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Abstract
Kidney diseases such as AKI, CKD, and GN can lead to dialysis and the need for kidney transplantation. The
pathologies for kidney diseases are extremely complex, progress at different rates, and involve several cell
types and cell signaling pathways. Complex kidney diseases require therapeutics that can act on multiple
targets. In the past 10 years, in silico design of drugs has allowed for multi-target drugs to progress quickly
from concept to reality. Several multi-target drugs have been made successfully to target AA pathways and
transcription factors for the treatment of inflammatory, fibrotic, and metabolic diseases. Multi-target drugs
have also demonstrated great potential to treat diabetic nephropathy and fibrotic kidney disease. These drugs
act by decreasing renal TGF-b signaling, inflammation, mitochondrial dysfunction, and oxidative stress.
There are several other recently developed multi-target drugs that have yet to be tested for their ability to
combat kidney diseases. Overall, there is excellent potential for multi-target drugs that act on several cell
types and signaling pathways to treat kidney diseases.
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Introduction
Kidney disease afflicts an estimated 37 million people
in the United States, and the Medicare costs for treat-
ing kidney diseases exceed $130 billion (1–3). Types of
kidney diseases include AKI, CKD, and GN. Major risk
factors for kidney diseases are hypertension, diabetes,
and family history (1–3). Cardiovascular disease and
high morbidity and mortality are associated with kid-
ney diseases (2,4). Despite the seriousness of kidney dis-
eases, there are limited treatment options, with many
patients requiring dialysis and kidney transplantation.

AKI, CKD, and glomerular diseases have varied
and multifaceted etiologies. Causes for AKI can range
from drug toxicity, ischemia during thoracic surgeries,
and septic infections (5,6). Drug toxicities that cause
AKI include nonsteroidal anti-inflammatory drugs,
anticancer drugs, antibacterial drugs, and immuno-
suppressant drugs (5,6). The pathophysiology of AKI
includes decreased blood and oxygen supply from
systemic hypotension, systemic hypoxia, and dis-
rupted regional oxygen delivery in the kidney (5,6).
Signaling and metabolic pathways in renal tubular
segments and epithelial cells that contribute to AKI
include activation of hypoxia-inducible factor, activa-
tion of the peroxisome proliferator-activated receptor
g (PPARg)–PPARg coactivator 1a (PGC-1a) pathway,
mitochondrial signaling, and fructokinase activation
(5–7). CKD is largely due to hypertension and diabetes
that cause progressive renal damage via very different
cellular mechanisms (2,3,8). Diabetic nephropathy
results from oxidative stress, inflammation, mitochon-
drial dysfunction, and fatty acid metabolism that con-
tributes to kidney fibrosis and impairs tubular trans-
port, renal hemodynamics, and glomerular filtration

(8,9). Glomerular diseases, such as GN, start because
of damage to the glomerulus that can then lead to
renal damage outside the glomerular structure (10,11).
Immune complexes and complement components,
such as C3 and C5, lead to glomerular inflammatory
cell infiltration (11,12). Glomerular mesangial cells,
podocytes, and endothelial cells become damaged,
with increased extracellular matrix leading to glomer-
ulosclerosis (10,11). Subsequently, nonimmune mecha-
nisms result in progressive renal damage leading to
interstitial fibrosis (11,13). Taken as a whole, kidney
diseases are extremely complex because they involve
several cell types, multiple cell signaling pathways,
and progress at different rates.
The complexity of kidney diseases requires the

development of therapeutics that can act on multiple
targets (Figure 1). Kidney diseases—such as AKI, dia-
betic nephropathy, CKD, FSGS, GN, and ESKD—

involve several renal cell types and disease progres-
sion depends on changes in many cellular signaling
pathways. The emergence of multi-target drugs in
recent years has resulted in novel therapeutics that
could treat kidney diseases.

Designing Multi-Target Small-Molecule Drugs
for Kidney Diseases
The deliberate and rational design of drugs which

act on multiple targets has gained momentum over
the past decade (14–16). Compensatory mechanisms
and redundant functions built into biologic systems
make them resistant to single-point perturbations;
therefore, diseases are often caused by multiple genetic
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and/or environmental factors that result in failure of physi-
ologic systems. Complex disorders—such as metabolic dis-
eases, fibrotic diseases, AKI, CKD, and glomerular dis-
eases—are more likely to be treated through simultaneous
modulation of multiple targets.
The concept that bifunctional molecules could be devel-

oped to treat kidney diseases has been energized by the
approval of sacubitril/valsartan, a combined neprilysin
and angiotensin type 1 (AT1) receptor inhibitor, for heart
failure (17,18). Our research group and others have
focused on dual-acting small molecules to target molecu-
lar pathways for organ fibrosis and life-threatening kidney
diseases (19,20). These multi-target drugs have much
more potential than single-target and highly specific
agents due to (1) better disease-modifying actions, (2)
additive and/or synergistic therapeutic actions, (3) more
predictable pharmacokinetics than combination therapies,

(4) prolonged duration of effectiveness, and (5) lower
probability for drug interactions (Table 1). As a result, it is
increasingly recognized that a balanced modulation of
two targets can provide a superior therapeutic effect and
side effect profile.

Types of Multi-Target Drugs
A major challenge for developing multi-target drugs,

also known as multiple ligand drugs, is the need to opti-
mize the drugs against multiple biologic targets while
maintaining proper drug properties (14–16). On average,
multi-target drugs have larger mol wts and are more lipo-
philic than compounds designed to modulate a single tar-
get. Although multi-target drugs have been developed
with appropriate druglike properties, a critical aspect of the
drug design and development process is the selection of
the biologic targets. Computational tools and structural
information that allows for pharmacophore modeling ena-
bles the design of multi-target drugs that show selectivity
for the intended biologic targets (14–16). Defining the
desired activity balance and balancing pharmacologic
properties and selectivity for biologic targets is another
major challenge in developing multi-target drugs.

Multi-target drugs can be classified into three categories:
linked, fused, and merged pharmacophore drugs (Figure 2).
Linked multi-target drugs comprise two distinct
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Figure 1. | Kidney diseases have several targets for multi-target drugs. In CKD, diabetes and hypertension contribute to 70%–80% of all
patients with CKD (top). Factors contributing to CKD include endothelial dysfunction, TGF-b signaling, inflammation, hypoxia, mitochondrial
injury, and oxidative stress. Kidney injury in CKD involves the mesangial matrix, podocyte damage, tubulointerstitial fibrosis, and glomerulo-
sclerosis. AKI can be caused by drug toxicity, ischemia during thoracic surgeries, and septic infections (bottom left). Therapeutic targets for AKI
include hypoxia-inducible factor (HIF) signaling, mitochondrial function and reactive oxygen species (ROS), peroxisome proliferator-activated
receptor g (PPARg)/PPARg coactivator 1a (PGC-1a) pathway, and fructokinase signaling and inflammation. For glomerular diseases, therapeu-
tic targets include mesangial cells and TNFa; leukocytes and complement 5 (C5); neutrophils and macrophages and TNFa, IL-1b, and IL-6
signaling; T cells and TNFa/intracellular adhesion molecule (ICAM), and signaling pathways resulting in podocyte damage (bottom right).

Table 1. Advantages of multi-target drugs

Advantage

Complex disease-modifying actions
Synergistic or additive therapeutic actions
Predictable pharmacokinetics
Prolonged duration of effectiveness
Decreased drug interactions
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pharmacophores for each target that are connected by a
linker. These linked multi-target drugs tend to have a larger
mol wt. sacubitril/valsartan is an example of a linked
multi-target drug that has a distinct pharmacophore for
inhibiting the enzyme neprilysin, and another distinct phar-
macophore for antagonizing the AT1 receptor (17,18).
Decreasing the linker size of linked multi-target drugs will
eventually lead to a point where the pharmacophores are
essentially touching, which results in a fused multi-target
drug. Thus, fused multi-target drugs have distinct pharma-
cophores that are not separated by a linker. Disadvantages
of linked and fused multi-target drugs include large mol wt
and extensive lipophilicity. Merged multi-target drugs are
based on a common, merged pharmacophore that is
designed to engage both biologic targets of interest while
possessing a low mol wt and fulfilling other aspects of the
Lipinski rule of five (14–16). Multi-target merged pharmaco-
phore drugs are, by far, the most challenging to design and
optimize. The advent of well-defined structure-activity rela-
tionships for drugs via x-ray structural information for pro-
tein targets and in silico design can help find starting points
for merged multi-target drugs (14–16). Several multi-target
drugs with linked, fused, or merged pharmacophores have
been developed and tested for their ability to combat kid-
ney diseases using cell-based and animal models.

Progress with Multi-Target Drugs for Kidney Diseases
A critical step in designing multi-target drugs for kidney

diseases is deciding on the molecular targets. The targets
must be disease modifying and attack different signaling
pathways or the same signaling pathway from different
angles. For example, in kidney diseases, one mechanism of
interest is blocking the TGF-b signaling that leads to fibrosis

(13,21,22). The critical signaling cascades that are initiated
primarily by TGF-b but also involve inflammatory cyto-
kines and signaling molecules, which stimulate profibrotic
reactions in myofibroblasts, are potential therapeutic targets
(13,22). Because TGF-b plays a pivotal role in fibrogenesis,
it was originally thought that therapeutic targeting of TGF-
b would control organ fibrosis (21,22). Unfortunately, this
approach failed because TGF-b also plays a crucial role in a
number of important biologic processes, such as immunity
and cellular growth (21,22). Therefore, an ideal approach
for a therapy to treat fibrotic kidney disease would be to
modulate several mechanisms downstream, without block-
ing important TGF-b–regulated biologic processes. Multi-
target drugs for kidney diseases have targeted transcription
factors, AA metabolites, incretins, G-protein coupled recep-
tors, and the renin-angiotensin system (19,20).
The evaluation of multi-target drugs for kidney diseases

has been expanding over the past 5 years. These efforts
have largely focused on diabetic and hypertensive CKD
and kidney fibrosis (19,20). Multi-target drugs have been
designed not only to treat kidney disease, but also to com-
bat diabetes, metabolic disease, and hypertension at the
same time (23,24). This has been achieved by initially com-
paring multi-target drugs to the respective single-target
approach in enzymatic or cell-based systems (23,24).
Because the target combinations for CKD involve individ-
ual targets that are expressed in different tissues of the
body, an in vivo approach is required for validation of an
anti-CKD multi-target drug. This is a significant obstacle
because reaching this step requires significant medicinal
chemistry efforts to develop multi-target drugs to selec-
tively modulate the individual targets of interest while
maintaining suitable pharmacokinetic properties. Excit-
ingly, the high-risk, high-reward development of multi-
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Figure 2. | PTUPB and RB394 represent different types of multi-target drugs. PTUPB is an example of a linked multi-target drug with a
distinct pharmacophore for cyclooxygenase-2 (COX-2) inhibition and soluble epoxide hydrolase (sEH) inhibition (left). RB394 is an exam-
ple of a merged multi-target drug that unites the pharmacophore features required for sEH inhibition and PPARg activation (right). EC50,
half maximal effective concentration; IC50, half maximal inhibitory concentration
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target drugs to treat kidney diseases has resulted in promis-
ing drugs that are close to, or are already in, human clinical
trials (20,24).
Drugs that modulate the AA pathway have anti-

inflammatory, antifibrotic, antihypertensive, and antidia-
betic actions with the potential to treat kidney diseases
(19,24). A major pathway that has been exploited in multi-
target drugs is the epoxygenase pathway (19,24). Inhibition
of the enzyme soluble epoxide hydrolase (sEH) has been
combined with cyclooxygenase (COX) inhibition or tran-
scription factor agonism (25,26). The sEH enzyme promotes
the hydrolysis of AA metabolites, epoxyeicosatrienoic acids
(EETs), to their corresponding, less bioactive diols
(DHETEs) (27,28). Through sEH inhibition, EET levels are
increased (27). EETs are a major eicosanoid in human kid-
neys and have anti-inflammatory properties (28). Increased
sEH expression or decreased EET levels in the kidney are
involved in hypertension, diabetes, and kidney diseases
(27,28). Inhibition of sEH also prevents renal inflammation
and interstitial fibrosis by inhibiting the endothelial to mes-
enchymal transition and expression of a-smooth muscle
actin and TGF-b (29,30). Thus, sEH inhibition combined
with another therapeutic target could treat hypertension or
diabetes while combating kidney disease.

PTUPB
A linked multi-target drug that acts as a dual COX-2 and

sEH inhibitor (PTUPB) was developed and tested in Zucker
diabetic fatty rats (Figure 3) (26). Combining sEH inhibition

with COX-2 inhibition can limit COX-2 side effects while
increasing therapeutic potential to combat kidney fibrosis
(19,31,32). The ability for PTUPB to increase EETs and lower
COX-2 metabolites, without significantly altering other AA
metabolites, has been demonstrated in multiple studies
(33–35). These studies have not extensively evaluated the
effects of PTUPB on mRNA or protein expression of lipoxy-
genase, CYP4A, or CYP2C enzymes. The effects of PTUPB
on glucose homeostasis and kidney injury were first evalu-
ated in Zucker diabetic fatty rats treated in a preventive
manner for 2 months (26). PTUPB lowered fasting blood glu-
cose, improved glucose tolerance, improved pancreatic islet
morphology, and improved the plasma lipid profile (26).
Diabetic kidney injury was significantly reduced and associ-
ated with a reduction in inflammation and oxidative stress
(26). Interestingly, studies in the obese diabetic Zucker fatty/
spontaneously hypertensive heart failure F1 hybrid (ZSF1)
rats demonstrated that interventional PTUPB treatment did
not lower blood glucose, but could effectively alleviate
hypertension, hyperlipidemia, and diabetic nephropathy
(33). PTUPB also decreased inflammation and fibrosis in the
kidney and liver of obese ZSF1 hypertensive and diabetic
rats (33). PTUPB treatment exhibited anti-inflammatory
and antifibrotic actions in animal models of sepsis, nonalco-
holic fatty liver disease, and pulmonary fibrosis (36–39).
Taken together, these studies demonstrate the potential for
PTUPB to decrease inflammation and oxidative stress and
combat fibrosis to slow the progression of diabetic kidney
injury.
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Figure 3. | Kidney and systemic protective actions of multi-target drugs. RB394 has direct actions on the kidney in mice with unilateral
ureter obstruction (UUO) (left). RB394 decreased the collagen area, as determined by kidney histology using Picrosirius red staining. ZSF1
obese diabetic rats treated with RB394 had improved metabolic status, as assessed by intraperitoneal glucose tolerance test (IPGTT) (right).
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Other multi-target drugs that manipulate two enzymes
in the AA pathway are in development and being tested
for therapeutic potential in animal models. Recently, dual
sEH and 5-lipoxygenase (5-LOX) inhibition, which results
in synergistic anti-inflammatory effects, has been targeted to
treat CKD (40). An initial optimization of the sEH and 5-LOX
inhibitor lead candidate (7ad) included cellular testing in
human PMNs, determination of oral bioavailability, and
assessment of target engagement (40). The ability for 7ad to
combat kidney disease was tested in the unilateral ureter
obstruction (UUO) CKD model. Treatment with 7ad mitigated
tubulointerstitial fibrosis and ameliorated macrophage infiltra-
tion into the obstructed kidney (40). Additional studies with
combined sEH and 5-LOX inhibitors are needed to determine
the therapeutic potential for combating kidney diseases.

RB394
The combination of a dual PPARg agonist and sEH inhib-

itor (RB394) to treat diabetic complications has also demon-
strated great potential (19,24). The combination of sEH inhi-
bition and PPARg agonism reduces side effects while
increasing efficacy against kidney fibrosis (41). PPARg acti-
vation by thiazolidinediones, such as rosiglitazone and pio-
glitazone, induces beneficial effects on insulin action and
blood glucose levels (42–44). However, the clinical use of
thiazolidinediones is limited because of excessive weight
gain, fluid retention, elevated cardiovascular risk, and
increased risk of osteoporosis in treated patients (42,43). For-
tunately, sEH inhibition and EETs are natriuretic and posi-
tively influence water and electrolyte homeostasis (27,28).
Therefore, a merged multi-target drug, RB394, was devel-
oped and initially tested for sEH enzymatic inhibitor activity
and ability to selectively activate PPARg target genes in dif-
ferentiated murine and human adipocytes (45,46).

Animal studies evaluated RB394 in rat models of the
metabolic syndrome—the spontaneously hypertensive
obese rat and the ZSF rat (46). RB394 was administered
orally to spontaneously hypertensive obese rats in a pre-
ventive manner, which attenuated the development of
hypertension, insulin resistance, hyperlipidemia, and kid-
ney injury (46). ZSF1 rats became diabetic, hypertensive,
and demonstrated albuminuria as an index of kidney
injury before administering RB394 (46). Interventional
treatment with RB394 to ZSF1 rats for 2 months reduced
hemoglobin A1c levels, improved glucose tolerance,
reduced BP, and improved lipid profiles (Figure 3) (46).
One mechanism that could contribute to the improved met-
abolic status is the ability of RB394 to induce browning in
human white adipocytes (47). In addition, RB394 amelio-
rated liver fibrosis, hepatosteatosis, and diabetic nephropa-
thy by reducing renal fibrosis and tubular and glomerular
injury in obese diabetic ZSF1 rats (46). The decrease in kid-
ney injury with RB394 treatment can occur independently
of decreases in BP, blood glucose, and lipid levels. RB394
administered 3days after the induction of UUO attenuated
renal fibrosis by reducing inflammation and oxidative stress
(Figure 3) (48). RB394 demonstrated a superior decrease in
kidney fibrosis, TGF-b, inflammation, and endothelial to
mesenchymal transition gene expression when compared
with the PPARg agonist, rosiglitazone; the sEH inhibitor, t-
AUCB; or the combination of rosiglitazone and t-AUCB
(48). Importantly, the dual PPARg agonist and sEH inhibi-
tor RB394 did not lead to excessive weight gain or fluid
retention (46,48). These findings demonstrate the potential
therapeutic benefit for RB394 in metabolic and kidney
diseases and highlight the concept of designed polypharma-
cology, because the dual ligand was superior to the combi-
nation of selective drugs for the same targets (Figure 4).
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tor (COX-2i) (top left). PTUPB decreases kidney injury by combating diabetes, and decreasing inflammation, plasma lipid levels, reactive
oxygen species (ROS), and fibrosis. RB394 is an sEHi and PPARg agonist that combats hypertension and diabetes, and decreases TGF-b
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factor 1 (Nrf-1), resulting in decreased endoplasmic reticulum (ER) stress and podocyte damage (bottom right).
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DM509
The combination of sEH inhibition and the farnesoid X

receptor (FXR) agonism has been developed as the merged
multi-target drug DM509 (Figure 4). FXR agonism and sEH
inhibition were combined because they are validated targets
for nonalcoholic steatohepatitis (NASH) and kidney fibrosis
(29,30,49,50). Bile acids are the endogenous ligands for FXR
and obeticholic acid (OCA) is an FXR agonist that has
reached clinical trials for fibrotic liver disease; however,
strong FXR activation leads to serious disturbances in cho-
lesterol homeostasis (51,52). By design, DM509 activates
FXR only partially while potently inhibiting sEH (53,54). Ini-
tial studies in two liver fibrosis models demonstrated that
orally administered DM509 is superior to the FXR agonist
OCA (54). In addition, the dual FXR agonist/sEH inhibitor
DM509 had positive actions on cholesterol homeostasis by
reducing triglyceride levels and increasing the HDL-choles-
terol/non-HDL-cholesterol ratio in NASH mice (54). More-
over, curative treatment with DM509 counteracted pre-
established NASH in diet-induced obese mice with anti-
inflammatory and remarkable antifibrotic effects widely
exceeding OCA as standard of care (54). Experimental stud-
ies in UUO mice revealed that DM509 decreased renal fibro-
sis and injury (55). DM509 had anti-inflammatory actions
with reductions in TGF-b, TNFa, IL-1b, and IL-6 levels in
the UUO mice (55). With this highly promising in vivo pro-
file, DM509 stands as a lead potential candidate for preclini-
cal evaluation to combat organ fibrosis and kidney diseases.

INT-767
FXR agonism has also been combined with Takeda G pro-

tein receptor 5 (TGR5) agonism in the semisynthetic bile acid
derivative INT-767 (Figure 4) (56). INT-767’s ability to target
FXR and TGR5 in cellular settings was validated by FXR-
dependent lipid uptake by adipocytes and TGR5-dependent
glucagon-like peptide-1 (GLP-1) secretion by enteroendo-
crine cells (56,57). Initial animal studies in metabolic diseases,
such as NASH, found that INT-767 treatment resulted in
beneficial metabolic and liver effects (57–59). INT-767’s posi-
tive metabolic actions are mediated, in part, through brown
adipogenesis and improved mitochondrial function (60).
Animal studies in db/db diabetic mice determined that
INT-767 decreased cholesterol and triglyceride levels in
streptozotocin diabetic and db/db diabetic mice (61). Dia-
betic nephropathy was also evaluated in streptozotocin-
induced diabetes, db/db diabetic mice, and high-fat

diet–induced obese mice after 2 months of oral treatment
with INT-767 (61). INT-767 decreased proteinuria, pre-
vented glomerular injury, and decreased tubulointerstitial
fibrosis (61). The effects of the FXR and TGR5 dual agonist
were exerted through multiple pathways, including stimu-
lation of a signaling cascade involving AMP-activated pro-
tein kinase, sirtuins, PGC-1a, and nuclear respiratory factor
1, resulting in decreased endoplasmic reticulum stress and
inhibition of enhanced renal fatty acid and cholesterol
metabolism (61). Kidney disease in aging was evaluated by
treating 22-month-old mice with INT-767 for 2 months. This
study found that INT-767 reversed age-related kidney dis-
ease, with decreased proteinuria and podocyte injury (62).
INT-767 decreased kidney TGF-b expression, improved
mitochondrial function, and prevented escalation of inflam-
mation (62). More recently, INT-767 counteracted the TGF-
b–induced increase in phosphorylated mothers against
decapentaplegic homolog 3 and transcription factor tafazzin
to prevent fibrosis programming in renal organoids (X.
Yang et al., unpublished data; https://doi.org/10.1101/
2021.04.15.440011). There is a high therapeutic potential for
INT-767 to treat kidney disease in the future because this
drug has completed phase 1 clinical safety trials.

Other Potential Multi-Target Drugs for
Kidney Diseases

Several multi-target drugs have been developed that act
on the AA cascade, transcription factors, incretin signaling,
and renin-angiotensin system which have the potential to
combat kidney diseases (14,24,25). These multi-target drugs
include combining sEH inhibition with 5-LOX inhibition
and fatty acid amide hydrolase (25,36). COX-2 inhibition
has been combined with thromboxane A2 inhibition and 5-
LOX inhibition (25,36). The multi-target drugs that affect
two AA pathways will have anti-inflammatory actions and
other organ protective actions; however, several of these
drugs have not been tested for their ability to combat
kidney diseases (14,24,36).

Multi-target drugs that have the potential to treat meta-
bolic diseases and diabetes have also emerged (23,24). For
example, FXR agonism has been combined with PPARd and
combined PPARa/d agonism (64,64). These combined FXR
and PPAR agonists have demonstrated promise in liver dis-
eases, but have yet to be tested in kidney diseases (63,64).
PPARg agonism has also been coupled to glucokinase

Table 2. Multi-target drug targets, dosages, pharmacokinetics, and references

Multi-target Drug Targets Dosages and Administration Routes Pharmacokinetics References

PTUPB sEH 5–10 mg/kg per d s.c. Data in references (31,34) (26,31,33–35,37–39)
10–30 mg/kg per d p.o.COX-2
30–60 mg/kg per d i.p.

RB394 sEH 10 mg/kg per d p.o. Data in reference (45) (45–48)
PPARg

DM509 sEH 10 mg/kg per d p.o. Data in reference (53) (53–55)
FXR

INT-767 FXR 10–30 mg/kg per d p.o. Data in references (56,72) (56–62,72)
TGR5

sEH, soluble epoxide hydrolase; s.c., subcutaneous; COX-2, cyclooxygenase-2; p.o., by mouth; i.p., intraperitoneal; PPARg,
peroxisome proliferator-activated receptor g; FXR, farnesoid X receptor; TGR5, Takeda G protein receptor 5.
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activation and AT1 receptor inhibition (23,24). Renin-
angiotensin system angiotensin-converting enzyme inhibi-
tion has been combined with dipeptidyl peptidase-4
inhibition (23,24). Lastly, dipeptidyl peptidase-4 inhibition,
which increases plasma GLP-1 levels, has been combined
with GPR119 activation, which modulates insulin release by
pancreatic b-cells and GLP-1 secretion by gut enteroendo-
crine cells, to combat diabetes (23,24). Although the primary
focus for these multi-target drugs are metabolic diseases
and diabetes, these drugs also have potential to combat kid-
ney disease via actions on kidney cell signaling pathways.
Although great strides have been made in developing

multi-target drugs for CKD and associated conditions, a need
still exists to develop multi-target drugs that can combat glo-
merular diseases and AKI. Several pathways could be tar-
geted by multi-target drugs to combat AKI. These pathways
include hypoxia-inducible factor signaling, fructokinase sig-
naling, inflammation, mitochondrial function, oxidative
stress, and the PPARg/PGC-1a pathway (5–7). Targeting
multiple immune pathways—such as neutrophil/macro-
phage TNFa and IL-6, leukocyte complement C3 and C5, and
T-cell TNFa and intracellular adhesion molecule—could be
beneficial in treating glomerular diseases (10–12). Current
multi-target drugs for CKD can affect several of these path-
ways, but these drugs have not been tested for their ability to
effectively combat glomerular diseases andAKI.
Initial evaluations of target engagement, administration

routes, and pharmacokinetics have been conducted with
PTUPB, RB394, DM509, and INT-767 (Table 2). Neverthe-
less, these multi-target drugs could have side effects that
are associated with small molecules. These include the
potential for off-target side effects and unwanted systemic
actions. Extensive evaluation of the multi-target drugs is
needed to limit the potential for off-target side effects. As
for systemic actions, multi-target drugs have been designed
in many cases to have beneficial effects on systemic disease
in addition to combating kidney diseases (Figure 3)
(33,46,52,54). Kidney-targeting strategies can be used to
limit systemic drug side effects when direct kidney actions
are desired (65,66). Kidney targeting with folate conjuga-
tion has been successfully demonstrated using EET ana-
logues (67). An alternative strategy for limiting unwanted
side effects of small molecules is to develop multi-target bio-
logics and RNA-based therapies for kidney diseases. Biolog-
ics such as mAbs and nanobodies, which act on a single
target, are advancing the treatment of kidney diseases with
improvements in bioavailability and tissue targeting (68,69).
Likewise, RNA-based short-interfering RNAs and long-
coding RNAs are improving the treatment of kidney diseases.
Developing biologics and RNA-based drugs with multi-tar-
get activities for kidney and glomerular diseases could have
kidney and cell-targeting advantages; however, several chal-
lenges remain that would need to be overcome (70–71). Con-
sequently, there are ample avenues to be investigated in
developing multi-target therapies for kidney diseases.

Conclusion
Multi-target drugs have advantages for treating complex,

multifactorial diseases such as AKI, CKD, and glomerular
diseases. These drugs have anti-inflammatory, antidiabetic,

antihypertensive, and antifibrotic actions to combat kidney
diseases. Targets that have been combined and investigated
for kidney diseases include sEH, COX-2, 5-LOX, FXR,
PPAR, and TGR5. The design of these multi-target drugs
has involved balancing the activity of each target of interest
while maintaining suitable pharmacokinetic profiles. Multi-
target drugs include PTUPB, 7ad, RB394, DM509, and INT-
767, and these drugs all affect kidney TGF-b signaling,
inflammation, and fibrosis to decrease kidney disease.
Their therapeutic potential has been demonstrated in vari-
ous animal models for diabetes, hypertension, aging, and
UUO, where kidney damage is relevant to CKD. However,
the effects of these multi-target drugs for the treatment of
AKI and glomerular diseases are unknown. In addition,
there are several other multi-target drugs in development
that have the potential to treat kidney diseases. Overall, the
future is bright for multi-target drugs to become therapeu-
tics for kidney diseases.
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