e− t
τ (5)

where Eq. 4 is identical to Eq. 2. The present model for Γ is purely empirical with fit 

parameters b, a, and τ. After solving this new set of differential equations, only k, b, a, 

and τ are used as fit parameters. ρB and ρF are used as extracted from the relaxation data 

(see SI for details). With this model, the fits explain the rapid initial build-up of bound 

polarization where pumping is efficient, yet pyruvate exchange is inefficient. We point out 

that without a temperature-dependent pumping rate Γ, the resulting models cannot represent 

the data in any reasonable way even if a temperature-dependent k is used. It appears that 
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Γ has a larger temperature dependence than the pyruvate exchange k. In forthcoming work, 

we will examine this question and characterize the activation parameters of both hydrogen 

and pyruvate exchange in full. In the current absence of activation enthalpy and entropy 

and without knowledge of the exact J-coupling values that drive polarization transfer from 

p-H2 to bound [1-13C]-pyruvate, the empirical model for Γ gives valuable information, 

showing that hydrogen exchange becomes too fast at elevated temperatures to effectively 

drive SABRE. Therefore, temperature cycling solves the conundrum of having to optimize 

both hydrogen and substrate exchange simultaneously.

Finally, in Figure 4C we illustrate that p-H2 is not the limiting substrate at pressures 

above 75 psi for the investigated sample composition of 6 mM Ir-IMes catalyst, 20 mM 

DMSO and 30 mM [1-13C]-pyruvate. This graph implies that at higher substrate and 

catalyst concentrations the p-H2 pressure can be increased to maintain the same polarization 

levels while boosting the ultimately important molar polarization. This insight is further 

stressed by the results displayed in Figure 4D, which demonstrate the scalability of 13C 

pyruvate polarization from 30 mM [1-13C]-pyruvate (where all the previously discussed 

results were obtained) to 60 mM [1-13C]-pyruvate (maintaining the same ratios of catalyst 

and DMSO). Doubling of the concentration actually leads to an increase in polarization, 

more than doubling the molar polarization, indicating that 60 mM [1-13C]-pyruvate may 

be the ideal concentration for future studies. Shifting to an even higher concentration 

yielded slightly reduced polarization, however these higher concentrated samples are likely 

to be parahydrogen limited (see Figure 4C), so higher p-H2 pressures may return similar 

polarization levels, while boosting molar polarization.

Conclusion

In summary, we demonstrated a high (11.8% weighted average) total polarization for 

[1-13C]-pyruvate and 10.8% free polarization paving the way for further optimization and 

significantly enhancing the feasibility of in vivo work. Specifically, the facile and robust 

nature of SABRE hyperpolarization relative to other hyperpolarization methods make it an 

easily scalable technology. In these results, we emphasize the role that spin system, sample 

composition, and temperature gradients play in achieving high polarization levels. A kinetic 

model of differential equations was used to rationalize the high polarization levels. We used 

these high polarization levels to acquire multi-slice HP 13C images with a cryogen-free 

MRI system operated at 1.5 T. This achievement indicates that it is possible to combine low-

cost hyperpolarization with low-cost MRI to achieve high-sensitivity molecular imaging. 

Future work will focus on partnering these methods with previous demonstrations of 

catalyst extraction30 or phase-switching31 to achieve safely injectable solutions for in vivo 
demonstrations at the preclinical level, driving this technology toward clinical applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hyperpolarization scheme of [1-13C]-pyruvate, with a gradient representation of temperature 

cycling. The full IMes ligand is omitted for diagram clarity, where IMes = 1,3 - bis(2,4,6 - 

trimethylphenyl) imidazole-2-ylidene.
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Figure 2. 
(A) NMR spectrum of hyperpolarized [1-13C]-pyruvate in free and catalyst-bound forms. 

This spectrum was acquired with a sample of 30 mM [1-13C]-pyruvate, 20 mM DMSO, and 

6 mM IMes catalyst in CD3OD. (B) Thermal reference spectrum of [1-13C]-ethyl acetate at 

9.4 T, used for calculation of the polarization. (C) MRI of HP [1-13C]-pyruvate sample of 

60 mM [1-13C]-pyruvate, 40 mM DMSO, and 12 mM IMes catalyst in CH3OH. Four axial 

slices of the image are taken in 1-4, with the NMR tube phantom and corresponding slice 

positioning shown in 5 and 6. The images are acquired with a fast spin echo sequence at 

1.5 T with 64×64 voxels, 30×30 mm2 FOV, a single echo train with 64 lines, and an overall 

acquisition time of 1.5 s. Full details regarding the setup and sequence are in the SI. The 

polarization obtained in the MRI was 5.85% by comparison to a thermal phantom.
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Figure 3. 
Variable temperature comparisons in the hyperpolarization of [1-13C]-pyruvate. (A,B) 

Comparison of HP spectra obtained with an initial sample temperature of −10°C and 20°C 

using (A) 15 s bubbling and (B) 90 s bubbling. (C,D) Comparison of the temperature 

dependence of [1-13C]-pyruvate hyperpolarization with (C) 15 s bubbling and (D) 90 s 

bubbling. (E) Final sample temperature with variable bubbling time for an initial sample 

temperature of 0°C in the pneumatic shuttling setup. (F) Comparison of polarization 

obtained on free pyruvate with and without a temperature gradient using manual sample 

transfer.
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Figure 4. 
Relaxation, build-up, pressure, and concentration dependence. (A) Low-field (0.3 μT) 

relaxation and (B) polarization build-up data for free and bound pyruvate. Relaxation data 

is acquired after p-H2 bubbling is stopped followed by a variable delay, while buildup 

data is acquired with variable bubbling periods. The data are fit to curves derived from 

the discussed differential equations (Eq. 1-5). Since the resulting analytical solutions are 

lengthy, they are integrated and detailed in the SI. Table 5 in the SI gives all fit parameters. 

In A the temperature is constant and approx. 14 °C. (C) Pressure dependence of pyruvate 

polarization. (D) Sample concentration dependence for pyruvate polarization and molar 

polarization. Catalyst and DMSO concentrations are scaled at constant ratio. All data are 

acquired using an initial sample temperature of 0 °C.
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