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Abstract

Intrinsically disordered protein regions and many other biopolymers lack the three-dimensional 

structure that could be determined by X-ray crystallography or NMR, which encourages the 

application of alternative experimental methods. Time-resolved resonance energy transfer data 

are often used to measure distances between two fluorophores attached to a flexible biopolymer. 

This is complicated by the rotational and translational diffusion of the fluorophores and by 

non-monoexponential donor decay in the absence of the acceptor. Equation IDA(t) = ID(t) ⋅ F(t)
is derived here, which is applicable regardless of whether ID(t) is monoexponential. ID(t) and 

IDA(t)are the δ-excitation donor emission decays in the absence and in the presence of the 

acceptor; F(t) contains information about energy transfer, donor–acceptor distance distribution, 

and diffusion dynamics. It is shown that in the absence of rotational and translational diffusion, 

F(t) is a continuous distribution of exponentials, whereas in the presence of rotational and 

translational diffusion, F(t) is a sum of discrete exponentials. For each case it is shown how F(t) 
is related to the distance distribution. Experimental data obtained with a flexible tetradecapeptide 

in aqueous solution clearly demonstrate that F(t) is a sum of discrete exponential terms. A partial 

differential equation describing resonance energy transfer in the presence of both rotational and 

translational diffusion of the donor and acceptor tethered to the ends of a semiflexible chain 

is solved in this work using a combination of analytical and numerical methods; the solution 

is used to fit time-resolved emission of the donor, which makes it possible to determine the 
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model parameters: contour length, persistence length, and the end-to-end translational diffusion 

coefficient.

Graphical Abstract

1. INTRODUCTION

Nonradiative resonance transfer of electronic excitation energy between two fluorescent 

molecules was first described by Perrin.1 A quantitative theory of this phenomenon was 

developed by Förster.2 According to Förster’s theory, the rate of energy transfer (ET) 

is inversely proportional to the sixth power of the distance between the centers of the 

fluorophores that play the roles of the energy donor and acceptor. This distance dependence 

has been widely used to measure intramolecular and intermolecular distances in the range 

between 10 and 100 Å. In most energy transfer studies the original steady-state or time-

resolved fluorescence emission data are first converted to the energy transfer efficiency, 

which is then used to calculate the donor–acceptor distance. By definition, the energy 

transfer efficiency E represents the quantum yield of energy transfer:3

E = kET
τD−1 + kET

(1.1)

where kET is the energy transfer rate as defined by Förster2 and τD is the lifetime of the 

donor in the absence of the acceptor; the inverse of τD equals the sum of the radiative and 

nonradiative decay rate. The definition eq 1.1 implicitly assumes that the donor decay is 

monoexponential; from this assumption it also follows that3

E = R0
6

R0
6 + r6 (1.2)

where r is the distance between the donor and the acceptor (measured between the centers 

of their π-orbital systems) and R0 is the Förster radius, which, among other things, depends 

on the orientation of the fluorophores. If both r and R0 have the same value for all donor–

acceptor pairs, then it is possible to calculate the r value by solving eq 1.2 with respect to 
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r. To ensure that the distances and orientations are identical for all donor–acceptor pairs, 

the donor and the acceptor must be incorporated into a rigid three-dimensional structure, 

e.g., in the structure of a globular protein that has a unique conformation under experimental 

conditions. Indeed, for the donor–acceptor pairs naturally present in human γD-Crystallin, 

a rigid globular protein with a known X-ray structure, the experimental values of the energy 

transfer efficiency are in reasonable agreement with the ones calculated theoretically.4 

However, if the donor and acceptor are in a rigid globule, then the distance r can be 

determined by X-ray diffraction crystallography, which undermines the need for energy 

transfer experiments.

Energy transfer data are indispensable in the case where there is no rigid structure and the 

distance r can be different for different donor–acceptor pairs. In this case the solution of 

eq 1.2 with respect to r is often called the mean donor–acceptor distance. The following 

example is intended to show how far this can be from the truth. For simplicity, consider 

a distribution of donor–acceptor distances that consists of just two discrete narrow peaks 

at r = 0.62R0 and r = 2.36R0, accounting for 53% and 47% of the donor–acceptor 

pairs, respectively. The mean distance equals 0.53 × 0.62R0 + 0.47 × 2.36R0 = 1.44R0. 

Substituting this mean distance for r in eq 1.2 yields E = 0.10, which is a low efficiency 

value. The actual energy transfer efficiency value depends on the rate of exchange between 

the two conformations corresponding to r = 0.62R0 and r = 2.36R0. If there is no exchange 

during the excited-state lifetime, then we should calculate two separate efficiencies by 

substituting r = 0.62R0 and r = 2.36R0 in eq 1.2 and then take their weighted mean, which 

yields E = 0.50, a medium efficiency value. In the opposite case, where the exchange is 

much faster than the excited-state population decay, we should first calculate the mean 

energy transfer rate and then substitute it in eq 1.1, which yields E = 0.90, a high efficiency 

value. This example clearly shows that if there is a distance distribution rather than just 

one donor–acceptor distance, then (i) the energy transfer efficiency strongly depends on the 

dynamics of distance variations and (ii) from the value of the energy transfer efficiency 

alone it is not possible to calculate the mean donor–acceptor distance.

Steady-state fluorescence data can be used only to calculate the energy transfer efficiency 

E and provide no additional information that could be used to draw conclusions about the 

shape of the distance distribution or the dynamics of distance variations. Time-resolved 

fluorescence data contain lots of additional information as compared to the steady-state data. 

The first theoretical study that showed the possibility of determining distance distributions 

from time-resolved fluorescence data was published in 1972 by Grinvald, Haas, and 

Steinberg.5 In 1975 Haas et al. published the first experimental study of donor–acceptor 

distance distributions.6 Since then, a few other experimental studies based on the same 

theory have been published.7–13 Three common drawbacks characterize these studies. First, 

in most of these studies it was assumed that the decay of the donor in the absence of the 

acceptor was monoexponential.5–9,12,13 Second, the dynamics of distance variations was 

assumed to be infinitely slow; this implied no translational diffusion of the donor and the 

acceptor.5–13 Third, it was assumed that the value of the orientation factor κ2 = 2/3 could be 

used for every donor–acceptor pair,5–13 which implied that not only the orientations of both 

fluorophores were completely random but also their rotational dynamics was faster than the 

time resolution of the experimental setup.
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The effect of rotational dynamics of the donor and acceptor on energy transfer was 

thoroughly considered in 1974 by Dale and Eisinger.14 They pointed out that the same 

mean value of the orientation factor κ2 can be applied to all donor–acceptor pairs only in the 

case where the rotational dynamics is very fast. In the opposite extreme case, where there is 

no fluorophore rotation at all, the energy transfer efficiency must be calculated separately for 

every κ2 value between 0 and 4 and then the efficiency (and not the κ2) must be averaged 

over the κ2 distribution. For the same donor–acceptor distance and the same orientation 

distribution, the energy transfer efficiency can change several fold depending on whether 

the rotational dynamics is fast or slow. This important fact was ignored in many energy 

transfer studies, which assumed that the rotational dynamics was very fast (κ2 = 2/3) and the 

translational dynamics was infinitely slow. In this connection it is worthwhile to evaluate the 

characteristic times of rotational and translational diffusion of a fluorophore. For simplicity, 

we assume that the fluorophore is a sphere and that it is allowed to rotate about its center. 

For the characteristic time of rotational diffusion tR we will take the anisotropy decay time3

tR = 1
6DR

= ηV l
kBT (1.3)

where DR is the rotational diffusion coefficient, η is the dynamic viscosity of the solvent, 

V1 is the volume of one fluorescent molecule, kB is Boltzmann constant, and T is the 

absolute temperature. For the characteristic time of translational diffusion tT we will take the 

time during which the root-mean-square translational displacement of the two fluorophores 

relative to each other in one dimension (along the donor–acceptor line) equals the root-

mean-square width W of the distance distribution:

tT = W 2

2DT
(1.4)

where DT is the translational diffusion coefficient of the two fluorophores relative to each 

other, which equals the sum of the translational diffusion coefficient of the donor and 

acceptor DT = DTD + DTA. Note that here we consider translational diffusion in one 

dimension only (along the donor–acceptor line), because translational diffusion in the two 

directions normal to the donor–acceptor line does not change the donor–acceptor distance 

(see Appendix A in Supporting Information for details). This explains why there is 2DT 

rather than 6DT in the denominator of 1.4. Stokes’ law expresses the translational diffusion 

coefficient for each fluorophore in terms of the radius RS of the sphere:

DTD = DTA = kBT
6πηRS

(1.5)

For the purpose of estimate we assumed that both fluorophores have the same size and the 

same diffusion coefficient. The volume of a sphere is related to its radius:

V 1 = 4
3πRS

3
(1.6)
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From eqs 1.4, 1.5, and 1.6 follows the final expression for tT:

tT = 9
8

W
RS

2 ηV 1
kBT (1.7)

Now from eqs 1.3 and 1.7 we obtain the ratio

tT
tR

= 9
8

W
RS

2
(1.8)

Because the ratio in eq 1.8 is a rough estimate (in reality the fluorophores are not spheres 

and, on top of this, they are usually tethered to a biopolymer, which increases both tT and 

tR, but not in equal proportion), we can omit the multiplier 9/8 and state that the ratio of 

the characteristic translational diffusion time to the characteristic rotational diffusion time 

approximately equals the squared ratio of the distance distribution full width 2W to the 

fluorophore linear dimension 2RS. Considering that 2W is usually just a fraction of the 

Förster radius R0 and does not exceed 50 Å, whereas the linear dimensions of smallest 

fluorophores (such as indole or naphthalene) are at least 7 Å, the ratio tT/tR is not expected 

to exceed 50. This means that if, by using κ2 = 2/3 for all donor–acceptor pairs, rotational 

relaxation is implicitly assumed to be faster than the time resolution of the experimental 

equipment, then translational relaxation must take place on the nanosecond time scale, and 

therefore translational diffusion cannot be ignored.

In 1978 Haas et al. published the first theoretical and experimental study that considered 

not only a distribution of donor–acceptor distances but also translational diffusion of the 

fluorophores.15 The theoretical model resulted in partial differential equations that were 

solved numerically; the numerical solution was then fit to experimental time-resolved 

fluorescence data. A similar approach was later used in a number of other studies.16–32 

In some of these studies the decay of the donor without the acceptor was considered 

monoexponential.15,17–19,23,25–28,30,31 Other studies took into account that the decay of the 

donor without the acceptor can be multiexponential but falsely assumed that the value of the 

Förster radius R0 is the same for every lifetime.16,20,22,24

In this work we do not use the Förster radius R0 to calculate the rate of energy transfer. 

The expression for the energy transfer rate introduced in section 2 is applicable to both 

heterogeneous donor ensembles (where different donors have different decay rates) and to 

relaxing donor ensembles (where the decay rate varies with time after excitation). In section 

3 we describe a simple method for separating the effect of the complex donor decay without 

the acceptor from that of a dynamics-dependent energy transfer. In section 4 we present a 

model describing the energy transfer rate distribution for the case of no rotational and no 

translational diffusion. In section 5 we present a model for the case where the rotational and 

translational diffusion are present. In section 6 we describe experimental methods. In section 

7 we describe numerical data analysis techniques. In section 8 we compare the experimental 

time-resolved fluorescence data with the predictions of the models described in sections 4 

and 5.
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Two significant new theoretical results are presented in this work. First, a simple equation 

describing fluorescence emission decay of the donor in the presence of energy transfer is 

derived in section 3; this equation is applicable whether or not the donor emission decay 

in the absence of energy transfer is monoexponential. Second, a partial differential equation 

describing resonance energy transfer in the presence of both rotational and translational 

diffusion of the donor and acceptor tethered to the ends of a semiflexible chain is solved in 

section 5 using a combination of analytical and numerical methods. A well-known method 

of time-correlated single-photon counting (TCSPC) is employed in this work to measure 

the decay of the donor fluorescence emission in the absence and in the presence of the 

acceptor. The finding that the theoretical model developed in section 5 actually fits the 

experimental data very well, which makes it possible to determine the shape of the donor–

acceptor distance distribution and the translational diffusion coefficient, represents the new 

experimental result.

Throughout this work and in refs 5–42 it is assumed that the energy donor and acceptor are 

two different fluorophores and that there exists a spectral range in which all fluorescence 

emission is contributed by the donor and none by the acceptor; fluorescence emission at 

wavelengths within this spectral range is used by us and by the authors of refs 5–42 to 

monitor the excited-state donor population decay. Energy transfer between two identical 

fluorophores has been considered elsewhere.43–48 In the case of identical donor and acceptor 

the total fluorescence emission at any wavelength is insensitive to energy transfer; thus, 

time-resolved fluorescence anisotropy must be measured to obtain useful information.43–48 

There is one common feature and four differences between the work described here and that 

of the other authors.43–48 Equations describing rotational diffusion of the two fluorophores 

involved in energy transfer were solved by the authors of refs 43–48 and in section 5 of 

the present work, which represents the common feature. In refs 43–48 the authors consider 

energy transfer between two identical fluorophores, whereas the theory developed in this 

work applies only when the donor and acceptor are different, which is the first difference. 

The second difference is that in refs 43–48 the authors measure fluorescence emission 

anisotropy whereas in this work we measure the magic-angle fluorescence emission 

intensity at a wavelength where only the energy donor emits. In refs 43–48 the authors 

consider a single donor–acceptor distance rather than a distance distribution, whereas in this 

work the main purpose is to determine the shape of the donor–acceptor distance distribution, 

which makes the third and the most important difference. At last, the physical description 

of the system of two interacting fluorophores is different: in refs 43–48 the authors solve 

the equation describing the evolution of the quantum-statistical density matrix, whereas in 

this work we solve the rate equation describing the excited-state donor population. The 

equation of motion for the density matrix is usually called the quantum Liouville equation 

or the von Neumann equation or the Liouville–von Neumann equation by analogy to the 

equation derived by Liouville in the framework of classical (nonquantum) statistics.49 

The density matrix description takes into account not only the populations of different 

quantum states but also the phase relations between their wave functions; in the case of 

two interacting fluorophores, this difference becomes essential when the energy of the 

dipole–dipole coupling (between the electronic transition dipoles) is greater than both the 

emission bandwidth and the difference in the electronic excitation energies between the 
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donor and the acceptor. If this condition is satisfied, a phenomenon known as reverberating 

energy migration43,45,47,48 may be observed under the right conditions (when the system is 

somehow prepared at time zero with one of the two fluorophores in its excited state and 

the other one in its ground state, although, because of excitonic splitting,50 this is not a 

stationary state of the system). The difference in the electronic excitation energies between 

the donor and the acceptor considered in this work is significantly greater that the energy 

of dipole–dipole coupling between them at the shortest possible distance (i.e., when the 

two fluorophores are in van der Waals contact); therefore, in our case, the phase relations, 

represented by the off-diagonal elements of the density matrix, are unimportant and it is 

sufficient to solve the rate equations describing the populations (the diagonal elements). 

Furthermore, because the energy transfer is irreversible, we are interested in only one 

diagonal element, which describes the excited-state donor population.

2. MODIFIED FÖRSTER RADIUS

Time-resolved energy transfer experiments are in essence the measurements of donor decay 

rates in the presence and in the absence of the acceptor. The difference between these decay 

rates represents the energy transfer rate kET. It is therefore important to have an accurate 

expression for kET in terms of the donor–acceptor distance r and the relative orientations. In 

most published work the authors used the expression

kET = 1
τD

R0
r

6
(2.1)

where R0 is the Förster radius,

R0
6 = 9κ2Q

128π5η4 × ln(10)CL
NA

× J (2.2)

κ2 is the squared orientation factor,

κ = sinθDsinθAcos φD − φA − 2cosθDcosθA (2.3)

to define the angles θD, φD, θA, and φA we introduce a floating reference frame with the 

Z axis passing through the centers of both fluorophores; the direction of the transition 

electric dipole moment of each fluorophore with respect to the floating reference frame is 

characterized by two spherical angles, θ and φ, with the subscripts D for the donor and A for 

the acceptor; Q is the quantum yield,

Q = Γ
Γ + knr

= ΓτD (2.4)

Γ is the spontaneous emission rate of the donor, also known as the radiative decay rate, knr is 

the nonradiative decay rate of the donor in the absence of the acceptor, τD = Γ + knr
−1 is the 

lifetime of the donor in the absence of the acceptor, n is the refractive index of the medium 

in which the values of Q, Γ, knr, τD, and the spectra of the donor and the acceptor were 

measured and the calculated value of R0 is applicable, the multiplier ln(10)CL/NA converts 
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from the units of decadic molar extinction coefficient ε to the units of natural molecular 

extinction coefficient σ, CL = 1000 cm3/L, NA is Avogadro’s number, and J is the overlap 

integral,

J =
∫0

∞FD(ν)ϵA(ν)ν−4dν
∫0

∞FD(ν)dν
(2.5)

FD(ν) is the corrected emission spectrum of the donor, εA(ν) is the decadic molar extinction 

coefficient spectrum of the acceptor, and ν is the wavenumber in cm−1 (all spectra must be 

measured in the same medium of the refractive index n).

Consider the use of eq 2.1 in the case where the donor without the acceptor has 

a multiexponential decay that is entirely attributable to heterogeneity; i.e., there are 

M donor subpopulations, each having a different lifetime τDm, where m = 1, 2, ..., 

M. In this case most of the authors substituted τDm for τD in eq 2.1 to calculate 

kETm for each subpopulation, while assuming that the same value of R0 applies to all 

subpopulations.16,20,22,24,33–42 The latter was a false assumption. According to eq 2.2 R0
6 is 

directly proportional to Q, which, in turn, is directly proportional to τDm according to eq 2.4. 

Thus, any difference in τDm between the subpopulations should have canceled out, but it did 

not, because the authors of the above cited studies forgot that R0 is not a constant: among 

other things, it depends on τDm and on κ2.

To avoid problems of this nature in the present work and in the future, we need to define a 

true constant that can be used instead of R0. Toward this goal, we start from the equation that 

Förster originally derived for kET, before he introduced the definition of Förster radius:2

kET = 9κ2Γ
128π5n4r6 × ln(10)CL

NA
× J (2.6)

Equation 2.6 differs from eq 1 in Förster’s paper2 in notation only: Förster’s notation 

nS* A* corresponds to kET in this work, Förster’s τS0 corresponds to Γ−1 in this work, 

instead of J, Förster’s original equation explicitly contained the integral from the numerator 

of the fraction on the right-hand side of eq 2.5, and the integral from the denominator of 

that fraction did not enter in Förster’s original equation because Förster normalized FD(ν) in 

such a way that the integral in the denominator equaled 1. It is important that Förster derived 

eq 2.6 first, and then from it he obtained eqs 2.1 and 2.2. The variable lifetime τD does not 

enter in eq 2.6, which proves that it should not enter in the final expression for kET either. 

The fact that kET is independent of τD has also been emphasized by other authors.21,31 The 

next step is to split the constants and the variables in eq 2.6. The product of most constants 

will be denoted R1
6 and R1 will be named the modified Förster radius:

R1
6 = 9

128π5n4 × ln(10)CL
NA

× J (2.7)
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In terms of the modified Förster radius eq 2.6 can be rewritten as

kET = Γκ2 R1
r

6
(2.8)

Note that eq 2.8 equally applies to all donor subpopulations, regardless of the fact that 

they have different lifetimes τDm. The modified Förster radius R1 has the same value 

for all donor–acceptor pairs as long as the spectra FD(ν) and εA(ν) remain unchanged 

(solvatochromic fluorophores may change their spectra when moved to a solvent of a 

different polarity). In most cases the spontaneous emission rate Γ also has the same value for 

all donor–acceptor pairs: it depends only on the intrinsic properties of the fluorophore, the 

shape of the spectrum FD(ν), and the refractive index n.51

An equation similar to eq 2.8 was introduced by Jacob et al.;31 see eq 22 in that reference. 

The notation RF
6 in the notation of Jacob et al. is equivalent to the product κ2R1

6 in our 

notation. Haas in a review article29 also used a similar approach, see eq 11 in that article; 

the second term on the right-hand side of that equation is equivalent to the right-hand side 

of eq 2.8 here. Likewise, the second term on the right-hand side in eq 13 of Orevi et al.,32 is 

equivalent to the right-hand side of eq 2.8 here.

3. SEPARATION OF THE COMPLEX DONOR DECAY FROM THE 

DYNAMICS-DEPENDENT ENERGY TRANSFER

In 1975, when the first experimental determination of donor–acceptor distance distribution 

was attempted, the time resolution of a typical time-correlated single-photon counting 

(TCSPC) instrument was about 5 ns and the integral number of photons in an experimental 

decay curve was under one million.6 With that quality of experimental data it was difficult 

to tell the difference between a monoexponential and a multiexponential (or nonexponential) 

decay. With the invention of picosecond lasers, microchannel plate photo-multipliers, and 

new nuclear electronics modules, the time resolution improved by about 2 orders of 

magnitude. Using the excitation pulse rate of 4 × 106 Hz and two emission wings in 

parallel, one can now register 2 × 108 photons during a 3 h experiment.52 With this 

data quality it is easy to see that any fluorophore attached to a protein or a polypeptide 

exhibits nonexponential fluorescence decay, which usually can be approximated by a linear 

combination of four or more exponential terms. A rigid aromatic dye, such as anthracene, 

in a low-viscosity nonpolar solvent still has a monoexponential decay law because all 

relaxation times in such solvent–solute system are much faster than the time resolution 

of a modern TCSPC instrument. The relaxation of proteins and other biopolymers is 

considerably slower, which results in nonexponential (aka multiexponential) decay. For 

solvatochromic fluorophors, such as tryptophan, dansyl, IAEDANS, etc., the instantaneous 

emission spectrum shifts to the red during the relaxation process, which implies that the 

decay law varies with the emission wavelength at which the TCSPC data are collected.53–55 

The decay law at any one emission wavelength is nonexponential and can be mathematically 

described in terms of a time-variant decay rate,
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k(t) = − 1
I(t)

dI(t)
dt = − dln[I(t)]

dt (3.1)

where I(t) is the δ-excitation decay law measured at one emission wavelength.

The other important source of deviations from a monoexponential law is heterogeneity. 

For example, the decay rate of a tryptophan residue depends on the presence of proton 

donors in the vicinity of its side chain.56 The protonation state of potential proton donors 

(histidine, lysine, cysteine, amino terminus) is pH-dependent; within some pH ranges it is 

possible to find both protonated (quenching) and deprotonated (nonquenching) forms, which 

explains why different tryptophan residues may have different decay rates. In this work 

we will not consider the heterogeneity resulting from multiple tryptophan residues in the 

polypeptide sequence or multiple extrinsic labels attached to one biopoymer: this would 

result in different donor–acceptor distance distributions for different fluorophore positions. 

Here we consider only the case where for all donor–acceptor pairs there is the same distance 

distribution, the same orientation distribution, and the same conformation dynamics. The 

heterogeneity (if present) may be due to differences in the protonation states, side chain 

conformations, or similar small local changes.

Consider the case where there are M donor subpopulations, numbered with the index m = 

1, 2, ..., M. Each subpopulation has a different decay rate km in the absence of the acceptor 

(heterogeneity). Furthermore, due to relaxation each decay rate may explicitly vary with 

time t after excitation, which means that we have M different functions km(t). Now we 

will write the partial differential equation describing the decay, energy transfer, rotational 

diffusion, and translational diffusion for just one donor subpopulation

∂
∂t ξm(Ω, r, t) = −km(t) − Γκ2(Ω)R1

6

r6 + ΞΩ + Ξr ξm(Ω, r, t) (3.2)

where ξm(Ω, r, t) is the distribution function, Ω denotes the collection of the angles θD, 

φD, θA, φA, t is the time after δ-excitation, km(t) is the decay rate for the mth donor 

subpopulation in the absence of the acceptor, Γ and R1 are the radiative decay rate and the 

modified Förster radius for all donor subpopulations, κ(Ω) is defined in eq 2.3, ΞΩ is the 

rotational diffusion operator (a linear differential operator acting on the set of the angles Ω 
only), and Ξr is the translational diffusion operator (a linear differential operator acting on r 

only). The specific form of these diffusion operators will be considered later. It is important, 

however, that these operators are the same for all donor subpopulations.

In the general case, the solution of eq 3.2 can be represented as a product of two functions,

ξm(Ω, r, t) = dm(t) ⋅ f(Ω, r, t) (3.3)

where dm(t) and f(Ω,r,t) are the solutions of the following differential equations:
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∂
∂t dm(t) = − km(t)dm(t) (3.4)

∂
∂t f(Ω, r, t) = −Γκ2(Ω)R1

6

r6 + ΞΩ + Ξr f(Ω, r, t) (3.5)

Note that eq 3.5 equally applies to all donor subpopulations. This is a direct result of 

the fact that in this work we consider only the case where for all donor–acceptor pairs 

there is the same distance distribution, the same orientation distribution, and the same 

conformation dynamics. We do not consider, for instance, a mixture of different-length 

biopolymers labeled with a donor and an acceptor on the opposite ends. Likewise, we 

do not consider mixtures of biopolymers with donors and acceptors attached to different 

positions at random. The case considered here also implies that the initial distribution 

f(Ω,r,0) is the same for all donor subpopulations. If the initial condition is the same and 

the differential equation is the same, then the solution f(Ω,r,t) must be also the same for all 

donor subpopulations; this explains why the function f is missing the subscript m.

The total fluorescence emission intensity of the donor is directly proportional to the size of 

the excited donor population, which can be obtained by integrating ξm(Ω, r, t) over all the 

angles and the distance r and summing over all subpopulations:

I(t) = ∑
m = 1

M ∫
0

∞∫
Ω

ξm(Ω, r, t) dr dΩ (3.6)

In eq 3.6 we employed the integration sign with the letter Ω under it and the symbol dΩ. 

These notations will be used throughout the present work for space economy; their meaning 

is defined as

∫
Ω

… dΩ = ∫
0

π∫
0

2π∫
0

π∫
0

2π
… sinθD dθD dφD sinθA dθA

dφA
(3.7)

where the ellipses denote any mathematical expression. Substituting the expression for 

ξm(Ω, r, t) from eq 3.3 into eq 3.6 and using the fact that dm(t) is independent of all 

integration variables and f(Ω,r,t) is the same for all m, we obtain

I(t) = ∑
m = 1

M
dm(t) ⋅ F(t) (3.8)

where
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F(t) = ∫
0

∞∫
Ω

f(Ω, r, t) dr dΩ (3.9)

Note that the sum on the right-hand side of eq 3.8 represents the total fluorescence emission 

intensity from all donor subpopulations in the absence of the acceptor, when no energy 

transfer takes place. Equation 3.8 can be rewritten using the notation IDA(t) for fluorescence 

emission intensity of the donor in the presence of the acceptor and ID(t) for that in the 

absence of the acceptor,

IDA(t) = ID(t) ⋅ F(t) (3.10)

If the donor is at least slightly solvatochromic, then it is essential that IDA(t) and ID(t) are 

measured at the same emission wavelength (all fluorescent probes that can be covalently 

attached to a biomolecule lack a center of inversion and therefore are solvatochromic at least 

to some extent). It is also important that IDA(t) and ID(t) are measured through a magic angle 

polarizer, in the solvent of the same refractive index, the same polarity, the same pH, and at 

the same temperature.

As a side note, it is interesting to point out that eq 3.10 directly supports the conclusion of 

Jacob et al.31 regarding the uselessness of quenching in the studies of distance distributions 

and dynamics. The addition of a quencher would change both IDA(t) and ID(t), but not 

the function F(t), which contains all the information about the distance distributions 

and dynamics. Thus, no additional information is obtained by varying the quencher 

concentration. The most accurate information about the function F(t) is actually obtained 

when fluorescence intensity is the highest, i.e., at zero quencher concentration.

4. ENERGY TRANSFER RATE DISTRIBUTION IN THE ABSENCE OF 

DIFFUSION

An expression for the function F(t) in eq 3.10 is derived here for the case where there 

is an arbitrary-shape donor–acceptor distance distribution, the fluorophore orientations are 

random, and both rotational and translational diffusion are infinitely slow (the distance r 
and the angles Ω do not change on the time scale of TCSPC measurements). Because there 

is neither rotational nor translational diffusion, the corresponding operators can be omitted 

from eq 3.5, which becomes

∂
∂t f(Ω, r, t) = − Γκ2(Ω)R1

6

r6 f(Ω, r, t) (4.1)

The solution of eq 4.1 is

f(Ω, r, t) = f(Ω, r, 0)exp −ΓR1
6κ2(Ω)r−6t (4.2)
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For completely random orientations of the donor and the acceptor

f(Ω, r, 0) = 1
16π2 p(r) (4.3)

where p(r) is the equilibrium donor–acceptor distance distribution in the absence of energy 

transfer (or in the ground state). To obtain F(t), we substitute the expression from eq 4.3 

into eq 4.2, then substitute f(Ω,r,t) into eq 3.9 and integrate. The result can be represented as 

follows

F(t) = ∫
0

∞∫
0

4
p(r) q κ2 exp −ΓR1

6κ2r−6t dr dκ2 (4.4)

where q(κ2) is the distribution of κ2 values for a random orientation of the donor and the 

acceptor,

q(x) = 1
16π2∫Ω

δ x − sinθDsinθAcos φD − φA

−2cosθDcosθA
2 dΩ

(4.5)

δ(...) is Dirac’s delta function, and integration by dΩ is defined in eq 3.7. The κ2 distribution 

calculated in accordance with eq 4.5 is shown in Figure 1A; an analytical expression for 

q(κ2) can be found in eq 4.12 of Van Der Meer et al.57

Equation 4.4 can be rewritten as

F(t) = ∫
0

∞
exp −kETt ρ kET dkET (4.6)

where ρ(kET) is the energy transfer rate distribution,

ρ kET = ΓR1
6∫

0

∞
r−6p(r)q kETr6Γ−1R1

−6 dr (4.7)

Equation 4.7 establishes the relationship between the energy transfer rate distribution ρ(kET) 

on the linear kET scale and the distance distribution p(r) on the linear r scale. Analysis 

of experimental data (section 7) yields the energy transfer rate distribution ρlog[ln (kET)]
on the logarithmic kET scale. It is interesting that converting all three distributions 

ρ(kET), p(r), and q(κ2) to logarithmic scales,

ρ kET = kET
−1ρlog ln kET (4.8)

p(r) = r−1plog[ln(r)] (4.9)
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q(κ2) = (κ2)−1qlog ln κ2 (4.10)

reduces eq 4.7 to

ρlog(y) = 1
6∫−∞

+∞
plog − 1

6z + lnR1 + 1
6lnΓ qlog(y − z)dz (4.11)

Equation 4.11 shows that ρlog(y) is merely a convolution of two functions: (i) qlog(y), 

and (ii) plog(x) that was expanded (−6)-fold and shifted by ln Γ + 6 ln R1 on the x axis 

prior to the convolution, i.e., y = −6x + 6 ln R1 + ln Γ. A plot of the distribution qlog(y) 

is shown in Figure 1B; this is clearly a continuous function (although its first derivative 

is discontinuous). Because one of the two functions under the convolution integral is a 

continuous function, the convolution must be a continuous function regardless of whether 

the second function under the convolution integral is continuous or not. Due to the relations 

4.8 and 4.9 this applies not only to the distributions on the logarithmic scales but also 

to the distributions on the linear sales: regardless of whether the distance distribution is 

a continuous function or not, the energy transfer rate distribution must be a continuous 

function. In summary, this means that in the absence of rotational and translational diffusion 

we expect to see a continuous distribution of energy transfer rates regardless of the actual 

form of the donor–acceptor distance distribution.

5. FUNCTION F(T) IN THE PRESENCE OF ROTATIONAL AND 

TRANSLATIONAL DIFFUSION

In the presence of rotational and translational diffusion, the function F(t) should be obtained 

by the integration in accordance with eq 3.9 of the solution f(Ω,r,t) of the partial differential 

eq 3.5, which is repeated here:

∂
∂t f(Ω, r, t) = −Γκ2(Ω)R1

6

r6 + ΞΩ + Ξr f(Ω, r, t) (5.1)

One important conclusion about F(t) can be made before we proceed to solve eq 5.1. First, 

we note that

H = Γκ2(Ω)R1
6

r6 − ΞΩ − Ξr (5.2)

represents a linear differential operator. We define the eigenfunctions Ψn(Ω,r) and 

corresponding eigenvalues Λn of the operator H:

HΨn(Ω, r) = ΛnΨn(Ω, r) (5.3)
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It should be noted that in eqs 5.3–5.6 one subscript n enumerates all eigenfunctions and 

eigenvalues; however, in practice it may be convenient to use a larger number of subscripts; 

because we have not found yet how many subscripts will be needed, the subscript n in 

eqs 5.3–5.6 should be treated as a placeholder for multiple subscripts that will be defined 

later. The subscript n should not be confused with the refractive index, for which we used 

the symbol n in section 2 only. Any solution of eq 5.1 can be represented in terms of the 

eigenfunctions and eigenvalues,

f(Ω, r, t) = ∑
n

anΨn(Ω, r)exp −Λnt (5.4)

Substituting this into eq 3.9 yields

F(t) = ∑
n

anbnexp −Λnt (5.5)

where

bn = ∫
0

∞∫
Ω

Ψn(Ω, r)dr dΩ (5.6)

From eq 5.5 it follows that in the presence of rotational and translational diffusion F(t) 
is a sum of discrete exponential terms, i.e., a discrete spectrum of energy transfer rates is 

observed in the presence of rotational and translational diffusion. In the absence of diffusion 

the theory predicted a continuous spectrum of energy transfer rates; see section 4.

Historically, the idea to employ eigenfunctions and eigenvalues to solve energy transfer-

with-diffusion problem belongs to Steinberg,25 although the equation he solved was not 

identical to eq 5.1. Unfortunately, Steinberg did not emphasize the significance of the fact 

that the solution is a discrete rather than a continuous spectrum of energy transfer rates, 

probably because this distinction was unimportant in 1994, when it was experimentally 

impossible (or very difficult) to tell the difference between a discrete and a continuous 

spectrum of exponential terms. With the data quality available to us today it is possible to 

tell the difference (see section 8).

Equations 5.3–5.6 are too general and therefore are of little practical use in reconstructing 

the shape of the donor–acceptor distance distribution from experimental data. To derive 

practically useful expressions, we must first define the specific form of the diffusion 

operators ΞΩ and Ξr . If we assume that the rotational diffusion of the donor and the acceptor 

with respect to the floating reference frame is completely isotropic and independent of each 

other, then

ΞΩ = ΞΩD + ΞΩA (5.7)

where
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ΞΩD = DRD
sinθD

∂
∂θD

sinθD
∂

∂θD
+ DRD

sin2θD

∂2

∂φD2 (5.8)

ΞΩA = DRA
sinθA

∂
∂θA

sinθA
∂

∂θA
+ DRA

sin2θA

∂2

∂φA2 (5.9)

DRD is the rotational diffusion coefficient of the donor and DRA is that of the acceptor. 

The translational diffusion operator explicitly depends on the equilibrium donor–acceptor 

distance distribution p(r)

Ξr = DT
∂
∂r p(r) ∂

∂r
1

p(r) (5.10)

where DT equals the sum of the translational diffusion coefficient of the donor and that of 

the acceptor. With these expressions for the rotational and translational diffusion operator 

the problem of finding the eigenfunctions and eigenvalues of the combined operator H
from eq 5.2 is not trivial. A simplification can be achieved if we follow the recipe of Born 

and Oppenheimer,58 who separated the eigenfunctions of a molecular Hamiltonian operator 

into electronic eigenfunctions (calculated in the fixed-nuclei approximation) and nuclear 

vibrational eigenfunctions. Following this recipe, we first seek the rotational eigenfunctions 

in the fixed r approximation

V (r)ψjklm(Ω; r) = λjklm(r)ψjklm(Ω; r) (5.11)

where

V (r) = ΓR1
6

r6 κ2(Ω) − ΞΩ (5.12)

and then seek the translational eigenfunctions

W jklmχjklmn(r) = Λjklmnχjklmn(r) (5.13)

where

W jklm = λjklm(r) − Ξr (5.14)

Note that the eigenfunctions ψjklm(Ω; r) are functions of the angles Ω only, the distance 

r plays here the role of a constant parameter, which is separated by the semicolon from 

the variables Ω for clarity. The operator V (r) and the eigenvalues λjklm(r) also depend on 

the constant parameter r. It is easy to define the eigenfunctions ψjklm(Ω; r) and eigenvalues 

λjklm(r) for the limiting case r → ∞:
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ψjklm(Ω; ∞) = Y j
k θD, φD Y l

m θA, φA (5.15)

λjklm(∞) = j(j + 1)DRD + l(l + 1)DRA (5.16)

where Y j
k θD, φD and Y l

m θA, φA  are spherical harmonics defined in accordance with 

the Condon−Shortley phase convention and DRD and DRA are the rotational diffusion 

coefficients of the donor and acceptor, respectively. Indices j and l assume non-negative 

integer values, j = 0, 1, 2, ..., l = 0, 1, 2, .... Index k assumes integer values from −j 
to +j. Index m assumes integer values from −l to +l. The eigenfunctions ψjklm(Ω; r)
and eigenvalues λjklm(r) for r < ∞ will be calculated in the framework of the quantum 

mechanical perturbation theory,59 by considering the first term on the right-hand side of eq 

5.12 as the perturbation operator,

U = ΓR1
6

r6 κ2(Ω) (5.17)

Toward this goal we first express κ2(Ω) in terms of spherical harmonics,

κ2(Ω) = 4π ∑
j = 0, 2

∑
l = 0, 2

∑
m = − min(j, l)

+min(j, l)
cjlmY j

−m θD, φD Y l
m θA, φA (5.18)

Here indices j and l assume only two values: 0 and 2. If at least one of the indices j and l 
equals 0, then m assumes only one value m = 0. However, if j = l = 2, then m assumes five 

different values from m = −2 to m = +2. The values of the coefficients cjlm corresponding to 

all eight possible index combinations are given in Table 1. Using eq 5.18, the perturbation 

operator is expressed in terms of spherical harmonics:

U = 4πΓR1
6

r6 ∑
j = 0, 2

∑
l = 0, 2

∑
m = − min(j, l)

+min(j, l)
cjlmY j

−m θD, φD Y l
m θA, φA (5.19)

Matrix elements of the perturbation operator U in the unperturbed eigenfunctions 

ψjklm(Ω; ∞) possess eight indices,

Uj1l1m1j2k2l2m2 = ∫
Ω

ψj1k1l1m1* (Ω; ∞)Uψj2k2l2m2(Ω; ∞) dΩ (5.20)

Two kinds of matrix elements will be used below: the diagonal elements Ujklmjklm and 

off-diagonal elements Ujklm0000 . The latter can be obtained directly from eq 5.19:
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Ujklm0000 = ΓR1
6

r6 δk, − mcjlm (5.21)

Where δk, − m is Kronecker delta, it equals 1 if k = −m and 0 if k ≠ −m. The diagonal 

elements Ujklmjklm can be expressed in terms of coefficients djklm,

Ujklmjklm = ΓR1
6

r6 djklm (5.22)

that are defined in terms of the coefficients cjlm and Wigner 3j symbols,

djklm = ( − 1)k + m(2j + 1)(2l + 1)
× ∑

J = 0, 2
∑

L = 0, 2
(2J + 1)(2L + 1)cJL0

× j J j
−k 0 k

j J j
0 0 0

l L l
−m 0 m

l L l
0 0 0

(5.23)

The values of the relevant coefficients djklm are given in Table 2. Note that Table 2 includes 

only those combinations of j, k, l, m that will be used in this work. An extended version, 

Table 2X, that includes all coefficients djklm with j ≤ 4 and l ≤ 4 has been included in 

Supporting Information. On the contrary, Table 1 already includes all nonzero values of cjlm; 

therefore, there is no extension of Table 1.

The diagonal matrix elements Ujklmjklm represent the first-order corrections to the 

unperturbed eigenvalues λjklm(∞).59 Adding up the unperturbed eigenvalues from eq 5.16 

and the first-order corrections from eq 5.22 gives the corrected eigenvalues,

λjklm(r) = j(j + 1)DRD + l(l + 1)DRA + ΓR1
6

r6 djklm (5.24)

As the next step, λjklm(r) from eq 5.24 must be substituted into eq 5.14, which should 

be followed by the search of the eigenfunctions and eigenvalues of the operator W jklm in 

accordance with eq 5.13. Equation 5.13 is rewritten below, including the explicit form of the 

translational diffusion operator Ξr, which is defined in eq 5.10:

λjklm(r)χjklmn(r) − DT
∂
∂r p(r) ∂

∂r
χjklmn(r)

p(r)
= Λjklmnχjklmn(r)

(5.25)

Note that the linear differential operator on the left-hand side of eq 5.25 is not Hermitian; 

therefore, its eigenfunctions χjklm(r) are not orthogonal, which would present a serious 

problem down the road. To correct this problem, we define
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s(r) = p(r)
4π (5.26)

The old eigenfunctions are expressed as products of s(r) times the new eigenfunctions,

χjklmn(r) = s(r)vjklmn(r) (5.27)

Substituting χjklm(r) from eq 5.27 into eq 5.25 and dividing both sides by s(r) results in

λjklm(r)υjklmn(r) − DT
s(r)

∂
∂r s2(r) ∂

∂r
υjklmn(r)

s(r)
= Λjklmnυjklmn(r)

(5.28)

The operator on the left-hand side of eq 5.28 is Hermitian; therefore, its eigenfunctions 

υjklm(r) are orthogonal, which is used below. Equation 5.28 can be solved numerically, 

which requires discretization of the continuous variable r. The minimum and maximum 

donor–acceptor distance, rmin and rmax, must be selected so that all nonzero values of the 

function p(r) correspond to the argument values from the range rmin < r < rmax. For example, 

the semiflexible chain model60 results in the following equilibrium end-to-end distance 

distribution:

p(r) = 4
π1/2

ω3/2

1 + 3ω−1 + 15
4 ω−2

r2L6

L2 − r2 9/2exp − ωr2

L2 − r2 (5.29)

where L is the contour length of the chain, and parameter ω equals three-quarters of the ratio 

of the contour length to the persistence length Lp:

ω = 3L
4Lp

(5.30)

The distance distribution in eq 5.29 is normalized to a unit integral, for details see Appendix 

B in Supporting Information. For this distance distribution it is natural to take rmin = 0 and 

rmax = L, because for every r from the range 0 < r < L the value of p(r) is positive, whereas 

for r ≤ 0 as well as for r ≥ L, p(r) = 0. The interval between rmin and rmax is divided into 

Ndiscr + 1 equal steps,

Δ = rmax − rmin
Ndiscr + 1 (5.31)

ri = iΔ + rmin (5.32)

Toptygin et al. Page 19

J Phys Chem B. Author manuscript; available in PMC 2022 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Index i = 1, 2, …, Ndiscr enumerates equally spaced points ri. The number Ndiscr should not be 

too small, because this would decrease the accuracy of the numerical solution, and it should 

not be too large, because this would increase the computing time. For the semiflexible chain 

model Ndiscr + 1 = 2048 appears to be an excellent compromise. Discretization of eq 5.28 

results in the matrix equation

Gvn = Λjklmnvn (5.33)

where we have omitted for brevity the indices j, k, l, and m in the notation of the matrix 

G and vector vn . In terms of the numerical algorithm, the omission of these indices makes 

direct sense: the Ndiscr × Ndiscr matrix G and Ndiscr vectors vn of Ndiscr components each 

are stored in the same two Ndiscr × Ndiscr arrays for every combination of j, k, l, and m; 

the calculation of eigenvalues and eigenvectors is carried out for one combination at a time. 

Nonzero elements of the matrix G are

Gi, i − 1 = Gi, i + 1 = − DT
Δ2 (5.34)

Gi, i = DT
Δ2

s ri − 1 + s ri + 1
s ri

+ λjklm ri (5.35)

Equation 5.35 defines the diagonal elements of the matrix G. Equation 5.34 defines all 

nonzero off-diagonal elements. Note that by definition matrix G is symmetrical, which 

means that it has only one set of eigenvectors. An asymmetrical matrix would have 

a set of right eigenvectors and a set of left eigenvectors, which would complicate the 

numerical calculation of eigenvectors. Note that discretization of eq 5.25 would result in an 

asymmetrical matrix. The transition from eq 5.25 to eq 5.28 using the function s(r) resulted 

in the symmetrical matrix G. All eigenvalues of the matrix G are positive because all 

λjklm ri  are positive. Numerical algorithms for calculating eigenvectors and eigenvalues of 

a positive-definite symmetrical matrix are available. Any of them can be used as long as the 

computer subroutine employes REAL(8) arithmetic, outputs eigenvalues in the ascending 

order, and normalizes eigenvectors to unit sum of squared components,

∑
i = 1

Ndiscr
, vin2 = 1 (5.36)

Eigenvalues Λjklmn of the matrix G represent the discrete decay rates that can be directly 

substituted into eq 5.5. Equation 5.5 also contains amplitudes ajklmn and integrals bjklmn that 

need to be calculated. Amplitudes ajklmn can be calculated only if we know the angular-and-

distance distribution of the donor–acceptor pairs immediately after δ-excitation at t = 0. If 

we assume that the excitation probability of the energy donor is independent of r and Ω, 

then the distribution at t = +0 is the same as the ground-state distribution, which equals the 
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product of the distance distribution p(r) and the isotropic angular distribution 1/16π2. If the 

angular-and-distance distribution at t = 0 is p(r)/16π2, then

∑
j = 1

∞
∑

k = − j

+j
∑
l = 1

∞
∑

m = − j

+j
∑

n
ajklmnψjklm(Ω; r)χjklmn(r) = p(r)

16π2 (5.37)

Multiplying both sides of eq 5.37 by the complex conjugate of ψjklm(Ω; r) and integrating by 

dΩ as defined in eq 3.7, using the orthogonality of the eigenfunctions ψjklm(Ω; r), results in

∑
n

ajklmnχjklmn(r) = p(r)
16π2∫Ω

ψjklm* (Ω; r) dΩ (5.38)

Substituting for χjklmn(r) in eq 5.38 the expression from eq 5.27 and then dividing both sides 

by s(r) results in

∑
n

ajklmnυjklmn(r) = s(r)∫
Ω

ψjklm* (Ω; r) dΩ (5.39)

Multiplying both sides of eq 5.39 by the complex conjugate of υjklmn(r) and integrating from 

0 to ∞ by dr, using the orthogonality of the eigenfunctions υjklmn(r), results in

ajklmn = ∫
0

∞∫
Ω

ψjklm* (Ω; r)υjklmn* (r)s(r) dr dΩ (5.40)

By substituting ψjklm(Ω; r) ⋅ s(r) ⋅ υjklmn(r) for Ψjklmn(Ω, r) in eq 5.6, we obtain

bjklmn = ∫
0

∞∫
Ω

ψjklm(Ω; r)υjklmn(r)s(r) dr dΩ (5.41)

Comparing eqs 5.40 and 5.41, taking into account that s(r) is real by definition, leads to the 

conclusion that ajklmn equals the complex conjugate of bjklmn. This is not a coincidence; this 

is a direct result of our definition of s(r) in eq 5.27 and the assumption that the probability 

of excitation of the donor is independent of Ω and r. If the probability of excitation depended 

on Ω and/or r, then ajklmn would not be equal to the complex conjugate of bjklmn. To 

calculate the integrals bjklmn, we first need to calculate

gjklm(r) = ∫
Ω

ψjklm(Ω; r) dΩ (5.42)
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For ψjklm(Ω; r) we will use the expressions obtained in the framework of the first-order 

perturbation theory.59 Because we used ψjklm(Ω; ∞) defined in eq 5.15 as the unperturbed 

eigenfunctions, it is important to point out that

∫
Ω

ψjklm(Ω; ∞) dΩ = 4π if j = k = l = m = 0
0 otherwise (5.43)

From eq 5.43 it follows that from all the terms in the sum that represents the first-order 

correction for ψjklm(Ω; r) we only need to know the term containing ψ0000(Ω; ∞) . In the case 

where at least one of the indices j, k, l, m is not equal to zero this gives

gjklm(r) = 4π
Ujklm0000*

λjklm(∞) − λ0000(∞) (5.44)

Using the expressions for the off-diagonal matrix elements Ujklm0000 from eq 5.21, we arrive 

at

gjklm(r) = 4πΓR1
6

j(j + 1)DRD + l(l + 1)DRA r6δk, − mcjlm (5.45)

Note that eqs 5.44 and 5.45 were derived for the case where at least one of the indices j, k, 

l, m is not equal to zero. If all four indices are equal to zero, then the first-order correction 

for ψ0000(Ω; r) lacks the term containing ψ0000(Ω; ∞), thus, in the framework of first-order 

perturbation theory g0000(r) equals g0000(∞), which, in accordance with eq 5.43, equals 4π,

g0000(r) = 4π (5.46)

Equation 5.41 can be rewritten using the definition of gjklm(r) from eq 5.42,

bjklmn = ∫
0

∞
gjklm(r)υjklmn(r)s(r) dr (5.47)

Switching from continuous eigenfunctions υjklmn(r) to discrete eigenvectors vjklmn and from 

integration by dr to summation over the index i results in

bjklmn = ∑
i = 0

Ndiscr
gjklm ri vijklmns ri (5.48)

For gjklm(r) in eq 5.48 one must substitute the expression from eq 5.46 if all four indices are 

equal to zero or the expressionfrom 5.45 otherwise. There is a total of eight combinations of 

j, k, l, m for which the integrals bjklmn are not equal to zero. Using that fact that ajklmn equals 

the complex conjugate of bjklmn, we rewrite the expression for F(t) from eq 5.5 in the form
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F(t) = ∑
j = 0, 2

∑
k = − j

+j
∑

l = 0, 2
∑

m = − l

+l
∑

n = 1

Ndiscr
bjklmn

2exp −Λjklmnt (5.49)

where nonzero coefficients bjklmn occur only if k + m = 0, which, in principle, makes it 

possible to eliminate one of the summation signs (but we have not done it to preserve the 

symmetry of the final expression). Furthermore, in eqs 5.49 the terms with m = −k ≠ 0 

have identical twins, because changing the signs of both m and k at the same time does not 

change the values of bjklmn
2 or Λjklmn . The latter makes it possible to calculate just one of 

the two identical terms and then multiply the result by 2. Following these recipes, one needs 

to calculate only six terms for every value of index n.

Sums of discrete exponentials, such as the one in eq 5.49, can be represented graphically 

as vertical bars on a logarithmic rate scale, where the placement of the base of each bar 

on the X axis is determined by log Λjklmn , whereas the height (Y) of each bar is directly 

proportional to the amplitude bjklmn
2 . Five such series of bars are shown in Figure 2, the 

only difference between the series is in the value of the translational diffusion rate DT. For 

comparison, Figure 2 also contains a continuous distribution of energy transfer rates on 

the logarithmic rate scale, which represents the case where DT = 0. For all six data sets 

shown in Figure 2, both DRD and DRA are assumed to be high, so that the rates 6DRD and 

6DRA are both outside of the range of the rate scale of Figure 2. This was done in part to 

avoid unnecessary complication of Figure 2 and in part because the amplitudes bjklmn
2 for 

nonzero indices j, k, l, or m are small and therefore difficult to show on the same vertical 

scale as the amplitudes b0000n
2 . The results shown in Figure 2 were calculated using the 

following values of the model parameters: the contour length L = 50 Å, the ratio of the 

contour length to the persistence length L/Lp = 3.0, the product Γ ⋅ R1/L 6 = 0.0345 ns−1

(this value was calculated using the experimental spontaneous emission rate Γ for the 

donor and the modified Förster radius R1 for donor–acceptor pair, see section 8), and the 

translational diffusion rates DT between 0 and 62.5 Å/ns, with the corresponding DT value 

shown in each panel. Because the rates Λ0000n and amplitudes b0000n
2 are independent of 

the rotational diffusion rates DRD and DRA, the data for Figure 2 were obtained using DRD = 

DRA = ∞.

The top panel of Figure 2 demonstrates that a high translational diffusion rate DT = 62.5 

Å2/ns results in F(t) dominated by one exponential, which contributes 88% of the total 

amplitude; the second- and the third-significant exponentials being responsible for 6% and 

2% of the total amplitude, respectively. The ratio of the rates corresponding to the first 

two exponentials, Λ00002/Λ00001, equals 9.01, which ensures that these exponentials can 

be easily resolved from the experimental decay data. As the diffusion rate DT decreases 

from 62.5 to 12.5, 2.5, 0.5, and 0.1 Å2/ns, all rates Λ0000n decrease their values; the rate 

ratios Λ00002/Λ00001 decrease as well, and the amplitudes corresponding to the dominant 

exponential also decrease. At the translational diffusion rate of 0.1 Å2/ns the amplitude 

of the dominant exponential equals only 18% of the total and the rate ratio Λ00002/

Toptygin et al. Page 23

J Phys Chem B. Author manuscript; available in PMC 2022 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Λ00001 equals 1.58, which means that these exponentials can hardly be resolved from the 

experimental decay data. As DT approaches zero, the density of discrete exponentials per 

unit log(kET) approaches infinity, which results in the continuous distribution of energy 

transfer rates, see the bottom panel of Figure 2. The data for the bottom panel were obtained 

using eq 4.11 with one important modification: because all equations in section 4 were 

derived for the case where DRD = DRA = 0, whereas Figure 2 represents the case where DRD 

= DRA = ∞, to obtain the data for the bottom panel instead of qlog(y) depicted in Figure 1B 

we substituted in eq 4.11 qlog(y) = δ[y − ln(2/3)] where δ[...] denotes Dirac’s delta-function.

Of all physical parameters on which the rates and amplitudes of the discrete exponentials in 

eq 5.49 depend it is convenient to make five combinations:

β1 = L
Lp

(5.50)

β2 = DTL4

ΓR1
6 (5.51)

β3 = ΓR1
6

L6 (5.52)

β4 = DRDL6

ΓR1
6 (5.53)

β5 = DRAL6

ΓR1
6 (5.54)

where L and Lp denote the contour length and the persistence length of the semiflexible 

chain, see eqs 5.29 and 5.30. These parameter combinations have useful properties listed 

below. The quantities β1, β2, β4, and β5 are dimensionless, whereas β3 has the units of rate, 

i.e., ns−1. All the amplitudes bjklmn
2 are independent of β3, whereas all the rates Λjklmn 

scale in direct proportion to β3 when the values of β1, β2, β4, and β5 are kept constant. 

The rates Λ0000n and amplitudes b0000n
2 are independent of β4 and β5. The amplitudes 

b0000n
2 are also independent of β3. The ratio of any rate Λ0000n to β3 is also independent 

of β3. Thus, just two parameters, β1 and β2, determine all amplitudes b0000n
2 and all ratios 

Λ0000n/β3. The variation of the amplitudes b0000n
2 and ratios Λ0000n/β3 with β1 and β2 is 

depicted in Figures 1S–6S in the Supporting Information. Figures 1S and 2S show the plots 

of Λ00001/β3 versus β1 (Figure 1S) and β2 (Figure 2S). Figures 3S and 4S show the plots of 

Λ00002/Λ00001 versus β1 (Figure 3S) and β2 (Figure 4S). Figures 5S and 6S show the plots 

of b00002
2/ b00001

2 versus β1 (Figure 5S) and β2 (Figure 6S).
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6. EXPERIMENTAL METHODS

Experimental data were obtained with the tetradecapeptide TAU-PT, amino acid sequence 

CAKTPPAPKTPPAW. The side chain of the tryptophan residue (W) located at the C-

terminus of the tetradecapeptide played the role of the energy donor. For the energy acceptor 

we used the dye 7-(diethylamino)-3-(4′-maleimidylphenyl)-4-methylcoumarin (CPM), 

LifeTechnologies catalog number D-346, that was attached to the N-terminal cysteine 

residue (C) by maleimide reaction. A separate study of the effects of phosphorylation of 

the two tyrosine residues (T) on the end-to-end distance distribution in this peptide and other 

similar peptides will be published elsewhere. In the present study we show just one data set, 

in which both tyrosine residues (T) were phosphorylated. This one data set is sufficient to 

demonstrate the possibilities and limitations of the data analysis.

Time-correlated single-photon counting data were obtained using the instrument that has 

been previously described in great detail.52 The time resolution estimated as the full width 

at half-maximum of the impulse response function (IRF) was equal to 65 ps. The integral 

number of photons in one decay curve representing either IDA(t) or ID(t) was typically 

about 108. The decay curve ID(t) was measured using the peptide with no CPM attached; 

the decay curve IDA(t) was measured using the same peptide with CPM attached to the 

cysteine residue. All measurements were done through magic-angle polarizers, using 295 

nm excitation wavelength and 350 nm emission wave-length, at 20 °C temperature. Peptide 

concentration was 20 μM, mean exciting power did not exceed 10 μW, and mean power 

density at the center of the exciting beam did not exceed 5 W/m2.

7. DATA ANALYSIS

Equation 3.10 was derived here for the case where every energy donor has an acceptor 

attached to the same biopolymer. In practice, the labeling of the biopolymer (in our 

case, the tetradecapeptide) with the acceptor (CPM) is not 100% efficient; therefore, there 

is a subpopulation of donors that have no acceptor. Equation 3.10 can be modified to 

accommodate this situation:

IDA(t) = A1ID(t) + A2ID(t) ⋅ F(t) (7.1)

where A1 and maybe A2 are the additional fitting parameters. Depending on the specific 

model function used for F(t), it may be that F(0) = 1 for any combination of the parameters 

on which F(t) depends; in this case A2 should be treated as a free fitting parameter. However, 

if the parameters on which F(t) depends make it possible to vary the value of F(0) from 0 

to ∞, then A2 should be fixed at a constant value, for example, A2 = 1. In either case, the 

efficiency of acceptor labeling reaction can be estimated as

ELAB = A2F(0)
A1 + A2F(0) (7.2)

Experimental TCSPC data are convolutions of the δ-excitation decays IDA(t) and ID(t) with 

the impulse response function (IRF) and also contain random noise.52 This suggests the 
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following two steps that are always used to calculate F(t). In step one, the experimental 

decay of the donor without the acceptor is fit by a numerical convolution of the 

experimentally measured IRF with the linear combination of many exponentials,

ID(t) = ∑
i = 1

NES
αi

ESexp −t/τi
ES (7.3)

where αi
ES are free fitting parameters (allowed to be negative and positive) and the values of 

τi
ES are evenly spaced on the logarithmic scale and fixed, with τi + 1ES ≈ 1.743 ⋅ τi

ES, τ1
ES equal 

to one-half of the fwhm time resolution, and τNES equal to the time difference between 

the last channel of the multichannel analyzer (MCA) and the channel corresponding to the 

IRF peak. Typically, NES = 13. This is known as the exponential series (ES) model, it fits 

any decay curve with unbeatable accuracy (judging by the reduced χ2 value), regardless of 

the origin of the nonexponential decay. Furthermore, because eq 7.3 is linear in all fitting 

parameters αi
ES, the fitting is done using the method of linear least-squares, which requires 

no successive iterations.

In step two, the experimental decay of the donor with the acceptor is fit by a numerical 

convolution of the experimentally measured IRF with the function IDA(t) from eq 7.1, in 

which we substitute ID(t) from eq 7.3 and F(t) corresponding to a specific model (see 

sections 4 and 5). In this fitting all αi
ES and τi

ES are fixed at the values obtained in the first 

step, while A1, maybe A2, and the fitting parameters on which the function F(t) depends are 

adjusted using a nonlinear least-square method (requires successive iterations) to obtain the 

best fit to the experimental TCSPC data. Specifics of step two associated with the use of the 

models without diffusion (section 4) and with diffusion (section 5) are discussed separately 

below.

In the case of a model without diffusion (section 4), eq 4.6 defines F(t) that should be used 

in the second step of the data fitting. Instead of the rate distribution ρ(kET) on the linear 

kET scale, it is more convenient to use the distribution ρlog ln kET  on the logarithmic kET 

scale; the relationship between the two distributions is given by eq 4.8. For the purpose 

of nonlinear least-squares fitting we must switch from the continuous variable ln(kET) to a 

discrete set of equally spaced ln(kn) values, which must be closely spaced to ensure that 

the discretized function ρlog ln kn  still resembles a continuous function. Forty discrete kn 

values per one decade works fine in most cases,

kn = k1 ⋅ 10(n − 1)/40 (7.4)

where k1 = 0.001 ns−1 and the total number of different rates NEXP = 201, which makes k161 

= 100 ns−1. This effectively covers the lifetime range from 0.01 to 1000 ns. Function F(t) is 

expressed as a linear combination of NEXP exponentials,
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F(t) = ∑
n = 1

NEXP
αnexp −knt (7.5)

where all parameters αn as well as A1 from eq 7.1 represent fitting parameters, and A2 = 

1. A high density of exponentials with closely spaced rates kn results in a singular Hessian 

matrix, which means that exactly the same quality of fit can be achieved with different 

combinations of parameters αn, most of which do not represent smooth functions. To define 

a unique set of parameters αn, some constraint must be imposed. The algorithm used here 

requires that (i) all αn must be positive, and (ii) the following penalty function must be 

minimal

penalty = w1 ∑
n = 2

NEXP
lnαn − lnαn − 1

2

+w2 ∑
n = 3

NEXP
lnαn − 2lnαn − 1 + lnαn − 2

2
(7.6)

where the weights w1 and w2 define the contributions to the penalty of the squared first 

and second derivatives of the distribution ρlog ln kn , The penalty is added to the χ2 (not 

to the reduced χ2), which is calculated as previously described;52 the sum χ2 + penalty is 

minimized by varying the values of all αn and A1. The values of w1 and w2 are then adjusted 

so that the value of the χ2 (without the added penalty) obtained with these values of w1 and 

w2 would be equal to 1 plus the minimum χ2 achieved in the case where w1 → 0 and w2 

→ 0. The relative increase in the χ2 approximately equals ND − NEXP / ND − NEXP − 1 ,
where ND is the number of usable channels of the multichannel analyzer (MCA), in our case 

ND = 1926, and ND − NEXP − 1 represents the number of degrees of freedom as defined in 

statistics. The technique described here is conceptually similar to the method of maximum 

entropy (MEM). Once the shape of the continuous function ρlog[ln kET ] is determined using 

the technique described above, one can try to use a deconvolution algorithm to recover the 

shape of the distance distribution plog[ln(r)], which is related to ρlog[ln(kET)] by eq 4.11.

In the case of a model with diffusion (section 5), two different approaches were used. In 

the first approach F(t) from eq 5.49 was directly substituted in eq 7.1. Parameters A1, A2, 

contour length L, persistence length Lp, and translational diffusion coefficient DT played 

the roles of free fitting parameters. The values of modified Förster radius R1 and the 

radiative decay rate Γ were measured experimentally and fixed in the analysis. Unambiguous 

determination of the rotational diffusion coefficients DRD and DRA from the energy transfer 

data alone appears to be impossible: nonlinear least-squares algorithm always fails to find 

the best fit, regardless of the initial guesses, when DRD and DRA play the roles of free fitting 

parameters. This suggests that it may be necessary to first determine the values of DRD and 

DRA from time-resolved anisotropy data and then fix these values during the analysis of 

the energy transfer data. To determine the DRD value, one could use the sample without 

the acceptor label, excited in the donor absorption band, and collect both vertically and 

horizontally polarized TCSPC data at the donor emission wavelength. To determine the 
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DRA value, one would have to use the sample containing the acceptor label, excited in the 

acceptor absorption band, and collect both vertically and horizontally polarized TCSPC data 

at the acceptor emission wavelength. In this work no vertically or horizontally polarized 

TCSPC data were collected; only the magic-angle polarizer orientation was used. This 

means that accurate determination of DRD and DRA is impossible; to determine the values 

of the other model parameters (contour length, persistence length, translational diffusion 

coefficient), we have set DRD = DRA = ∞.

The second (simplified) method uses the model function F(t) from eq 7.5 with a small 

number of NEXP, typically not exceeding five. Parameters A1, αn, and kn all play the roles 

of free fitting parameters in this case, while the value of A2 is fixed at A2 = 1. Once 

the smallest number NEXP necessary for an adequate fit is determined and the rates kn 

are numbered in the ascending order, the rates and amplitudes corresponding to the first 

two exponentials are used to determine the model parameters. The ratio of the amplitudes 

b00002
2/ b00001

2 and the ratio of the rates Λ00002/Λ00001 depend on just two dimensionless 

combinations of model parameters β1 and β2; see eqs 5.50 and 5.51. Using a lookup table 

and interpolation the values of β1 and β2 that result in the ratio b00002
2/ b00001

2 equal to the 

experimental α2/α1 and the ratio Λ00002/Λ00001 equal to the experimental k2/k1 are found. 

Then the rate Λ00001 is calculated for the values of β1 and β2 obtained as described above 

and β3 = 1, after which the final value of β3 is calculated as k1/Λ00001. Using the known 

values β1, β2, and β3, and the independently obtained values of Γ and R1, the system of 

eqs 5.50, 5.51, and 5.52 is solved with respect to L, Lp, and DT. This simplified method is 

dependent on our ability to reliably separate the first two exponentials from the remaining 

ones, which requires that Λ00002/Λ00001 ≥ 3.0 and Λ00003/Λ00002 ≥ 3.0.

8. RESULTS AND DISCUSSION

The value of the modified Förster radius R1 for the tryptophan-CPM donor–acceptor pair 

equals 45.86 Å, calculated using eqs 2.5 and 2.7 from the corrected spectra measured 

in aqueous buffer and the refractive index of water n = 1.333. Figure 7S in Supporting 

Information presents the extinction coefficient spectrum of CPM and the corrected emission 

spectrum of tryptophan in water at 20 °C; these spectra were used to calculate the integral in 

2.5. The radiative decay rate Γ = 0.0578 ns−1 for tryptophan in water with no added glycerol 

or sucrose was taken from previously published work.61

The TCSPC data that represent the decay of the donor in the absence of the acceptor, ID(t), 
are depicted by dots in the main panel of Figure 3. The continuous line in the main panel 

represents the fit to the TCSPC data by the convolution of the experimentally measured IRF 

with exponential series, eq 7.3. All the dots fall directly on the continuous line; therefore, 

it may be difficult to see the two elements of the main panel separately. The strip below 

the main panel represents the weighted residuals. The inset represents the autocorrelation 

of unweighted residuals. Weighting, residuals, autocorrelation, and reduced χ2 were strictly 

defined elsewhere.52 The value of the reduced χ2 for the exponential series fit to the data 

in Figure 3 equals 0.987. For about 2000 degrees of freedom the reduced χ2 value must 

be less than 1.052 with the probability of 95% and less than 1.081 with the probability 
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of 99.5%. The reduced χ2 = 0.987 satisfies both of these requirements, which, together 

with the residuals and autocorrelation in Figure 3, prove that the fit by the exponential 

series is adequate. Just to prove that the decay of the donor without the acceptor is not 

monoexponential, we also attempted to fit the same TCSPC data by the convolution of the 

experimental IRF with a single exponential. The fit is presented in Figure 8S in Supporting 

Information. The residuals, autocorrelation, and the reduced χ2 value of 317.2 reliably prove 

that the decay of the donor without the acceptor is not monoexponential, which justifies 

the use of the theory in section 3. A minimum of five discrete exponentials with adjustable 

lifetimes τi is required for an adequate fit to the data (reduced χ2 = 0.986). The values of 

τi and αi are listed in Table 1S in Supporting Information. The amplitude-weighted mean 

lifetime τ  equals 2.252 ± 0.006 ns. Using the previously published61 value Γ = 0.0578 

ns−1 and the amplitude-weighted mean lifetime, it is possible to calculate the quantum yield 

Γ ⋅ τ = 0.130. Experimentally measured quantum yield of free tryptopnan in water at 20 °C 

equals 0.13 ± 0.01,3 which is close to the calculated quantum yield of the tryptophan residue 

in TAU-PT.

The TCSPC data that represent the decay of the donor in the presence of the acceptor, IDA(t), 
are shown by dots in the main panel of Figure 4. The continuous line in the main panel 

represents the fit to the TCSPC data by the convolution of the experimentally measured IRF 

with IDA(t) from eq 7.1, in which for ID(t) we substituted the function obtained by fitting 

the data in Figure 3, and for F(t) we used the function from eq 7.5 with NEXP = 5, where 

all αn and kn were free fitting parameters. This approach will be referred to as the model 

of free discrete exponentials, where the word free emphasizes that αn and kn do not have 

to comply with the theory in section 5. The residuals, autocorrelation, and reduced χ2 = 

1.032 prove that the fit is adequate. The five rates kn that resulted in the χ2 minimum are 

represented by the positions of five blue vertical bars in Figure 5; the height of each bar 

represents corresponding amplitude αn. The values of kn and αn are also listed in Table 2S 

in Supporting Information.

The same TCSPC data as in Figure 4 were also fit using the function F(t) from eq 5.49, 

which is strictly based on the theory of energy transfer in the presence of rotational 

and translational diffusion (section 5). The fit is shown in Figure 9S in the Supporting 

Information. The weighted residuals and autocorrelation in Figure 9S are quite similar to 

those in Figure 4, which is the reason for placing one of the two near-identical figures in 

the Supporting Information instead of the main text. The reduced χ2 equals 1.041, which 

is slightly higher than that in the case of five discrete exponentials, but the difference 

is not statistically significant. Because the reduced χ2 is less than 1.052, this fit is also 

statistically adequate. The series of rates Λ0000n and amplitudes |b0000n|2 that resulted in the 

χ2 minimum are depicted by by red vertical bars in Figure 5 and also listed in Table 3S 

in the Supporting Information. These rates and amplitudes are not free: their values depend 

on three variable physical parameters (L, Lp, DT) and two constants (Γ, R1); therefore, 

this approach will be referred to as the model of dependent discrete exponentials. The χ2 

minimum was achieved with the following parameter values: contour length L = 49.94 Å, 

persistence length Lp = 14.84 Å, translational diffusion coefficient DT = 3.833 Å2/ns. The 

distance distribution p(r) defined by these values of L and Lp is shown by the red line in 
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Figure 6. The efficiency of acceptor labeling reaction calculated using eq 7.2 equals 83%. 

The values of the rotational diffusion coefficients DRD and DRA could not be determined 

by fitting the TCSPC data presented here (the χ2 surface did not possess a minimum with 

respect to DRD and DRA when these parameters were varied within the physically possible 

range); therefore, in the data analysis we set DRD = DRA = ∞, which corresponds to the 

model of very fast rotation. The same TCSPC data as in Figures 4 and 9S were also fit using 

a continuous distribution of energy transfer rates for the function F(t), which corresponds to 

the case of energy transfer in the absence of rotational and translational diffusion (section 

4). The fit is shown in Figure 10S in Supporting Information. The weighted residuals and 

autocorrelation in Figure 10S are practically indistinguishable from those in Figure 4. The 

reduced χ2 value was not calculated because this method uses over 200 fitting parameters, 

which are not completely free (see section 7). Because it is not clear how to calculate the 

number of degrees of freedom when the fitting parameters are not free, we will compare the 

unreduced χ2 sums. The χ2 sum equals 1974.1 in the case of five free discrete exponentials 

(Figure 4) and 1976.1 in the case of the continuous distribution of exponentials (Figure 

10S). This demonstrates that the fit obtained with the continuous distribution of exponentials 

is almost as good as that obtained with five free discrete exponentials. The continuous 

distribution of exponentials that resulted in the χ2 minimum is depicted by the green line in 

Figure 5.

As shown above, the model of free discrete exponentials, the model of dependent discrete 

exponentials, and the continuous distrubution model produce statistically adequate fits to 

the experimental TCSPC data. Now we have to decide which of these three models are 

physically meaningful. Consider the continuous distribution model, which corresponds to 

the case of no translational and no rotational diffusion. The energy transfer rate distribution 

on the logarithmic kET scale, ρlog ln kET , is related to the distance distribution on the 

logarithmic r scale by eq 4.11; on the right-hand side of this equation we have a 

convolution of two functions, one of which, qlog ln κ2 , is depicted in Figure 1B. Numerical 

deconvolution makes it possible to calculate the other function, plog[ln(r)], which represents 

the distance distribution on the logarithmic r scale. The distance distribution calculated using 

numerical deconvolution is shown in Figure 11S in Supporting Information; this distance 

distribution contains several regions where the density of probability plog assumes negative 

values, which is physically impossible. The negative values result from the fact that each 

of the four peaks in the ρlog ln kET  distribution (depicted by the green line in Figure 5) 

is narrower than the qlog ln κ2  distribution (depicted in Figure 1B). In the convolution 

of any non-negative function with qlog ln κ2  all the peaks would be at least as wide as 

qlog ln κ2  or wider. The peaks of the energy transfer rate distribution ρlog ln kET  can be 

made wider by increasing the coefficients w1 and w2 in eq 7.6, which increases the penalty 

for the first and the second derivative during the nonlinear least-squares fitting; however, 

this also worsens the fit to the original TCSPC data. The smallest coefficients w1 and w2 

that wiped off almost all negative values in the distance distribution plog[ln(r)] were found by 

the method of trial and error; this increased the unreduced χ2 sum by more than 1 order of 

magnitude: from 1976 to 23512. The resulting fit is shown in Figure 12S in the Supporting 

Information. The drastic increase in the χ2 sum as well as completely unacceptable residuals 
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and autocorrelation in Figure 12S prove beyond any doubt that in the absence of negative 

probability densities in the distance distribution it is not possible to achieve adequate fit to 

the experimental TCSPC data using the theoretical model that does not take into account 

rotational and translational diffusion. Thus, the continuous distribution depicted by the green 

line in Figure 5 is not really a continuous distribution, but rather a fuzzy (due to limited 

resolution) image of a series of infinitely narrow discrete spikes. Consider, for instance, the 

tallest and narrowest left peak in the continuous distribution. This peak is almost centered 

around the blue bar at k = 0.173 ns−1 and the red bar at k = 0.169 ns−1. Clearly, the sharp 

green peak, the blue bar, and the red bar represent the same discrete exponential that is 

well resolved from the rest of the discrete exponentials. The remaining three peaks in the 

continuous distribution also tend to be nearly centered around three blue bars; however, the 

correlation with the red bars is not so great. The red bars represent the exponentials that are 

too closely spaced on the log(k) scale, which makes it impossible to resolve them.

Now the continuous distribution model has been ruled out. Of the two discrete models 

the dependent one is strictly based on the theory in section 5 and therefore is physically 

meaningful. The free discrete exponentials model is not based on a physical model. The 

question we ask here is whether useful information can be extracted from the values of 

the parameters αn and kn. The simplified method described in the last paragraph of section 

7 makes it possible to calculate the contour length, persistence length, and translational 

diffusion rate from the ratios α2/α1 and k2/k1 and from the value of k1. From the values 

in Table 2S in the Supporting Information follows that α2/α1 = 0.320, k2/k1 = 4.044, and 

k1 = 0.173 ns−1. The first problem arises during the search for the values of β1 and β2 that 

would result in the ratio b00002
2/ b00001

2 equal to α2/α1 and the ratio Λ00002/Λ00001 equal 

to k2/k1: no such combination of β1 and β2 exists. It is possible to find β1 and β2 for which 

Λ00002/Λ00001 = 4.044, but in this case b00002
2/ b00001

2 is always less than 0.320. It is also 

possible to find β1 and β2 for which b00002
2/ b00001

2 = 0.320, but in this case Λ00002/Λ00001 

is always less than 4.044. The compromise is found when the standard deviations in the 

values of α2, α1, k2, and k1 are taken into consideration. It is possible to find a combination 

of β1 and β2 for which b00002
2/ b00001

2 equals α2/α1 within the experimental errors and 

Λ00002/Λ00001 equals k2/k1 within the experimental errors. The values are β1 = 7.803, β2 

= 0.6676. From these values and k1 follows that β3 = 0.00476 ns−1. Solving eqs 5.50–5.52 

gives the contour length L = 69.52 Å, persistence length Lp = 8.91 Å, and translational 

diffusion coefficient DT = 15.36 Å2/ns. The distance distribution p(r) defined by these values 

of L and Lp is shown by the blue line in Figure 6. These parameter values differ significantly 

from those obtained using the model of dependent discrete exponentials. For the final check 

we use the values of L, Lp, DT obtained by the simplified method to generate the function 

F(t) in accordance with the theory in section 5 and then see how well this function fits the 

experimental TCSPC data. The fit, residuals, and autocorrelation are shown in Figure 13S 

in the Supporting Information. The reduced χ2 equals 5.069. The fit is clearly inadequate, 

which demonstrates that the simplified method, which is described in the last paragraph of 

section 7, does not work as expected. The reason for the failure of the simplified method is 

in the close spacing of the rates Λ0000n on the logarithmic scale. The ratio Λ00003/Λ00002 
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equals 1.81, which is too close to be resolved. This explains both why the blue bars in Figure 

5 do not exactly coincide with the red bars and why the simplified method does not work.

The dependent discrete exponentials model remains the only approach that yields physically 

meaningful results. The parameter values obtained using this model are discussed below. 

Because in this work r is measured from the center of the tryptophan side chain π-orbital 

system to the center of CPM π-orbital system, the contour length L, should be also 

measured between these points. The contour length can be roughly approximated as the 

sum of two parts. The first part is the distance from the tryptophan side chain to the cysteine 

side chain, which will be calculated as (14–1) × L1, where 14 and 1 are the sequence 

numbers for the tryptophan and cysteine, and L1 is the contour length per amino acid, 3.4 Å 

≤ L1 ≤ 4.0 Å.62 The second part is the distance from the CPM attachment point to the center 

of CPM π-orbital system, which we estimate to be near 8.5 Å. By adding the two parts 

together, we calculate that L can be anywhere between 52.7 and 60.5 Å. The experimental 

value obtained here, L = 49.95 Å, is slightly less than the theoretically estimated lower limit. 

The experimental value was calculated from the parameter combination β3 defined in eq 

5.52. With 99% probability the value of β3 falls in the range between 0.0325 and 0.0370 

ns−1. If we assume that the values of Γ and R1 are absolutely accurate, then this translates 

into the following 99% confidence interval for the contour length: 49.40 Å ≤ L ≤ 50.48 Å. 

One possibility is that the Γ or R1 values may contain systematic errors. For example, the 

R1 value depends on the overlap integral in eq 2.5, which, in turn, depends on the extinction 

coefficient spectrum of CPM. In this work we relied on the value of ε = 29 700 cm−1 

M−1 at 387 nm wavelength for CPM in DMSO.63 This ε value was used to determine the 

concentration of CPM in our samples. If the actual ε value is 1.38-fold greater, then the 

value of R1 will increase from 45.86 to 48.39 Å, and the value of L will increase from 49.95 

to 52.70 Å, which equals the theoretically estimated lower limit. A similar result can be 

achieved if the actual value of the spontaneous emission rate Γ for tryptophan in water is 

1.38-fold greater than the reported value Γ = 0.0578 ns−1.61

The discrepancy between the measured and theoretically estimated contour length may also 

have a different explanation. The data analysis in this work shows that the donor–acceptor 

distance distribution p(r) described by eqs 5.29 and 5.30 with L = 49.95 Å and Lp = 14.83 

Å is consistent with the experimental data. If the persistence length had the same value at 

every point along the chain, starting from the center of the donor and ending at the center 

of the acceptor, then the parameters L and Lp would exactly comply with the definitions 

of the contour length and the persistence length. Because in our case the persistence length 

of the polypeptide is not equal to that of the linker and the acceptor fluorophore, or in 

other words, the chain is inhomogeneous along its length, L and Lp are just mathematical 

parameters describing the shape of the distance distribution p(r) rather than the contour 

length and the persistence length in their original sense. For example, in the case where 

the linker between the polypeptide and the acceptor fluorophore is extremely flexible and 

therefore has near-zero persistence length, the donor–acceptor distance distribution differs 

little from the distance distribution between the side chains of tryptophan and cysteine. 

In the other case, where the linker between the polypeptide and the fluorophore is rigid 

and makes a 90° angle, the donor–acceptor distance distribution also differs little from the 

distance distribution between the side chains of the residues 1 and 14. In both of these cases 
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the parameters L and Lp are close to the contour length and the persistence length of 13 

amino acids of the polypeptide TAU-PT, without the additional 8.5 Å. In this interpretation L 
= 49.95 Å corresponds to L1 = 3.84 Å per amino acid, which falls well within the accepted 

range 3.4 Å ≤ L1 ≤ 4.0 Å.62

The values of the translational diffusion coefficients for the donor (DTD) and the acceptor 

(DTA) can be estimated using eqs 1.5 and 1.6, assuming that the fluorophores are free 

spheres of 1 g/cm3 density. Using the molecular weight of 204.23 g/mol for tryptophan 

and 402.45g/mol for CPM, we obtain DTD = 49.5 Å2/ns and DTA = 39.5 Å2/ns. Thus, if 

the donor and acceptor were free and spherical, then their relative translational diffusion 

coefficient DT would be equal to 89.0 Å2/ns. Deviations from the spherical shape can 

decrease the isotropic translational diffusion coefficients DTD and DTA a few times, but 

not by an order of magnitude. The experimental value DT = 3.833 Å2/ns is 23-fold lower 

than the theoretical estimate for free spheres, which implies that the relative translational 

diffusion of the fluorophores is slowed down by the conformational changes in the 

polypeptide that must accompany any change in the end-to-end distance.

The distance distribution p(r) that resulted in the best fit to the experimental data (red line in 

Figure 6) is characterized by the mean distance r  the full width at half-maximum (fwhm) 

of 15.24 Å, and the root-mean-square width W = 7.51 Å. The latter is defined as the square 

root of (r − r )2 ;; in the case of a near-Gaussian p(r) shape fwhm to W ratio equals 2(2 

ln(2))1/2 or about 2.355. Substituting W = 7.51 Å and DT = 3.833 Å2/ns in eq 1.4 yields 

the characteristic translational diffusion time tT = 7.36 ns. This characteristic time is of 

great importance for single-molecule resonance energy transfer measurements, where the 

steady-state energy transfer efficiency is measured through a microscope for a single donor–

acceptor pair and recorded as a function of time. The time resolution of the single-molecule 

instrument must be at least 1 order of magnitude faster than tT, or otherwise the measured 

distance distribution p(r) will appear significantly narrower than the actual one. This means 

that for the CPM labeled TAU-PT one would need a single-molecule instrument with 0.7 ns 

time resolution or 1.4 GHz sampling rate. No such instrument exists at present. The value 

of tT can be made longer by using bulky fluorophores with slow translational diffusion rates, 

such as the green fluorescent protein (GFP) and its derivatives. For the molecular weight of 

27 × 103 g/mol and 1.35 g/cm3 density eqs 1.5 and 1.6 give the translational diffusion rate 

1.075 Å2/ns, which represents DTD and/or DTA. When the donor and the acceptor are both 

GFP derivatives, their relative translational diffusion coefficient DT equals 2.15 Å2/ns. If the 

bulky fluorophores are combined with a very wide distance distribution, for example, W = 

42.47 Å, which corresponds to 100 Å fwhm, then, in accordance with eq 1.4, tT = 0.42 μs 

and the required sampling rate equals 24 MHz, which is achievable at present.

In the case of time-resolved resonance energy transfer measurements small fluorophores 

have significant advantages. As the rotational diffusion rates DRD and DRA increase, not 

only the rates Λjklmn with nonzero indices j, k, l, m increase and almost exceed the 

experimental time resolution but also the corresponding amplitudes bjklmn
2 decrease and 

become negligible. This is what made it possible to essentially ignore all the exponential 

terms with nonzero indices j, k, l, m in our data analysis. It is also important to note 
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that the separation of rotational and translational eigenfunctions in eqs 5.11–5.14 is valid 

only when both 6DRD and 6DRA are greater than (2/3)·Γ · R1/ r 6, which represents the 

rate of energy transfer at r = r  and κ2 = 2/3. This situation can be directly compared 

to Born and Oppenheimer’s separation of electronic and vibrational wave functions,58 

which is valid only when the gaps between electronic energy levels are greater than the 

gaps between vibrational energy levels. For tryptophan 6DRD = 11.9 ns−1, for CPM 6DRA 

= 6.0 ns−1, and (2/3) ⋅ Γ ⋅ R1/ r 6 = 0.35 ns−1; therefore, the condition for eigenfunction 

separation is perfectly satisfied for these small fluorophores. If, however, GFP derivatives 

were used for the donor and the acceptor, then 6DRD and 6DRA would be equal to 0.12 

ns−1, which would make the eigenfunctions inseparable and most of the theory in section 

5 inapplicable to those fluorophores. The inverse values (6DRD)−1 and (6DRA)−1 represent 

the characteristic rotational diffusion times tRD and tRA and are of great importance in 

the case of single-molecule resonance energy transfer measurements. Because tRD and tRA 

represent the correlation times of the noise in the steady-state signal, the integration time 

in a single-molecule measurement must be at least 1 order of magnitude longer than the 

longest of tRD and tRA. For GFP derivatives eq 1.3 yields tRD = tRA = 8.2 ns; therefore, the 

integration time must be at least 82 ns, which implies that the sampling rate must be less 

than 12 MHz. If the integration time is shorter than the greater of 10∙tRD and 10∙tRA, then the 

assumption that κ2 = 2/3 cannot be used and one has to consider the effects of both distance 

and orientation on the energy transfer efficiency.

9. CONCLUSIONS

Resonance energy transfer rate kET depends on the spontaneous emission rate (aka radiative 

decay rate) of the donor but is independent of the donor’s nonradiative decay rate and 

lifetime. This makes it possible to prove that the equation IDA(t) = ID(t) ⋅ F(t) is applicable 

regardless of whether the decay of the donor in the absence of the acceptor, ID(t), is 

monoexponential or not. The function F(t) contains all the information about energy transfer, 

donor–acceptor distance distribution, and diffusion dynamics. In the absence of rotational 

and translational diffusion F(t) is a continuous distribution of exponentials, whereas in the 

presence of rotational and translational diffusion F(t) is a sum of discrete exponentials. 

Experimental data obtained with a flexible tetradecapeptide in aqueous solution demonstrate 

that F(t) is inconsistent with the theory of energy transfer in the absence of diffusion 

and consistent with the theory of energy transfer in the presence of diffusion. Using the 

functional form of the end-to-end distance distribution p(r) that represents semiflexible 

chain model, eqs 5.29 and 5.30, the contour length, persistence length, and the end-to-end 

translational diffusion coefficient have been determined from the experimental data. The 

experimental value of the contour length is in reasonable agreement with the physical 

estimates based on the structure of the flexible tetradecapeptide. The translational diffusion 

coefficient is 23-fold slower than the estimate obtained for free spherical fluorophores, 

which implies that the tetradecapeptide conformation changes required for a change in its 

end-to-end distance slow down the relative translational diffusion of the donor and the 

acceptor.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Panel A: distribution of κ2 values for a random orientation of the donor and the acceptor, 

calculated according to eq 4.5. Panel B: distribution of ln(κ2) values for a random 

orientation of the donor and the acceptor. The distributions on the linear and logarithmic 

κ2 scales are related via eq 4.10.
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Figure 2. 
Top five panels: series of discrete exponentials that represent the function F(t) in the 

presence of rotational and translational diffusionl. See eq 5.49. The placement of the base 

of each vertical bar on the X axis is determined by the decay rate, Λjklmn,. whereas the 

height (Y) of each bar is directly proportional to the amplitude bjklmn
2. Bottom panel: the 

continuous distribution of exponentials that represent the function F(t) in the absence of 

translational diffusion. The translational diffusion rate DT increases from the bottom panel to 

the top panel, the corresponding value of DT is printed in each panel. The remaining model 
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parameters are the same for all panels: L = 50 Å, L/Lp = 3.0, Γ·(R1/L)6 = 0.0345 ns−1, DRD 

= DRA = ∞.
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Figure 3. 
Main panel: dots, the TCSPC data that represent the decay of the donor in the absence 

of the acceptor (unlabeled tetradecapeptide TAU-PT); solid line, the best fit obtained 

using exponential series model. Bottom strip: weighted residuals. Inset: autocorrelation of 

unweighted residuals. The figure is automatically generated by the program that fits TCSPC 

data; the χ2 shown in the figure has been divided by the number of degrees of freedom (the 

reduced χ2).
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Figure 4. 
Main panel: dots, the TCSPC data that represent the decay of the donor in the presence 

of the acceptor (tetradecapeptide TAU-PT labeled with CPM); solid line, the best fit 

obtained using IDA(t) from eq 7.1, where ID(t) was obtained in the analysis of the data 

shown in Figure 3 and F(t) represents the model of free discrete exponentials. Bottom 

strip: weighted residuals. Inset: autocorrelation of unweighted residuals. The figure is 

automatically generated by the program that fits TCSPC data; the χ2 shown in the figure has 

been divided by the number of degrees of freedom (the reduced χ2).
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Figure 5. 
Green line: the continuous distribution of energy transfer rates that represents the function 

F(t) in the case of no diffusion. Blue vertical bars represent the model of free discrete 

exponentials. Red vertical bars represent the model of dependent discrete exponentials; the 

rates and amplitudes of these exponentials are determined by just three model parameters, L, 

Lp, and DT, in accordance with the theory of the energy transfer in the presence of rotational 

and translational diffusion, section 5.
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Figure 6. 
Distance distributions p(r) calculated using eqs 5.29 and 5.30 with the parameter values L 
= 49.94 Å, Lp = 14.84 Å (red line) and L = 69.52 Å, Lp = 8.91 Å (blue line). The former 

parameter combination was obtained by fitting the TCSPC data by the model of dependent 

discrete exponentials, which is strictly based on the theory of energy transfer in the presence 

of diffusion. The latter parameter combination was obtained using the simplified method 

from the values αn and kn that represent the model of free discrete exponentials. Note 

that the latter parameter combination (blue line) does not result in adequate fit to the 

experimental TCSPC data. The mean donor–acceptor distances equal 31.72 and 31.44 Å for 

the distributions shown by the red and blue lines, respectively.
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Table 1.

Coefficients cjlm Defined in Eq 5.18
a

j l m cjlm

0 0 0 2/3

0 2 0 2√5/15

2 0 0 2√5/15

2 2 −2 2/15

2 2 −1 4/15

2 2 0 2/5

2 2 +1 4/15

2 2 +2 2/15

a
All non-zero cjlm are included.
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Table 2.

Coefficients djklm Defined in Eq 5.23
a

j k l m djklm

0 0 0 0 2/3

2 0 0 0 6/7

0 0 2 0 6/7

2 −2 2 +2 22/49

2 −1 2 +1 44/49

2 0 2 0 178/147

2 +1 2 −1 44/49

2 +2 2 −2 22/49

a
Only relevant djklm are included.
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