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Abstract

DeepMind’s AlphaFold2 software has ushered in a revolution in high quality, 3D protein structure 

prediction. In very recent work by the DeepMind team, structure predictions have been made 

for entire proteomes of twenty-one organisms, with >360,000 structures made available for 

download. Here we show that thousands of novel binding sites for iron-sulfur (Fe-S) clusters 

and zinc (Zn) ions can be identified within these predicted structures by exhaustive enumeration 

of all potential ligand-binding orientations. We demonstrate that AlphaFold2 routinely makes 

highly specific predictions of ligand binding sites: for example, binding sites that are comprised 

exclusively of four cysteine sidechains fall into three clusters, representing binding sites for 

4Fe-4S clusters, 2Fe-2S clusters, or individual Zn ions. We show further: (a) that the majority 

of known Fe-S cluster and Zn binding sites documented in UniProt are recovered by the 

AlphaFold2 structures, (b) that there are occasional disputes between AlphaFold2 and UniProt 

with AlphaFold2 predicting highly plausible alternative binding sites, (c) that the Fe-S cluster 

binding sites that we identify in E. coli agree well with previous bioinformatics predictions, (d) 

that cysteines predicted here to be part of ligand binding sites show little overlap with those shown 

via chemoproteomics techniques to be highly reactive, and (e) that AlphaFold2 occasionally 

appears to build erroneous disulfide bonds between cysteines that should instead coordinate a 

ligand. These results suggest that AlphaFold2 could be an important tool for the functional 
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annotation of proteomes, and the methodology presented here is likely to be useful for predicting 

other ligand-binding sites.
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Introduction

Approximately twenty-five years ago, structural genomics initiatives dramatically increased 

the known universe of protein structures [1]. The rapid deposition of large numbers of 

experimentally determined protein structures in the Protein Data Bank [2], many of which 

were of unknown function, drove the development of a variety of computational methods 

for predicting functionally important regions within proteins from structure alone (e.g. 

[3–5]); interesting developments continue to this day (e.g. [6]). In the intervening years, 

the accuracy of protein structure prediction using computational methods has steadily 

improved [7], with a sudden, extraordinary increase in accuracy achieved at the most recent 

CASP14 meeting by DeepMind’s AlphaFold2 method [8]. Very recently, the DeepMind 

team described their method in detail [8] and demonstrated its potential utility by reporting 

structures for almost complete proteomes of 21 organisms [9]. The unprecedented sudden 

availability of hundreds of thousands of new (predicted) protein structures provides a host of 

new opportunities for the functional annotation of proteomes.

One functional attribute of a protein that is important to determine is whether it binds 

cofactors or other ligands, so an immediate question to ask is the extent to which analysis 

of the AlphaFold2 structures might allow recognition of potential ligand binding sites. 

Interestingly, the DeepMind team has already provided one clear example of a protein whose 

predicted structure contains a known zinc (Zn) binding site that their AlphaFold2 method 

has been able to automatically construct [8]. Most impressively, the binding site had the four 

coordinating cysteine sidechains oriented tetrahedrally to provide a near-ideal binding site 

for the metal, even though the structure prediction process was conducted in the absence of 

the metal ion. This behavior reflects the fact that AlphaFold2’s sidechain predictions have 

been shown to be extremely accurate if the underlying backbone conformation is correct [8].

Here, we aim to expand on that intriguing result with a focus on identifying potential 

binding sites for Fe-S clusters and Zn ions within the full set of 362,311 protein structures 
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made available by the DeepMind team. We have selected Fe-S clusters and Zn ions as 

ligands for the following reasons. First, both are biologically significant: Fe-S clusters play 

important biological roles in electron transfer, catalysis, and sensing iron and oxygen [10–

12], while Zn binding is important for stabilizing structurally diverse zinc-finger domains in 

proteins involved in an extraordinarily wide variety of cellular processes [13, 14].

Second, a successful computational method for identifying binding sites for Fe-S clusters 

and Zn ions in proteins would be a valuable complement to more involved and expensive 

experimental techniques that seek to identify the same. Chemoproteomics experiments, for 

example, have allowed Fe-S cluster-binding proteins in E. coli [15] and Zn-binding proteins 

in human cancer cells [16] to be identified on a proteomic level; such experiments exploit 

the differential chemical reactivity of coordinating cysteines under conditions in which the 

ligand is abundant or scarce. Two practical disadvantages with such experiments are: (a) 

that proteins whose expression levels are low under the studied growth conditions can evade 

detection, and (b) that binding sites that are deeply buried within a protein’s structure, and 

therefore difficult for reactive agents to access, might also remain unidentified [15]. One 

potential major advantage of computational methods, therefore, is that they are unaffected 

by both issues.

A final reason for choosing Fe-S clusters and Zn ions as potential ligands is that they have 

well defined binding sites. Both types of binding site have been extensively documented in 

the literature, with the geometric characteristics and the coordinating residues thoroughly 

analyzed in a number of structural databases, e.g. the comprehensive MetalPDB database 

[17], which attempts to document all metal binding sites in macromolecules, and ZincBind, 

a database specifically focused on Zn binding sites [18], and with webservers dedicated to 

determining and validating metal coordination geometries in crystal structures (e.g. FindGeo 

[19] and CheckMyMetal [20]). A number of studies have attempted to exploit structural 

data, often in combination with bioinformatics methods, in an attempt to identify potential 

Fe-S cluster-binding proteins on a proteomic scale (e.g. [21, 22]) and related methods have 

been developed with a view to predicting Zn binding sites (e.g. [23]) and, very recently, to 

attempt to predict whether a metal-binding site within a protein is likely to be catalytically 

active or inactive [24].

Guided by previous studies detailing both the prevalence of different Fe-S cluster types 

and the different common arrangements of coordinating residues around both Fe-S clusters 

and isolated Zn ions, we seek here to identify potential binding sites for both types of 

ligands by exhaustively placing them at all plausible locations within the protein structures. 

While similar template-matching approaches have been used previously to find ligand 

binding sites in crystallographic structures (e.g. [25–27]), the DeepMind team’s dataset 

now offers the opportunity to extend such searches to 21 near-complete proteomes. Our 

results indicate that thousands of highly plausible binding sites can be identified for Fe-S 

clusters and Zn ions, thus expanding significantly the size of the known metalloproteome. If 

AlphaFold2’s extraordinary ability to automatically generate realistic binding sites extends 

to other classes of biologically important ligands, AlphaFold2 could become an important 

tool for functionally annotating proteomes.
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Results

A ligand-search algorithm can identify Fe-S cluster and Zn binding sites in AlphaFold2 
structures

Our protocol for identifying potential binding sites for Fe-S clusters and Zn ions is 

illustrated schematically in Figure 1a. Briefly, we start by compiling a list of “ligand types” 

whose binding sites we wish to search for; in the present study, six of these ligand types 

are variants of Fe-S clusters and six are variants of Zn binding sites; see Materials and 

Methods). Our code then identifies all possible “regions” in the protein structure where 

binding sites for these ligand types might be found, and examines each such region in 

turn, exhaustively sampling all possible superpositions of each ligand type onto all potential 

coordinating residues. Ligands are added to regions, according to their priority in the list of 

ligand types, if: (a) the root mean square deviation (RMSD) of their superposition is below 

a desired threshold (i.e. 0.5 Å in most of the cases discussed here), and (b) they are free of 

steric clashes. Ligands are iteratively added within each region until no further success is 

achieved, at which point the protocol moves on to the next region, repeating the process until 

all regions in the protein have been examined.

Remarkably, binding sites within the AlphaFold2 structures are, in a large number of cases, 

sufficiently well-formed that fits of ligands within them result immediately in structures 

that are highly credible. Figure 1b, for example, shows a representative binding site for a 

4Fe-4S cluster that was identified, together with its coordinating cysteine sidechains; Figure 

1c displays an example in which three adjacent Zn binding sites were identified within the 

same region, each sharing coordinating cysteine sidechains; this particular example echoes a 

simpler case shown by the DeepMind team in the AlphaFold2 methodological paper [8].

Binding sites identified within AlphaFold2 structures can be unambiguously assigned to 
one ligand type

Since our primary criterion for identifying a potential ligand binding site is the RMSD 

obtained when the coordinating atoms are superimposed (see Materials and Methods), it 

is important to determine whether this can unambiguously identify a site as binding one 

particular ligand in preference to others. The simplest way to illustrate this comes from 

examining all regions in the entire dataset that contain only four cysteine sidechains. We 

consider such regions as potential binding sites for: (1) a 4Fe-4S cluster, (2) a 2Fe-2S 

cluster, and (3) a single Zn ion (much less commonly, these could also be binding sites 

for metal ions; see Discussion). For each such region, we calculate a best-RMSD value for 

each of the three possible ligand types and we plot all datapoints for which any of these 

values satisfies our 0.5 Å RMSD threshold in Figure 2a (points are colored according to 

their “pLDDT score”, which is AlphaFold2’s measure of prediction confidence; see below). 

Strikingly, three regions of high density are obvious, each corresponding to a well-defined 

binding site for one of the three ligand types. For example, the group of points at the 

top-right of Figure 2a represents the 148 cases that are identified as binding sites for 4Fe-4S 

clusters. The mean RMSD coordinates of these cases are: 0.28, 2.01, 1.44 Å. In structural 

terms, therefore, these are excellent binding sites for 4Fe-4S clusters (mean RMSD 0.28 Å), 

but poor binding sites for 2Fe-2S clusters (mean RMSD 2.01 Å), and single Zn ions (mean 
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RMSD 1.44 Å). Similarly, the group of points at the top-left of Figure 2a represent the 127 

cases that are identified as binding sites for 2Fe-2S clusters (mean RMSD coordinates of: 

2.15, 0.32, 1.78 Å), while the group of points at the bottom of Figure 2a represent the 5344 

cases that are predicted to be binding sites for isolated Zn ions (mean RMSD coordinates 

of: 1.64, 1.82, 0.17 Å). The well-separated nature of each of the three groups indicates that, 

in all of the cases where AlphaFold2 builds a plausible ligand binding site, it makes a clear 

decision about which type of binding site to build: it does not simply bring four cysteine 

sidechains together in a non-specific structural arrangement.

Interestingly, if we relax the RMSD threshold for defining potential new binding sites from 

0.5 Å to 0.75 Å (Figure 2b), a fourth group of points appears (see black arrow) with mean 

RMSD coordinates 1.93, 1.67, 0.69 Å). Visual examination of a number of these cases 

indicates that these tend to be malformed Zn binding sites in which two of the four cysteines 

have been disulfide-bonded to each other. We suspect that in most cases these disulfide 

bonds are erroneous, and that such cases are ones where AlphaFold2 is unable to make 

a clear decision about what to build. Supporting that interpretation, it is notable that the 

pLDDT scores of the residues constituting such binding sites are somewhat lower (i.e. lower 

confidence) than those of the three conventional binding sites identified above: the former 

have a mean minimum pLDDT score of 79 ± 8 (N = 470), while the latter have mean 

minimum pLDDT scores of 90 ± 9 (N = 180), 91 ± 16 (N = 163), 89 ± 8 (N = 5296) 

for 4Fe-4S, 2Fe-2S, and Zn binding sites, respectively. These differences are all highly 

significant on a statistical basis, with p-values all lower than 2e-16 using a Tukey’s Honest 

Significant Difference test. Importantly, such cases can be eliminated by restricting attention 

only to those binding sites that satisfy the more stringent RMSD threshold of 0.5 Å.

The notion that AlphaFold2 tends to build binding sites that are specific for one selected 

type of ligand is supported by the distribution of RMSD values obtained for all successfully 

placed instances of each of the twelve ligand types (Figure S1). In most cases, the RMSD 

values peak at values at or below 0.2 Å, indicating that the identified binding site is 

essentially a perfect match for that particular ligand; the only cases where substantial 

populations of less-ideal fits occur (i.e. ones with RMSDs that approach the threshold value 

of 0.5 Å) are with the deliberately more relaxed ligand types that contain only three points of 

superposition (see Materials and Methods).

Many AlphaFold2 structures are predicted to contain multiple Fe-S clusters and/or Zn ions

In addition to generating binding sites that appear to be unambiguously intended for 

specific ligands (e.g. a 4Fe-4S cluster in preference to a 2Fe-2S cluster), AlphaFold2 also 

routinely builds multiple ligand binding sites within an individual protein. Figure 3a shows 

a histogram of the number of binding sites identified within each of the 362,311 proteins 

for which AlphaFold2 predictions have been made available. The frequencies are plotted 

on a logarithmic scale, with separate histograms shown for those proteins identified as 

binding Fe-S clusters (in red) and those identified as binding one or more Zn ions (in blue). 

Both histograms are broad and long-tailed, with the most extreme cases being a protein 

in M. jannaschii (uncharacterized polyferredoxin-like protein MJ1303; UniProt Accession: 

Q58699) which is identified here as containing 14 4Fe-4S clusters (Figure 3b), and a human 
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protein (zinc finger protein 208; UniProt Accession: O43345), which is identified here as 

containing 36 Zn binding sites (Figure 3c). As large as these numbers might seem, they 

appear also to be reasonable results: the former protein is annotated in UniProt as containing 

13 (not 14) 4Fe-4S clusters, while the latter is annotated as containing 39 zinc finger 

domains. Interestingly, three of the latter are classified on the UniProt page as “degenerate” 

which indicates that they deviate from the established sequence pattern expected of the 

PROSITE PUR00042 annotation rule; these are the binding sites that are not identified in 

the AlphaFold2 structure.

Tens of thousands of Fe-S cluster and Zn binding sites are identified in the AlphaFold2 
proteomes

Figures 4a–c show the numbers of Fe-S cluster binding sites and Zn binding sites 

identified in all proteins in all 21 organisms for which the DeepMind team has reported 

structures; note that in this and subsequent figures, organisms are presented in phylogenetic 

order (see Materials and Methods). Figure 4a shows the total number of binding sites 

identified, regardless of the implied quality of the AlphaFold2 structure. Figure 4b shows 

the number of binding sites identified when we restrict attention only to those cases for 

which all coordinating sidechains have a pLDDT score of greater than 70; according to 

the DeepMind team, residues with a pLDDT score above this threshold are considered 

“confident” predictions by AlphaFold2 [8]. Finally, Figure 4c shows the number of binding 

sites identified when we further restrict attention only to those binding sites for which 

all coordinating sidechains have a pLDDT score of greater than 90; such residues are 

considered “highly confident” predictions by AlphaFold2 [8]. The total number of Fe-S 

cluster binding sites and Zn binding sites identified across all 21 organisms is 91086, 

85684, and 37645 for threshold pLDDT scores of 0, 70, and 90, respectively. Imposing the 

requirement that all coordinating residues be “confident” predictions, therefore, results in 

only a small decrease in the total number of identified ligands (6% are filtered out) while 

imposing the more stringent requirement that all coordinating residues be “highly confident” 

results in a greater decrease (59% are filtered out). In the remainder of this manuscript we 

focus on binding sites identified when the pLDDT threshold of 70 is applied, but in the 

Supporting Information all results are provided.

The coloring scheme used in Figures 4a–c identifies the total numbers of identified binding 

sites for all twelve ligand types for which we searched (see Materials and Methods). From 

this it is apparent that we identify far more binding sites for Zn ions than binding sites 

for Fe-S clusters; this is especially true for the eukaryotic organisms (on the right-hand 

side of the graphs). In Supporting Information, we show that the higher binding site 

counts for eukaryotic organisms are not simply due to their AlphaFold2-predicted proteomes 

containing more proteins: when we normalize the total count of binding sites by the number 

of proteins in the proteome of each organism, the eukaryotic organisms again return higher 

values (Figure S2a). Interestingly, however, if we instead consider the number of proteins 

predicted to contain one or more Fe-S cluster or Zn binding sites and again normalize by the 

number of proteins in the proteome, we observe that the difference between the prokaryotes 

and eukaryotes is much smaller (Figure S2b). In particular, for the 21 organisms, the fraction 

of proteins within each proteome that we identify as containing at least one Fe-S cluster or 
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Zn binding site ranges from 0.05 for S. aureus to 0.18 for D. rerio (zebrafish). The fraction 

of Fe-S cluster-binding proteins that we identify in E. coli is 0.033, which is similar but 

somewhat lower than a prediction made many years ago that approximately 5% of E. coli 
proteins are Fe-S cluster-binding proteins [28].

Finally, we can also examine the relative populations of binding sites identified for each 

of the twelve ligand types within each organism; these data are plotted using pLDDT 

thresholds of 0, 70, and 90 in Figures 4d, 4e, and 4f, respectively. From these it can be seen 

that the relative populations of the various ligand types within each organism show little 

difference as the pLDDT threshold is increased; this suggests that there is no substantial 

bias toward building certain ligand binding sites when AlphaFold2’s confidence is low. It 

can also be seen that the prokaryotic organisms (four left-most columns) are identified here 

as containing higher relative populations of 4Fe-4S clusters than the eukaryotic organisms, 

while the eukaryotic organisms contain higher relative populations of Zn binding sites. 

Interestingly, a substantial fraction of the 4Fe-4S cluster binding sites identified in the 

prokaryotes contain 3, not 4 cysteine sidechains (see “4Fe-4S Cys3” in Figures 4d–f). Visual 

examination of these cases indicates that a few of these are “near misses” that contain a 

fourth potentially coordinating cysteine sidechain nearby (Figure S3a) and that can usually 

be successfully identified if we loosen the RMSD threshold from 0.50 to 0.75 Å. In most 

cases, however, there is no fourth obvious coordinating residue but there is instead a vacancy 

that could be occupied either by a water molecule – as happens, for example, in aconitase 

(e.g. reviewed in [29]) – or by residues on a separate polypeptide chain not included in the 

AlphaFold2 prediction (see Discussion); an example of such a case is shown in Figure S3b.

The prokaryotic organisms also appear to have a higher proportion of Zn binding sites 

that contain only three coordinating histidine sidechains (“Zn His3”). Similar to what was 

described above, visual examination of these cases reveals that a substantial fraction (26 

out of 176 cases) do in fact contain a fourth histidine sidechain but that it points in a 

non-coordinating direction (e.g. Figure S4a). In a substantial fraction of other cases (36) a 

clear fourth coordinating sidechain is also present, but it is either an aspartate or glutamate 

for which we did not explicitly search (e.g. Figure S4b); the prevalence of binding sites 

with one acidic sidechain is consistent with Zn binding sites documented in databases [17, 

18]. In the majority of cases (114), however, the fourth coordination site is again vacant and 

solvent-exposed (e.g. Figure S4c), which may indicate that they are genuine tri-coordinate 

Zn binding sites. An alternative interpretation, that they may instead be tri-coordinate 

binding sites for some other metal, is considered in the Discussion.

The relative frequencies of binding sites identified within organisms match the relative 
frequencies of their annotations in UniProt

An indirect source of support for the present set of results is to compare the relative 

populations of ligand binding sites identified here with the relative populations already 

annotated within UniProt. To do this, we make use of UniProt’s “Sites”, “Domain”, 

“Region” and “Zinc finger” sections to compile separate lists of annotated binding sites 

for each type of bound ligand, i.e. 4Fe-4S, 3Fe-4S, 2Fe-2S or Zn (see Materials and 

Methods). A comparison of the relative fraction of the binding sites identified within the 
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AlphaFold2 proteomes for these four ligand types (Figure 5a) with those annotated within 

UniProt (Figure 5b) shows that they are in good agreement, with the higher prevalence of 

4Fe-4S clusters in the prokaryotic organisms especially notable in both panels. This good 

overall agreement suggests that neither the AlphaFold2 structures themselves nor our search 

algorithm are unduly biased toward building or identifying particular types of binding sites.

Recall rates for ligand binding sites annotated within UniProt are high

While the above results suggest that there is little bias in the AlphaFold2 predictions, they 

do not indicate the extent to which ligand binding sites that are already annotated within 

UniProt are recovered by our search method. To do this we first compiled a list of all binding 

sites annotated within UniProt for each of the twelve ligand types for which we searched 

(see Materials and Methods). Those numbers are presented in column three of Table 1, first 

for the full set of all 21 organisms and then separately for three model organisms (E. coli, 
S. cerevisiae and human). We then asked how many of those binding sites were correctly 

identified by our method – with a correct identification being classed as one in which the 

ligand and all of its coordinating residues were correctly identified; those numbers appear 

in column four of Table 1. Finally, we calculated the recall rate as the ratio of these two 

numbers expressed in percentage form (see column five of Table 1).

Overall, the recall rates are very good. In the full set of 362,311 proteins, there are 779 

4Fe-4S clusters annotated in UniProt that match our search criteria – i.e. “4Fe-4S Cys4” 

or “4Fe-4S Cys3” – and 580 of these (i.e. 74%) are correctly identified in the Alphafold2 

structures. Visual examination of the 199 4Fe-4S binding sites that are missed by our 

method suggests that these cases can be classified into five categories. Three of these 

categories are comparatively uninteresting but are described here to provide a complete 

accounting: (1) 110 cases are “near misses”; in 102 of these, AlphaFold2 builds a potential 

binding site with high confidence but the best-fit RMSD for any of our Fe-S cluster ligand 

types is too high to pass the threshold; in the remaining 8 cases, we can successfully fit 

“4Fe-4S Cys3” but not “4Fe-4S Cys4”; (2) 13 cases in which AlphaFold2 builds a probably 

erroneous disulfide bond between coordinating cysteine residues; (3) 11 cases in which 

AlphaFold2 was unconfident (pLDDT scores less than 70) and did not build the coordinating 

residues from UniProt into a binding site.

Much more interesting are the remaining two categories, in which AlphaFold2 disputes 

the binding site information annotated in UniProt. In 45 cases, we obtain what we term 

“alternative hits”: these are cases in which we identify 4Fe-4S binding sites that share 

some, but not all, of the UniProt-annotated coordinating residues. In 34 of these “alternative 

hits”, AlphaFold2 builds 4Fe-4S binding sites by swapping one of the coordinating residues 

between two different annotated UniProt binding sites within the same protein (e.g. Figure 

6a). In the remaining 11 “alternative hits”, AlphaFold2 builds a 4Fe-4S binding site using 

only three of the four UniProt-annotated coordinating residues and confidently places the 

fourth coordinating residue well outside of the binding site (e.g. Figure 6b). In the remaining 

category are 20 cases in which AlphaFold2 rejects completely the UniProt-annotated 4Fe-4S 

binding site. Importantly, these are not cases in which AlphaFold2 lacks confidence (see 

above), they are instead cases where AlphaFold2 appears to be confident that there is 
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no 4Fe-4S binding site, and in which it instead often scatters the annotated coordinating 

cysteines throughout an α helical region of structure (Figure 6c).

Good results are obtained for the recall of 3Fe-4S clusters (which have an overlapping 

definition with 4Fe-4S clusters; see Materials and Methods) and for Zn binding sites; 84% of 

the 43,199 annotated binding sites are correctly identified. Good recall rates for these types 

of ligands are also obtained when we consider each of the three model organisms in turn 

(Table 1). Less good are the results for the 2Fe-2S clusters, for which we recall only 113 

(i.e. 67%) of the 168 annotated cases. Visual examination of the 55 AlphaFold2 structures 

that are annotated as containing a 2Fe-2S cluster in UniProt but that are not identified by 

our method demonstrates that in the majority of cases (34 out of 55), one or more pairs of 

the cysteines are erroneously disulfide-bonded with each other (Figure 7a). For the other 21 

cases, AlphaFold2 builds sidechains that are not quite able to coordinate a 2Fe-2S cluster, 

and these cases can further be categorized as either those that closely represent a binding 

site and that are therefore “near-misses” (Figure 7b) or those with a fourth coordinating 

residue separated by a great distance from the other three coordinating residues (Figure 

7c). Interestingly, one “alternative hit” is identified in the single case of the ferredoxin-like 

protein from E. coli (UniProt: P0ABW3): for this protein, Alphafold2 confidently includes a 

different coordinating residue in the binding site (Figure 7d).

While the above analysis suggests that the lower recall rates for 2Fe-2S clusters relative 

to those for 4Fe-4S clusters might be mostly attributable to AlphaFold2 occasionally 

building erroneous disulfide bonds, another possibility that we have considered is whether 

AlphaFold2’s neural network might be more strongly trained on 4Fe-4S clusters. To explore 

this issue, we searched through the RCSB to see if 4Fe-4S clusters were represented at 

much higher levels than 2Fe-2S clusters. At the time of writing, we found 832 structures 

containing 2Fe-2S clusters (i.e. ligand ID “FES”), 1,392 structures containing 4Fe-4S 

clusters (i.e. ligand ID “SF4”), and 289 structures containing 3Fe-4S clusters (i.e. ligand 

ID “F3S”). Although these counts include redundant entries (i.e. multiple cases of the same 

protein), they do not suggest that 2Fe-2S clusters are more poorly represented in the RCSB 

than 4Fe-4S clusters.

AlphaFold2-predicted Fe-S cluster binding sites for E. coli agree well with previous 
bioinformatics predictions

For Fe-S clusters, we have also compared the proteins identified here with those identified 

in two prior studies that developed methods specifically to predict Fe-S cluster-binding 

proteins. In work reported in 2014, Estellon et al. [21] reported successfully identifying 

90 out of the 136 Fe-S cluster-binding proteins known at the time in E. coli using their 

so-called “mixed” model, and 109 out of 136 using an “extended” model; these recall 

rates amount to 66 and 80% respectively. In work reported in 2016, Valasatava et al. [22] 

reported successfully identifying 132 out of 149 known Fe-S cluster-binding proteins, with 

a recall rate of 89%. Of the 149 proteins listed in the latter paper 111 are identified here 

as binding Fe-S-clusters, which represents a recall rate of 74%, i.e. comparable to these 

previous methods, but somewhat lower. Interestingly, there is extensive overlap between the 

predictions of all three methods (Figure S5): over 70% of all Fe-S cluster-binding proteins 
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are predicted by each method (i.e., 96 out of 134 Fe-S cluster proteins in our work, 155 

from Valasatava et al. and 124 from Estellon et al.). The binding sites identified here have a 

noticeably greater degree of overlap with those identified by Valasatava et al. (96 + 16 = 112 

proteins) than those identified by Estellon et al. (96 + 1 = 97 proteins).

We also compared the Fe-S cluster-binding proteins identified here with those that were 

previously labelled as “false positive” predictions at the time that the works by Estellon et 
al. [21] and Valasatava et al. [22] were carried out. In their work, Estellon et al. speculated 

that at least some of their 15 apparent false-positives might be real Fe-S cluster-binding 

proteins, and they provided experimental evidence implicating two of them as being 4Fe-4S 

cluster-containing proteins: YdiJ (UniProt ID: P77748) and YhcC (UniProt ID: P0ADW6). 

Interestingly, both of those proteins are also successfully identified here, although YdiJ is 

predicted here to contain two 4Fe-4S clusters and one 2Fe-2S cluster. Of the remaining 

13 false-positives predicted by Estellon et al., our method also predicts that four of these 

proteins contain Fe-S clusters. These predictions are a 4Fe-4S site in YjiM (UniProt ID: 

P39384), a 4Fe-4S site in YhaM (UniProt ID: P42626), both a 4Fe-4S and 3Fe-4S site 

in PreT (UniProt ID: P76440) and a 2Fe-2S site in YcbX (UniProt ID: P75863), all of 

which would appear to be excellent candidates for future experimental validation. In their 

work, Valastava et al. produced 23 predictions that were characterized at the time as “false 

positives”; they noted that homology models of seven of these proteins could be built 

that contained a plausible 4Fe-4S cluster binding site. Our method predicts 4Fe-4S cluster 

binding sites in all seven of these proteins in what appear to be similar regions to those 

shown in images of the homology models reported by Valastava et al. For none of the 

remaining 16 proteins did we find any Fe-S cluster binding sites. In summary, all of these 

results suggest that, at least in terms of Fe-S cluster-containing proteins, the approach 

tested here, which is essentially untrained, is comparable in performance to bioinformatics-

based prediction methods that have been specifically trained to identify Fe-S cluster-binding 

proteins.

Tens of thousands of Fe-S cluster binding sites and Zn binding sites are predicted that are 
not annotated in UniProt

While it is important to show that AlphaFold2-based predictions can recall annotated cases 

in UniProt (see above), it is also important to determine the extent to which the present 

method identifies novel binding sites. To explore this issue, we started with the 85,684 

ligand binding sites identified here with a minimum pLDDT score of 70 and eliminated 

all sites for which there was already a matching record in the corresponding UniProt page 

(see Materials and Methods). After this filtering step, 46,422 of the ligand binding sites 

(54%) remained; these are the binding sites that we propose might be novel. This number 

is comparable with the total number of such binding sites already annotated within UniProt 

for the proteins studied here: 43,031 (some of which we fail to identify); the new binding 

sites predicted here, therefore, have the potential to roughly double the number of known 

Fe-S cluster and Zn binding sites. In terms of protein counts, we predict an additional 22,560 

proteins as being binders of Fe-S clusters and/or Zn ions that were not previously annotated 

as binders of these ligands in UniProt. Since the number of proteins already annotated in 

UniProt is 13,094 the new binding sites predicted here have the potential to roughly triple 
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the number of known Fe-S cluster and Zn-binding proteins. The relative gains for each 

organism are plotted for novel sites and for novel Fe-S cluster and/or Zn-binding proteins 

in Figures 8a and 8b, respectively. Interestingly, both plots show a greater than 6-fold 

increase for several less extensively annotated organisms (e.g. G. max, Z. mays, and T. cruzi, 
etc.), but even for the much better characterized human proteome a substantial number of 

new proteins are found: prior to the current work, 2144 human proteins were annotated in 

UniProt as Fe-S cluster and/or Zn-binding proteins; here we find an additional 638 proteins, 

thus representing an increase of 29%.

Figure 8c shows that the vast majority of the proposed new binding sites in eukaryotic 

organisms are Zn binding sites. Figure 8d, which is a normalized version of Figure 8c, 

demonstrates the increased relative abundance of Fe-S clusters in the novel predictions in 

prokaryotic organisms (four left-most columns). Importantly, the distributions of RMSDs 

for identified ligand-binding sites already present in UniProt (Figure S6a) and for identified 

ligand-binding sites not already present in UniProt (Figure S6b) are very similar. This 

indicates that the quality of the predictions and their resulting reliability is indistinguishable 

from the known cases.

Thousands of Fe-S and Zn binding sites are predicted in proteins with no structural 
homolog

While the above analysis identifies and highlights those binding sites that are not already 

explicitly annotated in UniProt, it could be argued that many such sites might be rather easy 

predictions for AlphaFold2 to make if the protein has a homologous structure already in 

the RCSB. In order to be as strict as possible in labeling a binding site as a truly novel 

prediction, therefore, we applied an additional filter that eliminated those binding sites for 

which a remote homolog was identifiable in the PDB70 database [30] that aligned with any 
of the predicted coordinating residues (see Materials and Methods). With this extra, and very 

stringent filtering step, 13,139 binding sites predictions in 7,490 unique proteins remain as 

novel predictions. The relative gains for each organism are plotted for novel ligand-binding 

sites and proteins in Figures 9a and 9b, respectively; as expected, the addition of the remote 

homolog filter results in smaller relative gains (compare Figures 8a/b with Figures 9a/b, 

respectively). Figure 9 c–d recapitulates most of the trends seen in Figures 8 c–d, with 

the predicted Zn binding sites again dominating both the absolute and relative counts. As 

above, the distributions of RMSDs for predictions that have a remote homolog or are found 

in UniProt (Figure S7a) are very similar to those obtained for the predictions that have no 

remote homolog and that are not found in UniProt (Figure S7b). This suggests that the 

ligand-binding sites built by AlphaFold2 for which there is no close structural homolog in 

PDB70 have similar quality to those that do.

Cysteines predicted here to be part of Fe-S cluster or Zn binding sites generally have 
lower chemical reactivities in vivo

Many of the Fe-S cluster binding sites and Zn binding sites predicted here must await 

experimental verification. In lieu of that, one test that we can immediately perform is to 

determine the extent to which cysteine residues predicted here to be parts of ligand-binding 

sites are found to be chemically unreactive in chemical proteomics experiments carried out 
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on living cells (e.g. [31]). Recent isoTOP-ABPP experiments, for example, have probed 

the chemical reactivity of cysteine residues on proteomic scales in human cancer cell lines 

[32] and in E. coli [23]. Given that cysteine residues identified experimentally as “highly 

reactive” are generally assumed to be unlikely to stably coordinate ligands such as Fe-S 

clusters or metal ions (e.g. [33]), we should expect to find little overlap between cysteines 

that we identify here as being part of ligand-binding sites and cysteines found to be highly 

reactive in isoTOP-ABPP experiments.

To explore this point, we performed separate analyses on human and E. coli proteins, 

comparing with the combined dataset of three different cancer cell lines for the former 

[32], and using the single dataset for the latter [23]. The results for the human proteins are 

shown in Figure 10a. Encouragingly, the left panel shows that the subset of highly reactive 

cysteines (blue circles) and the subset of ligand-coordinating cysteines identified here (red 

circles) overlap with each other much less than is expected by chance (234 common 

residues; p-value = 5.41e-17 according to a one-tailed Fisher’s exact test). In contrast, and as 

hoped, the middle panel of Figure 10a shows that the subset of ligand-coordinating cysteines 

identified here (red circles) overlaps with the subset of UniProt-annotated cysteines (grey 

circles) much more than is expected by chance (538 common residues; p-value < 1e-300). 

Both of these results are exactly as expected if the predicted ligand-binding sites identified 

in the AlphaFold2 structures are realistic. Finally, the right panel of Figure 10a shows 

that the subset of highly reactive cysteines (blue circles) overlaps with the subset of UniProt-

annotated cysteines (grey circle) slightly less than is expected by chance (65 common 

residues; p-value = 0.340).

Figure 10b shows corresponding results for E. coli. Again, the left panel of Figure 10b 

shows that the subset of highly reactive cysteines (blue circles) and the subset of ligand-

coordinating cysteines identified here (red circles) overlap with each other much less than 

is expected by chance (39 common residues; p-value = 7.43e-05). Again, in contrast, the 

middle panel of Figure 10b shows that the subset of ligand-coordinating cysteines identified 

here (red circles) overlaps with the subset of UniProt-annotated cysteines (grey circles) 

much more than is expected by chance (168 common residues; p-value = 7.60e-162). 

Finally, the right panel of Figure 10b shows that the subset of highly reactive cysteines (blue 

circles) overlaps with the subset of UniProt-annotated cysteines (grey circle) less than is 

expected by chance (43 common residues; p-value = 3.91e-03).

For completeness, we note that all of the relationships described above are qualitatively 

independent of our applied pLDDT threshold (i.e., pLDDT > 70) or the definition of “highly 

reactive cysteines” used by the experimental authors for either H. sapiens (Figure S8) or E. 
coli (Figure S9).

Predicted binding sites are usually conserved between multiple AlphaFold2 fragment 
models

For 20 of the 21 proteomes studied here, no AlphaFold2 prediction has been reported 

for proteins exceeding 2700 residues in length owing to their much greater computational 

requirements. For the human proteome, however, a series of fragment predictions have 

been reported for 208 proteins ranging in size up to 34,923 residues (titin); each of these 
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fragments contains up to 1400 residues, with each one offset by 200 residues from the 

preceding fragment. Encouragingly, of the ligand binding sites identified here that reside 

within these 208 proteins, 178 appear in more than one fragment model, with 33 of the 

identified binding sites appearing in all 7 fragments that encompass the binding site’s 

coordinating residues (the maximum possible), and a further 31 of the identified binding 

sites appearing in 6 fragments. These results suggest that binding sites built by AlphaFold2 

in one fragment tend to be conserved within fragments that contain the same sets of 

coordinating residues. Most interestingly, we found only one protein for which fragment 

structures contained fundamentally different binding sites, and this was because one of 

the fragments was missing some of the coordinating residues. Specifically, for the ZZEF1 

protein (O43149), a Zn Cys2 His2 binding site was confidently built by AlphaFold2 in 

all six fragments that contain all four coordinating residues (Cys1797, Cys1800, His1819, 

His1823). In a seventh fragment that contained the two cysteines but not the two histidines, 

AlphaFold2 instead built a Zn Cys4 binding site (adding Cys1783 and Cys1786), but it did 

so with very low confidence (Figure S10).

Discussion

In this work we have sought to determine the extent to which Fe-S cluster and Zn binding 

sites can be identified within the huge dataset of new protein structures made available by 

the DeepMind team [9]. The results indicate that AlphaFold2 routinely builds high-quality 

binding sites that are specific for one particular type of ligand, and that the placement 

of the ligand within the binding site is essentially unambiguous and free of egregious 

steric clashes. The latter two aspects are especially remarkable given that the AlphaFold2 

predictions have been made in the absence of any explicit information regarding potential 

ligands.

The results presented here also demonstrate that AlphaFold2 – even without any explicit 

training for this purpose – has an ability to recall known Fe-S cluster-binding proteins in 

E. coli that appears to be competitive with previous explicitly-trained bioinformatics-based 

methods. AlphaFold2 would, therefore, seem to be a useful complement to experimental 

chemoproteomics techniques that attempt to identify metal-binding proteins on a proteomic 

scale. This idea is supported by the fact that, for human and E. coli proteins, cysteines 

identified here to be involved in Fe-S cluster and Zn binding tend to be less chemically 

reactive than other cysteines in the same proteins (Figure 10). One interesting additional 

comparison that we can make at the time of writing is with very recent work reported by 

Bak and Weerapana [15] who have developed a chemoproteomic strategy that can identify 

94 out of 144 previously annotated Fe-S cluster-containing proteins in E. coli while also 

predicting a further 14 proteins as potential Fe-S cluster-containing proteins. Two of these 

14 proteins (TrhP (P76403) and DppF (P37313)) were explicitly tested and confirmed by 

the authors, and encouragingly, both of these proteins are also identified here as binding 

Fe-S clusters: TrhP is identified here as containing a 4Fe-4S cluster, which agrees with the 

assignment made by Bak and Weerapana, albeit only when we increase the RMSD threshold 

from 0.50 to 0.56 Å, and DppF is identified as containing a 4Fe-4S cluster, although with 

different coordinating residues than the single cysteine implicated experimentally [15]. No 

Fe-S cluster binding sites were identified here in the remaining 12 proteins listed by Bak 
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and Weerapana. While directed experimental methods should remain the gold standard for 

determining that a protein is capable of binding Fe-S clusters, if confirmed, these latter 

results would indicate that computational predictions based on AlphaFold2 structures could, 

at the least, help to prioritize candidate proteins identified in proteome-scale experiments for 

further study.

The identification here of tens of thousands of potential new Fe-S cluster and Zn binding 

sites, dramatically increasing the size of the known metalloproteome across twenty-one 

organisms. Importantly, we have shown that the apparent quality of the proposed novel 

binding sites is essentially indistinguishable from the quality of the known binding sites, 

regardless of whether one requires the definition of “novel” to include or exclude sites 

that have remote structural homologs in the PDB (see Figures S6 and S7). As might 

be anticipated, AlphaFold2 predicts proportionally greater numbers of new binding sites 

for organisms that are less well-annotated in UniProt. This suggests a possible role for 

AlphaFold2 in aiding the functional annotation of unstudied proteomes, especially since 

in a number of cases it makes predictions that diverge significantly from those already 

annotated in UniProt. While there are certainly instances where AlphaFold2 appears to make 

mistakes (see below), in other cases the “alternative hits” predicted with different binding 

site compositions appear to be sufficiently plausible that it seems reasonable to call the 

current UniProt annotation into question.

One limitation of the method presented here is that there can be significant ambiguities when 

the identified ligand is a mononuclear ion. In particular, a number of the sites identified 

here as being binding sites for Zn ions could instead be binding sites for Fe or Cu ions; 

the latter possibility was kindly brought to our attention by Professor Limei Zhang at the 

University of Nebraska-Lincoln. This is because the geometric characteristics of binding 

sites for these (and other) metals can be very similar: in a survey of high resolution crystal 

structures, for example, the mean metal-nitrogen bond lengths for Zn, Fe and Cu ions are 

all within 0.14 Å of each other [34]. These numbers are so similar that our method is 

effectively unable to tell the difference between a Zn ion coordinated by histidines and Fe 

or Cu ions that are similarly coordinated. One way to roughly estimate the likelihood of 

which metal is coordinated in this way is to count the number of corresponding annotated 

binding sites in UniProt. For the “Zn His3” ligand type that, we noted earlier, appears 

to be particularly prevalent in prokaryotic organisms, the numbers of UniProt-annotated 

binding sites for “Zn His3”, “Fe His3” and “Cu His3” in the 21 proteomes studied here are 

296, 16, and 236, respectively. This suggests, therefore, that a substantial fraction of the 

“Zn His3” sites documented here are, instead, binding sites for Cu ions. In contrast, the 

numbers of UniProt-annotated binding sites for “Zn His4”, “Fe His4” and “Cu His4” in the 

21 proteomes are 4, 41, and 34, respectively. This suggests that the majority of the “Zn His4” 

sites documented here – of which there are comparatively few – are, in fact, likely to be 

binding sites instead for Fe and Cu ions. Finally, a similar story applies also, in principle, 

to Zn binding sites coordinated by cysteines, since the mean metal-sulfur bond lengths of 

Zn, Fe and Cu ions are all within 0.07 Å of each other in a survey of high-resolution 

protein structures [34]. The numbers of UniProt-annotated binding sites for “Zn Cys4”, “Fe 

Cys4” and “Cu Cys4” are, however, 1610, 9, and 7, respectively. This suggests that the vast 
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majority of the “Zn Cys4” sites documented here are in fact likely to be true Zn binding 

sites.

In addition to the above issue, there are two other general limitations of the predicted 

structures made available by the DeepMind team that have a small impact on our ability 

to identify Fe-S cluster and Zn binding sites. The first limitation is that all of the 

predicted structures represent proteins in their monomeric state. This prevents the method 

presented here from reliably identifying those Fe-S cluster and Zn binding sites whose 

coordinating residues might be shared between different polypeptide chains. There are, 

for example, known cases of Fe-S clusters whose binding sites are formed by homo-

oligomeric interactions (e.g. [35]). As this manuscript is being completed, rapid advances 

are being made in adapting and extending AlphaFold2 to allow it to model homomeric and 

heteromeric protein complexes (e.g. [36–38]). It seems likely, therefore, that in the near 

future the same strategy reported here might be used to identify ligand-binding sites that lie 

at the interface between separate polypeptide chains. The second, more minor limitation for 

the present application is that, with the exception of the human proteome, structures of very 

large proteins (i.e. those exceeding 2700 residues) have not been reported. For the human 

proteome, the DeepMind team has implemented a workaround that models larger proteins 

using a series of overlapping fragments, each of which represents at most 1400 residues. 

Encouragingly, we have found here that in many cases the same potential binding sites, 

employing the same coordinating residues, are predicted in multiple fragments of the same 

protein (see Results). This suggests that, if the computational expense of modeling very 

large proteins as single entities proves difficult to overcome, then the alternative approach of 

modeling them as overlapping fragments is likely to be a good one.

Aside from these general limitations, we have uncovered one scenario in which AlphaFold2 

appears prone to making occasional mistakes. Binding sites for Fe-S clusters and Zn ions 

often involve significant numbers of cysteine residues brought into close proximity. In a 

number of cases that we have visually examined we have noticed a tendency for disulfide 

bonds to be added between cysteines that ought, instead, to coordinate a Fe-S cluster or a 

Zn ion. We have seen this occur in Zn Cys4 binding sites, and in binding sites for 4Fe-4S 

and 2Fe-2S clusters; the fact that it occurs more frequently with 2Fe-2S binding sites than 

with 4Fe-4S binding sites is likely due to the fact that pairs of Cys SG atoms are closer 

in the former (~3.5 Å) than in the latter (~6.3 Å). While excessive disulfide bonding does 

appear to occur, it is probably important not to over-emphasize this result. It is, after all, 

extraordinary that AlphaFold2 can build highly plausible binding sites even in the absence 

of the ligand, and cases where binding sites are malformed due to the presence of erroneous 

disulfide bonds should be relatively easy to identify.

In closing, we note that the proposed atomic coordinates for all of the bound ligands 

identified here can be found in Supporting Information. Addition of the coordinates of 

the proposed Fe-S clusters to the original AlphaFold2 structures is likely to be especially 

important for those interested in performing virtual screening to identify druggable sites 

within the AlphaFold2 structures; if not added, screening efforts might be misled by the 

apparent presence of a cavity that, in reality, is likely already occupied. Finally, we note 

that while the ligands studied here are all small, the success achieved here would suggest 
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that conducting similar binding site searches for larger, more complex ligands might be a 

worthwhile undertaking.

Materials and Methods

Protocol for identifying potential ligand binding sites in AlphaFold2 structures

The work reported here makes use of code written predominantly in-house that attempts to 

find potential binding sites within an AlphaFold2 protein structure given a user-specified list 

of ligand types, together with representative structures of each ligand type (see below). Here 

we use the phrase “ligand type” to mean a specific type of ligand (e.g. a 4Fe-4S cluster, a 

single Zn ion, etc) together with a specified set of coordinating residues (e.g. 4 cysteines, 3 

cysteines + 1 histidine etc).

The procedure (Figure 1) starts with reading the AlphaFold2 pdb file and continues as 

follows. A list of all sidechain or backbone atoms that could potentially coordinate one of 

the input ligand types is made. For those ligand types for which a coordinating residue is a 

cysteine sidechain we select the SG atom as a potential binding site within the AlphaFold2 

structure; for those ligand types for which a coordinating residue is a histidine sidechain we 

select both ND1 and NE2 atoms as potential binding sites; for those ligand types for which 

a coordinating residue is an aspartate sidechain we select both OD1 and OD2 as potential 

binding sites. The full set of selected potential coordinating atoms is then clustered into 

“regions” using a standard single-linkage clustering algorithm with a distance threshold of 8 

Å. Each region within the protein is then analyzed in turn. Each ligand type is superimposed 

at all possible locations within each region; this is achieved by cycling through all possible 

ways by which the ligand type’s coordinating atoms can be paired with corresponding 

atoms in the region. In some cases, there can be many possible superpositions to consider. 

For example, when we attempt to place the 4Fe-4S ligand type with 4 coordinating 

cysteine sidechains (ligand type: “4Fe-4S Cys4”) within a region that contains nine cysteine 

sidechains, there are, in principle, 9!/5! = 3024 possible permutations of atoms that could be 

used to perform the superposition of the ligand within the region. All such permutations are 

attempted, and those for which the root-mean-squared deviation (RMSD) of the superposing 

atoms (i.e. the coordinating atom types identified above) is above a specified threshold (0.5 

Å for most of the results reported here) are immediately rejected. Permutations for which the 

RMSD is below the specified threshold are then checked for steric clashes, and permutations 

in which any atoms of the ligand are within 2 Å of protein atoms are rejected, as are ones in 

which any atoms of the ligand are within 2.5 Å of any previously placed ligand. The more 

lenient value of 2 Å is used for evaluating ligand-protein clashes in an attempt to account 

for the fact that AlphaFold2’s “predictions” of ligand binding sites are made in the absence 

of the ligand and so do not always place atoms in a perfect arrangement for accommodating 

ligands. Having rejected all permutations with poor RMSDs or steric clashes, the remaining 

permutations are ordered by RMSD and the one with the lowest RMSD is retained. This 

procedure is carried out for all listed ligand types (12 in the present study). If multiple ligand 

types are found to have at least one permutation that satisfies the RMSD and clash criteria 

defined above then the ligand type having the highest priority (i.e. the one appearing first 

in the list of ligand types provided by the user) is retained and the ligand is placed into the 

Wehrspan et al. Page 16

J Mol Biol. Author manuscript; available in PMC 2023 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structure. The entire superposition process is then repeated for all listed ligand types within 

the same region until no further ligand type can be successfully placed within it. At that 

point, the code proceeds to analyze the next region.

Note that during the addition of ligands to the structure, each cysteine sidechain is allowed 

to coordinate up to two different ligand types: this allows the code, for example, to 

successfully identify cases where two or more Zn ions are simultaneously coordinated by 

cysteine sidechains to form a cluster that effectively has a stoichiometry such as Zn2 Cys6 or 

Zn3 Cys8 (see, for example, Figure 1c).

Selection of representative structures for each ligand type

In the present work we have compiled a list of twelve ligand types for which we have 

searched for binding sites within the AlphaFold2 structures. Prototypical structures of each 

of these ligand types have been selected directly from the RCSB, with the specific example 

chosen being the one with the highest resolution structure in the most-populated sub-

category for each ligand in the comprehensive MetalPDB database [17]. For each selected 

structure we save only the coordinates of the ligand atoms and the directly-coordinating 

atoms of the coordinating residues (e.g., the SG atom in cysteine; see above).

Six of the twelve ligand types that we define involve the common Fe-S clusters. For 4Fe-4S 

clusters, we define two possible ligand types: (1) a 4Fe-4S cluster with four coordinating 

cysteines (“4Fe-4S Cys4”; from pdb code 3A38), and (2) the same cluster but with one of 

the four cysteines removed (“4Fe-4S Cys3”). This second ligand type is added to allow us 

to identify 4Fe-4S clusters for which the fourth coordinating atom comes from a residue 

other than cysteine (e.g. glutamate), or from an S-Ado-Met (e.g. [39]), or from a water 

molecule (e.g. [40]). For 3Fe-4S clusters, we define one possible ligand type with three 

coordinating cysteines (“3Fe-4S Cys3”; taken from 1WUI). Note that with our procedure 

this ligand type is usually impossible to distinguish from the 4Fe-4S cluster with three 

coordinating cysteines, so higher priority is given to the 4Fe-4S cluster. For 2Fe-2S clusters, 

we define three possible ligand types: (1) a 2Fe-2S cluster with four coordinating cysteines 

(“2Fe-2S Cys4”; taken from 1N62), (2) a 2Fe-2S cluster with two coordinating cysteines 

and two coordinating histidines (“2Fe-2S Cys2 His2”; from 3D89), and (3) a 2Fe-2S cluster 

with three coordinating cysteines and one coordinating aspartate (“2Fe-2S Cys3 Asp1”; from 

1NEK). While not exhaustive, these choices appear to cover the most common sets of 

coordinating residues found in Fe-S clusters (e.g. [41]).

The remaining six ligand types for which we search involve various combinations of a Zn 

ion surrounded by three to four coordinating residues. Accordingly, we refer to each of the 

following as potential Zn binding sites although, in principle, they may also be binding sites 

for other mononuclear ions (see Discussion). For such cases we define the following ligand 

types: (1) a Zn ion with four coordinating cysteines (“Zn Cys4”; from 2PVE), (2) a Zn ion 

with three coordinating cysteines and one histidine (“Zn Cys3 His1”; from 3SU6), (3) a Zn 

ion with two coordinating cysteines and two histidines (“Zn Cys2 His2”; from 4EGU), (4) a 

Zn ion with one coordinating cysteine and three histidines (“Zn Cys1 His3”; from 5UAM), 

(5) a Zn ion with four coordinating histidines (“Zn His4”; from 3TIO), and (6) a Zn ion with 

one of the four coordinating histidines removed (“Zn His3”; from 5UAM). The latter was 
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added because it is one of the most common Zn binding sites listed in ZincBind, but as was 

the case with the “4Fe-4S Cys3” ligand type, it also allows us to find cases of binding sites 

that involve a fourth coordinating residue that is not cysteine. Note that our choice of ligand 

types for Zn ions reflects the fact that the vast majority of Zn binding sites documented in 

MetalPDB [17] and ZincBind [18] involve coordination by only cysteine and histidine, so 

our choices cover every possible combination of Zn-Cysx Hisy binding sites, where x and y 

sum to four.

As noted above, when the ligand superposition procedure finds that multiple ligand types 

can successfully fit into the same “region” of the structure, priority is given to the ligand 

type that appears first in the input list. An extraordinary feature of the AlphaFold2 structures 

is that, when ligand binding sites are present, they appear to be highly specific for a 

particular type of ligand (see Results); given that we also generally exclude cases where 

the RMSD of the coordinating atoms exceeds 0.5 Å, there is effectively zero probability of 

finding cases where the same sets of coordinating atoms within a region are predicted to be 

binding sites for two quite different ligand types. Instead, the cases where multiple ligand 

types successfully fit involve ligand types that are structurally almost indistinguishable from 

each other: e.g. “4Fe-4S Cys4” versus “4Fe-4S Cys3” versus “3Fe-4S Cys3”, and “Zn Cys4” 

versus “Zn Cys3”. For each of these cases we assign priority in the order listed, i.e. with 

preference given to the ligand type that has the greater number of coordinating residues.

Identification of ligand binding sites in the 21 complete AlphaFold2 proteomes

We applied our ligand binding site search code to a total of 365,198 structures 

(representing 362,311 proteins) generated by AlphaFold2 [9], downloaded on 07/23/21 

(https://alphafold.ebi.ac.uk/download). All structures were treated identically, with the single 

exception of a “hypothetical repeat protein” from Leishmania infantum (UniProt accession: 

A4HXX6) which contains an extraordinary number of 6-histidine repeats arrayed in α 
helices in the AlphaFold2 structure. Running the code with our default cutoff of 8 Å for 

clustering into regions yields a single gigantic region so large that the code did not complete 

even after a week of run-time; for this particular case, therefore, the cutoff was changed to 

6 Å. No binding sites were found. To process all the other AlphaFold2 structures required 

a total of ~1200 CPU hours and so was run using locally accessible high-performance 

computing resources.

For presenting results with a logical ordering of the 21 organisms, we generated 

a phylogenetic tree using the NCBI Taxonomy Browser (https://www.ncbi.nlm.nih.gov/

Taxonomy/CommonTree/wwwcmt.cgi).

Comparing identified binding sites with annotated ligand binding sites in UniProt

To compare our identified ligand binding sites with known binding sites, the reference 

proteomes for the 21 organisms studied here were downloaded from the online protein 

database UniProt [42] as tab-separated files (accessed 9/3/21). These data files were 

then parsed to extract relevant information with a custom R script. UniProt binding site 

annotations most commonly appear to be made on the basis of: (a) bioinformatics sequence 

analyses that search for known binding site sequence motifs (commonly, ProSite “rules”) 
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and/or (b) manual assertions based on experimental data. Since such annotations can 

appear in a variety of forms, we attempted to capture the largest amount of data possible 

by designing our R script to extract information from each of the following sections: 

“Cofactor”, “Sites”, “Region”, “Domain”, and “Zinc finger”. The most important of these 

sections is the “Sites” section since it explicitly identifies a variety of ligand and/or metal 

binding sites and provides lists of the exact coordinating residue numbers; in the present 

study, we searched for the following ligands: 4Fe-4S, 3Fe-4S, 2Fe-2S, Fe and Zn, with the 

latter two representing single metal binding sites; in unusual cases where instead of Fe or 

Zn it was listed as “divalent metal cation”, we searched the “Cofactor” section to determine 

that it was a Fe or Zn ions. To get a more complete assessment of Zn binding sites, we 

additionally examined the “Region”, “Domain” and “Zinc finger” sections, searching in the 

former two for the key words “Zinc” or “C*H*-type”, where the “*” ensures that we capture 

all possible combinations of cysteine and histidine coordination in zinc fingers. These latter 

sections provide additional sites but provide less specific information than is found in the 

“Sites” section: rather than explicitly identifying the exact coordinating residues, they give a 

range of residues (e.g. “residues 760–800”) that contain the annotated binding site.

Recall rates were calculated for Fe-S clusters in the following way. We compared the ligand 

and coordinating residues identified by our method with those explicitly listed in the “Sites” 

section and required that all be matched exactly. Recall rates were calculated for Zn binding 

sites in the same way, but in cases where the “Sites” section was absent, we required that 

all coordinating residues identified by our method be contained within the range of residues 

entered in the “Region”, “Domain” and “Zinc finger” sections. We note that in order to 

properly assess our method’s ability to recall annotated binding sites, we excluded from our 

analysis any binding sites annotated in UniProt that involve coordinating residues that are 

not explicitly listed in our 12 ligand types. Having compared all identified binding sites for a 

given organism with all binding sites annotated within UniProt, we calculated the recall rate 

(also known as the sensitivity), R, as TP / (TP + FN) where TP and FN are the numbers of 

true positives and false negatives, respectively.

Determining whether a predicted ligand binding site involves a region with no structural 
homolog

In an attempt to identify truly novel ligand binding sites built by AlphaFold2, we used 

tools provided in HH-suite 3.1.0 [30] to eliminate all binding sites for which homologous 

structures could be found in the RCSB. To do this, “hhblits” was first used to generate a 

multiple sequence alignment by searching against the Uniclust30 database [43]. We then ran 

“hhsearch” against the PDB70 database [30] using the multiple sequence alignment “.a3m” 

output from “hhblits”. This search for homologous structures was made as “greedy” as 

possible by adding the flag “ −Z 10000” to allow as many as 10,000 homologs to be listed 

in the output. We then wrote a script to eliminate all identified binding sites for which any of 

the coordinating residues were contained within the alignment produced by any homologous 

structure with an E-value of 1e-5 or better. For both the Uniclust30 and PDB70 databases, 

we took care to use identical versions used in the development of AlphaFold2 [8]. For 

Uniclust30, this is the August 2018 release (https://wwwuser.gwdg.de/~compbiol/uniclust/

2018_08/); for PDB70, this was the May 13, 2020 release.

Wehrspan et al. Page 19

J Mol Biol. Author manuscript; available in PMC 2023 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://wwwuser.gwdg.de/~compbiol/uniclust/2018_08/
https://wwwuser.gwdg.de/~compbiol/uniclust/2018_08/


Comparing identified binding sites with experiment and other predictions in the literature

For comparison with previous studies aiming to identify Fe-S cluster-containing proteins in 

E. coli, the predicted lists of proteins identified by Estellon et al. [21] were downloaded from 

the IronSulfurProteHome webserver (http://biodev.extra.cea.fr/isph/db/ECOLI.Fe-S.csv) and 

those identified by Valasatava et al. [22] were downloaded from the supporting information 

of the original publication. Since we compare only the proteins and not the predicting 

coordinating residues, we created non-redundant lists of proteins from each of these methods 

and our list of proteins identified as containing an Fe-S cluster, and then calculated the 

intersections between each of these three lists. We graphically represent the associations 

between these three Fe-S cluster proteomes as a Venn diagram using Microsoft PowerPoint.

For the comparisons with chemoproteomic data, lists of chemically reactive cysteine 

residues were downloaded for three human cancer cell proteomes ([32]; HCT116 cells 

from Supplementary Table 6, HEK293T cells from Supplementary Table 7 and PaTu-8988T 

cells from Supplementary Table 8) and for E. coli ([23], Supplementary Table 3). For 

each organism, we created a non-redundant list of all proteins that contained at least one 

chemically reactive cysteine and then determined the total number of cysteines contained 

in these proteins. We then constructed three subsets from the cysteines found within these 

proteins: (1) all “highly reactive” cysteines in the chemoproteomics data listed above, (2) 

cysteines identified here as coordinating residues in ligand binding sites, and (3) cysteines 

annotated in UniProt as coordinating residues in ligand binding sites. We then sought to 

assess the extent of overlap between these three subsets using one-tailed Fisher’s Exact 

tests. In comparing the cysteines identified here with the highly reactive cysteine subset, we 

tested the hypothesis that the two subsets segregate from each other more than expected by 

chance; in comparing the cysteines identified here with the UniProt subset, we tested instead 

the hypothesis that the two subsets overlap more than expected by chance. All tests were 

performed using the “fisher.test” function in the statistical programming language R [44]. 

We then created Euler (i.e. area-proportional Venn) diagrams illustrating the extent to which 

these three subsets of residues overlapped with each other using the “eulerr” library [45].

Figure generation

Bar charts, histograms, scatterplots, and statistical tests were performed using the statistical 

programming language R with the following packages: “ggplot2” [46], “gridExtra” [47], 

“scales” [48], “plotly” [49] and “eulerr” [45]. Images of proteins were made in VMD [50].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustration of our ligand-search protocol and examples of identified metal 

binding sites in AlphaFold2 structures. (a) a flowchart outlining the method. For the 

protein illustrated in the center of the flowchart, two “regions” are highlighted; these 

are distinct from one another, and are treated as separate entities when enumerating all 

possible ligand superpositions. (b) an example of an identified 4Fe-4S cluster coordinated 

by four cysteine residues (ligand type “4Fe-4S Cys4”; UniProt accession: P08201). (c) an 

example of a cluster of three closely spaced Zn binding sites coordinated by a total of eight 

cysteine residues; this cluster is formed by three successful additions of the ligand type “Zn 

Cys4” (UniProt accession: P05100). In all images of proteins in this figure, the protein is 

colored by each residue’s pLDDT score with dark blue indicating a “very high confidence” 

prediction by AlphaFold2 and dark red indicting a “low confidence” prediction.
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Figure 2. 
3D scatterplot of the RMSDs of successfully placed ligand types coordinated by 4 cysteine 

residues. Each point represents a single ligand placed successfully and colored by the 

minimum pLDDT score of any of its coordinating residues; each axis represents the RMSD 

of the fit of one of the three possible ligand types (“4Fe-4S Cys4”, “2Fe-2S Cys4”, “Zn 

Cys4”) on to the coordinating cysteines. (a) shows all ligands that pass an RMSD threshold 

of 0.5 Å. (b) shows all ligands that pass an RMSD threshold of 0.75 Å. The black arrow 

highlights the distinct grouping of Zn ligands that appear to contain erroneous disulfide 

bonds.
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Figure 3. 
(a) histograms of the number of identified Fe-S clusters and Zn ions per protein. (b) 

structural view of UniProt Accession: Q58699, which has the largest number of identified 

Fe-S cluster binding sites. (c) structural view of UniProt Accession: O43345, which has the 

largest number of identified Zn binding sites.
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Figure 4. 
The quantification of identified ligand placements for each ligand type for each organism. 

(a-c) show the absolute quantification of the identified ligand binding sites, and (d-f) show 

the relative quantification of the identified ligand binding sites. (a) and (d) show all binding 

sites, (b) and (e) show binding sites for which all coordinating residues have pLDDT scores 

greater than 70. (c) and (f) show binding sites for which all coordinating residues have 

pLDDT scores greater than 90.
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Figure 5. 
The relative quantification of identified ligand placements for each organism compared 

to data for the same proteomes extracted from UniProt. (a) relative ligand populations 

identified here, (b) relative ligand populations extracted from UniProt.
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Figure 6. 
Example 4Fe-4S cluster binding sites annotated in UniProt that are not identified in this 

work. In each image protein chains are shown as transparent cartoons colored using 

AlphaFold2’s pLDDT (i.e. confidence) scores on a spectrum of red (low confidence) to blue 

(high confidence), coordinating residues are shown as licorice, and iron and sulfur atoms in 

the 4Fe-4S cluster are shown as yellow and pink spheres, respectively. (a) an example in 

which AlphaFold2 builds two 4Fe-4S sites out of residues annotated in two different UniProt 

sites but swaps two cysteine residues between each of the sites: the two UniProt sites are 

shown with their carbon atoms colored in either cyan or green and the residue numbers for 

the corresponding sites are displayed above the image with arrows to indicate the cysteines 

that are swapped. (b) an example in which AlphaFold2 confidently builds a “4Fe-4S Cys4” 

site as “4Fe-4S Cys3” site and rejects the annotation of the fourth residue. (c) an example in 
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which AlphaFold2 does not build the UniProt-annotated residues into a 4Fe-4S binding site 

but instead confidently builds the residues in an α helix (opaque blue cartoon).
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Figure 7. 
Example 2Fe-2S cluster binding sites annotated in UniProt that are not identified in this 

work; visualization scheme is the same as used in Figure 6. (a) an example in which 

AlphaFold2 confidently builds disulfide bonds in the annotated UniProt site. (b) an example 

in which AlphaFold2 confidently builds a potential site that is too constricted to coordinate 

a 2Fe-2S cluster. (c) an example in which AlphaFold2 builds the fourth coordinating residue 

in a position that is more than 5 Å from the three other coordinating residues. (d) an example 

in which AlphaFold2 builds a potential 2Fe-2S site with a different fourth coordinating 

residue (carbon atom colored green) than that which is annotated in UniProt (red arrow).
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Figure 8. 
Quantification of novel ligand binding site predictions with pLDDT scores greater than 

70 and not annotated in UniProt. (a) the ratio of ligand binding sites identified here to 

those already annotated in UniProt for each organism. (b) the ratio of ligand binding 

proteins identified here to those already annotated in UniProt for each organism. For both 

panels the dashed line denotes a ratio of 1, which indicates no increase in the size of the 

metalloproteome of a given organism. (c) absolute counts of proposed novel binding sites 

for each ligand type in each organism. (d) relative counts of proposed novel binding sites for 

each ligand type in each organism.
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Figure 9. 
Quantification of novel ligand binding site predictions with pLDDT scores greater than 70, 

not annotated in UniProt, and without a remote homolog identified by hhsearch. (a) the 

ratio of ligand binding sites identified here to those already annotated in UniProt for each 

organism. (b) the ratio of ligand binding proteins identified here to those already annotated 

in UniProt for each organism. (c) absolute counts of proposed novel binding sites for each 

ligand type in each organism. (d) relative counts of proposed novel binding sites for each 

ligand type in each organism.
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Figure 10. 
Overlap between subsets of cysteines that are: (1) highly chemically reactive in experiment 

(blue), (2) identified here as members of ligand-binding sites (red) and (3) annotated in 

UniProt as members of ligand-binding sites (grey). Comparisons are represented as Euler 

diagrams: the outer circle represents the total number of cysteines in proteins that contained 

chemically reactive cysteines in experiment. p-values from one-tailed Fisher’s Exact Tests 

are shown below each diagram, together with the nature of the hypothesis being tested. (a) 

shows comparisons for the union of three H. sapiens cancer cell lines reported by Kuljanin et 
al. [32], (b) shows comparisons for the E. coli data reported by Wang et al. [23].

Wehrspan et al. Page 34

J Mol Biol. Author manuscript; available in PMC 2023 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wehrspan et al. Page 35

Table 1.

Recall rates for UniProt-annotated ligand binding sites for all organisms and for three selected model 

organisms.

Organism Ligand Number of annotated ligand binding sites 
in UniProt

Number of annotated ligand binding sites 
that AlphaFold2 recalls Recall rate (%)

All 4Fe-4S 779 580 74

All 3Fe-4S 42 42 100

All 2Fe-2S 168 113 67

All Zn 42,049 35,133 84

E. coli 4Fe-4S 169 139 82

E. coli 3Fe-4S 7 7 100

E. coli 2Fe-2S 16 12 75

E. coli Zn 94 78 83

S. cerevisiae 4Fe-4S 24 17 71

S. cerevisiae 3Fe-4S 2 2 100

S. cerevisiae 2Fe-2S 4 2 50

S. cerevisiae Zn 485 423 87

H. sapiens 4Fe-4S 44 31 70

H. sapiens 3Fe-4S 1 1 100

H. sapiens 2Fe-2S 14 11 79

H. sapiens Zn 10,004 8,103 81
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