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Key Points

� Relaxin attenuates tissue fibrosis in an organ- and age-specific manner.
� The antifibrotic actions of relaxin are mediated via an angiotensin type 2 receptor mechanism.
� Relaxin replacement therapy is a potential antifibrotic for cardiovascular and kidney disease in postmenopausal

women.

Abstract
Background The antifibrotic effects of recombinant human relaxin (RLX) in the kidney are dependent on an
interaction between its cognate receptor (RXFP1) and the angiotensin type 2 receptor (AT2R) in male models of
disease. Whether RLX has therapeutic effects, which are also mediated viaAT2R, in hypertensive adult and
aged/reproductively senescent females is unknown. Thus, we determined whether treatment with RLX provides
cardiorenal protection via an AT2R-dependent mechanism in adult and aged female stroke-prone spontaneously
hypertensive rats (SHRSPs).

Methods In 6-month-old (6MO) and 15-month-old ([15MO]; reproductively senescent) female SHRSP, systolic BP
(SBP), GFR, and proteinuria were measured before and after 4 weeks of treatment with vehicle (Veh), RLX (0.5
mg/kg per day s.c.), or RLX1PD123319 (AT2R antagonist; 3 mg/kg per day s.c.). Aortic endothelium–dependent
relaxation and fibrosis of the kidney, heart, and aorta were assessed.

Results In 6MO SHRSP, RLX significantly enhanced GFR by approximately 25% (P50.001) and reduced cardiac
fibrosis (P50.01) as compared with vehicle-treated counterparts. These effects were abolished or blunted by
PD123319 coadministration. In 15MO females, RLX reduced interstitial renal (P50.02) and aortic (P50.003)
fibrosis and lowered SBP (1363 mmHg; P50.04) relative to controls. These effects were also blocked by
PD123319 cotreatment (all P50.05 versus RLX treatment alone). RLX also markedly improved vascular function
by approximately 40% (P,0.001) in 15MO SHRSP, but this was not modulated by PD123319 cotreatment.

Conclusions The antifibrotic and organ-protective effects of RLX, when administered to a severe model of
hypertension, conferred cardiorenal protection in adult and reproductively senescent female rats to a great extent
via an AT2R-mediated mechanism.

KIDNEY360 2: 1781–1792, 2021. doi: https://doi.org/10.34067/KID.0002722021

Introduction
Premenopausal women have a lower incidence of car-
diorenal disease compared with age-matched men
and postmenopausal women, although the underlying
mechanisms are incompletely understood (1). Accu-
mulating evidence points to a sex-specific role for the
angiotensin type 2 receptor (AT2R) (2). AT2R sup-
presses angiotensin type 1 receptor (AT1R) expression
and function, and it counterbalances the AT1R-medi-
ated prohypertensive and profibrotic effects of

angiotensin II (1,2). Importantly, the renoprotective
effects of AT2R stimulation in rodents (2) and humans
(3–5) are enhanced in adult females in association
with a greater AT2R:AT1R ratio. However, expression
of the AT2R and its effects in female preclinical mod-
els are decreased with age (6–8). As such, upregulat-
ing AT2R function could be a valuable therapeutic
approach to target cardiorenal injury.
Renal fibrosis, one of the main drivers of CKD, is

associated with increased risk of cardiovascular
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disease and is a major public health concern. Despite the
pathophysiologic significance of renal fibrosis, there are no
approved clinical treatments for delaying or reversing its
progression (9). Evidence indicates that human gene-2 (H2)
relaxin (RLX), the major form of human RLX, is protective
against age- and injury-related renal fibrosis (10,11).
Recently, the vasodilatory and antifibrotic effects of RLX in
the kidney, owing to its nitric oxide–promoting and TGF-
b1–inhibiting actions, were shown to require crosstalk
between its cognate G protein–coupled receptor, relaxin
family peptide receptor 1 (RXFP1), and the AT2R (12,13).
This RXFP1-AT2R crosstalk was shown to be integral in
slowing or reversing tissue fibrosis in male preclinical mod-
els of kidney disease, such that RLX indirectly mediated its
therapeutic effects via AT2R signal transduction (12–14).
However, whether the antifibrotic effects of RLX require
the AT2R in aged females is not known. Given that the
renoprotective effects of AT2R activation are downregu-
lated in aged females (6–8) and that RLX levels decline
with age in females (15), exogenous RLX administration to
aged females may act via the AT2R to attenuate renal fibro-
sis and reinstate cardiorenal protection.
Here, we examined the therapeutic effects of recombi-

nant H2 RLX in adult (6-month-old [6MO]) and aged (15-
month-old [15MO]; reproductively senescent) female
stroke-prone spontaneously hypertensive rats (SHRSPs).
The adult cohort served as a control group to demonstrate
the effect of age. The SHRSPs are stroke prone if fed a
high-salt diet, but in this study, the stroke phenotype was
not examined (16). The SHRSP on a normal sodium intake
is a model of severe progressive hypertension in which
renal damage is evident at approximately 6 months of age,
approximately 3 months earlier than in its parental strain
of spontaneously hypertensive rats (17). Moreover, female
SHRSPs enter reproductive senescence at approximately
13–15 months of age. Therefore, the SHRSP is a model in
which the effects of aging and reproductive senescence can
be examined over a shortened time frame. We hypothe-
sized that (1) chronic RLX treatment confers renoprotective
effects with benefits for end organ fibrosis and renal func-
tion in aged reproductively senescent females and that (2)
these RLX-mediated effects are negated by AT2R blockade.

Materials and Methods
Materials
RLX was provided by Corthera Inc. (San Mateo, CA; a

subsidiary of Novartis International AG, Basel, Switzer-
land) and is bioactive in rats (18). PD123319 (AT2R antago-
nist) was obtained from Sigma-Aldrich (St. Louis, MO).

Animals
Experiments were conducted in accordance with the

Australian Code of Practice for the Care and Use of Ani-
mals for Scientific Purposes and approved by the Monash
University School of Biomedical Sciences Animal Ethics
Committee (MARP/2015/166). Adult (6MO) and aged
(15MO) female SHRSPs were obtained from the Monash
Animal Research Platform, Monash University (Clayton,
VIC, Australia) and individually housed with temperature
maintained at 21�C–22�C and a 12-hour light-dark cycle.

Rats had ad libitum access to a normal chow (0.5% NaCl)
rodent maintenance diet (Barastoc Stockfeeds, Pakenham,
VIC, Australia) and water. On this sodium diet, no female
SHRSPs exhibited signs of stroke throughout the study.

Study Design
Vaginal smears were taken from 15MO female SHRSPs

to confirm that they were reproductively senescent. Meas-
urements in 6MO (n524) and 15MO (n526) cohorts were
made at baseline and 4 weeks after treatment. These
included systolic BP (SBP) recorded via tail-cuff plethys-
mography (Hatteras Instruments), 24-hour urine collection,
and GFR via a transdermal decay method using FITC-
sinistrin. The rats were treated with vehicle (20 mM
sodium acetate buffer subcutaneously [s.c.]), an RLX (0.5
mg/kg per day s.c.) dose that causes antifibrotic effects in
male rats (19), or RLX 1 PD123319 (AT2R antagonist; 3
mg/kg per day s.c.) delivered via osmotic minipump
(ALZET model 2ML4) for 28 days. Following 4 weeks of
treatment, aorta, heart, and kidney were collected for histo-
logic quantification of fibrosis, and blood samples were
collected for determination of plasma RLX levels. Aortic
endothelial vasodilator function in response to acetylcho-
line (ACh) and renal gene expression of the angiotensin
receptors (AT1aR and AT2R) and RXFP1 were also
determined.

Measurement of SBP
SBP was measured using a noninvasive tail-cuff BP

analysis system (Hatteras Instruments) as described previ-
ously (20).

Measurement of GFR
GFR was measured in conscious rats via the transcutane-

ous clearance of FITC-sinistrin (Fresenius Kabi Austria
GmbH, Linz, Austria), a fluorescent-labeled exogenous
marker of GFR (21). The fluorescence signal intensity of
FITC-sinistrin was determined using a miniaturized animal
imager (noninvasive clearance kidney device; Mannheim
Pharma & Diagnostics GmbH, Mannheim, Germany).
FITC-sinistrin was dissolved in 0.9% wt/vol sodium chlo-
ride solution and administered at a dose of 3–5 mg/100 g
body weight.

Urinary Protein Analyses
Rats were housed in metabolic cages for 24 hours to

determine urine flow and collect a urine sample. Urinary
protein was determined using a Coomassie blue assay
(Pierce Biotechnology, Rockford, IL), and protein excretion
rates (milligrams per hour) were expressed relative to body
weight.

Vascular Function
Aortic rings (approximately 5-mm long) were obtained

from the thoracic aorta, and each ring was suspended
between two stainless steel wires connected to an isometric
force transducer (FT-03; Grass Instruments). To examine
endothelium-dependent relaxation to ACh, the vessels
were preconstricted using U46619 [the thromboxane A2
receptor analog 1,5,5-hydroxy-11a, 9a-(epoxyme a-thano)
prosta-5Z, 13E-dienoic acid; 100mM] to 60%–70% of the

1782 KIDNEY360



maximal response to potassium physiologic salt solution
(22). At the end of the study, a single dose of the
endothelium-independent vasodilator, sodium nitroprus-
side (10 mM), was then added to the bath to induce maxi-
mal vasodilation and confirm vascular smooth muscle
integrity.

Measurement of Plasma RLX
The Quantikine Human H2 Relaxin ELISA kit (catalog

no. DRL200; R&D Systems, Inc., Minneapolis, MN) was
used to measure circulating levels of RLX in vehicle-, RLX-,
and RLX1PD123319–treated SHRSPs. Rat plasma was
diluted 1:50, and the assay was performed according to the
manufacturer’s instructions.

Quantifying Renal, Cardiac, and Aortic Fibrosis
Paraformaldehyde-fixed heart, kidney, and aorta sam-

ples were processed to paraffin, sectioned at 5 mm, and
mounted on Superfrost Plus slides (Gerhard-Menzel; Ther-
moScientific). Heart and aorta sections were stained with
0.05% wt/vol picrosirius red solution, and kidney sections
were stained with Masson trichrome (one slide per organ
per animal). The Aperio Scanscope AT Turbo scanner
(Leica Microsystems, Sydney, Australia) was then used to
generate digital images of stained sections (at 403 magnifi-
cation). Each slide was assessed by two independent
researchers blinded to treatment groups and subjectively
graded by assigning a score (on a scale of zero to four) on
the basis of pathology severity. The extent of cortical tubu-
lointerstitial fibrosis was graded as described previously
(23). Glomerulosclerosis was defined as glomerular base-
ment membrane thickening, mesangial hypertrophy, and
capillary occlusion, and it was assigned a score from zero
to one on the basis of pathology severity. Glomerular area
was quantified by tracing glomerular borders when the
vascular pole was evident. Thirty glomeruli from each ani-
mal were examined in Masson trichome–stained kidneys,
and measurements were averaged. Cardiac ventricular
fibrosis was scored on the basis of fibrotic area, and aortic
fibrosis was scored on the basis of media collagen content:
grade 0 (normal): 0%–10%; grade 1 (minimal): 10%–25%;
grade 2 (moderate): 25%–50%; grade 3 (moderately severe):
50%–75%; and grade 4 (severe): 75%–100%. Intima media
thickness was measured in the aorta (micrometers) with
treatment groups blinded, and an average of four measure-
ments per tissue was used.

Renal Gene Expression
RNA was extracted from kidneys of 6MO and 15MO

SHRSPs following the 28-day infusion of vehicle, RLX, or
RLX 1 PD123319 using the RNeasy Mini kit as outlined by
the manufacturer’s instructions (Qiagen, Doncaster, VIC,
Australia). One microgram of extracted RNA was
converted to cDNA (53 iSCRIPT Supermix; BioRad; Life
Sciences). Samples were run in triplicate using TaqMan
gene expression assays for AT1aR (Agtr1a: Rn02758772_s1),
AT2R (Agt2r: Rn00560677_s1), and RXFP1 (Rxfp1:
Rn01495351_m1; Applied Biosystems; Life Technologies)
and duplexed with 18S rRNA (Hs99999901_s1) as the inter-
nal housekeeping gene. Reactions were set up on a 384-
well PCR plate using an automated liquid handler

(Qiagility; Qiagen) and run using the Applied Biosystems
7900HT Fast RT-PCR system. Each 10-ml reaction contained
a PCR reaction mix (23 TaqMan universal PCR master mix
and TaqMan gene expression assays; Applied Biosystems;
Life Technologies) and 50ng of cDNA. Relative gene
expression was determined via the comparative cycle of
threshold fluorescence (22DDCT) method using real-time
quantitative RT-PCR Realplex software (Applied
Biosystems).

Statistical Analyses
Data are presented as mean 6 SEM. Basal values for

SBP, GFR, urine flow, and protein excretion were pooled
for 6MO and 15MO groups, with the effect of age deter-
mined using a two-tailed, unpaired t test. The absolute
change from baseline for SBP, GFR, urine flow, and protein
excretion was measured, and differences between groups
were analyzed using a two-way ANOVA with factors
group, treatment, and their interaction followed by post
hoc analysis with a Sidak correction to reduce risk of type 1
error. Body and organ weights, plasma RLX levels, and
renal mRNA expression (expressed relative to the 6MO
vehicle-treated group) were analyzed using a two-way
ANOVA with factors age, treatment, and their interaction,
followed by the Sidak multiple comparisons test. Histopa-
thology scores as well as aortic media thicknesses were
analyzed using a Mann–Whitney test. Dose-response relax-
ation curves to ACh were analyzed using nonlinear regres-
sion to obtain the molar concentration of agonist producing
50% of the maximum response presented as 210log EC50

and the maximal effect generated by the agonist (Emax).
Values for the molar concentration of agonist producing
50% of the maximum response presented as 210log EC50

and Emax were analyzed using a one-way ANOVA with
the Sidak multiple comparisons test. P50.05 was accepted
as the level of statistical significance.

Results
Body and Organ Weights
Body weight as well as total heart and kidney weights

were greater with age (Page,0.001) (Supplemental Table 1)
but unaffected by RLX alone or in combination with
PD123319 treatment (Supplemental Table 1).

Plasma RLX Levels
Plasma RLX levels were not detectable in vehicle-treated

6MO or 15MO SHRSPs after 28 days of vehicle infusion. In
comparison, levels were between approximately 15 and 30
ng/ml in RLX-treated rats, with levels in the 6MO group
significantly greater than those in the 15MO group
(P50.04) (Figure 1). These plasma RLX levels were similar
to the circulating RLX concentrations detected in rats at
gestational days 12–14 (24,25). Cotreatment with PD123319
did not significantly affect plasma RLX levels.

SBP
SBP was similar to baseline levels following 4 weeks of

vehicle or RLX treatment in the 6MO group. However, in
response to RLX1PD123319 treatment, SBP increased by
1064 mm Hg from baseline in the 6MO group (P50.05
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versus the RLX-treated group) (Figure 2B). SBP was
approximately 20 mm Hg higher in the 15MO as compared
with the 6MO females (P,0.001) (Figure 2A), but it was
decreased by approximately 1363 mm Hg following RLX
as compared with vehicle infusion (P50.04) (Figure 2B).
This RLX-induced response was reversed by coinfusion of
RLX1PD123319 (P,0.001 versus the 15MO RLX group)
(Figure 2B).

GFR, Urine Flow, and Proteinuria
In 6MO SHRSPs, GFR was approximately 25% greater

after RLX treatment (0.5760.03 ml/min per 100 g body
weight after treatment versus 0.4560.03 ml/min per 100 g
body weight before treatment; P50.001) (Figure 2D). This
effect of RLX in 6MO animals was abolished by concomi-
tant infusion of RLX1PD123319 (P50.04) (Figure 2D). In
the 6MO group, the change in urine flow from baseline
was 190% greater in response to chronic RLX infusion as
compared with vehicle treatment (P50.05) (Figure 2F).
Coinfusion of RLX1PD123319, however, did not alter the
urine flow response as compared with RLX treatment alone
(P50.80) (Figure 2F). Administration of RLX and
RLX1PD123319 to 6MO females did not significantly affect
urinary protein excretion (Figure 2H).
Basal GFR was lower (P50.004) (Figure 2C), whereas

basal urine flow and proteinuria were greater in 15MO
females as compared with their 6MO counterparts (both
Page,0.001) (Figure 2, E and G, respectively). GFR did not

change significantly in response to any treatment in 15MO
SHRSPs (Figure 2D). Urine flows in 15MO animals were
approximately 40% and approximately 33% greater in the
RLX-treated group relative to the vehicle-treated (P50.001)
and RLX1PD123319–treated (P50.03) groups, respectively
(Figure 2F). No significant difference in protein excretion
was detected between RLX or RLX1PD123319 in the
15MO groups (Figure 2H).

Vascular Function
Stimulation of the endothelium with ACh evoked

concentration-dependent relaxation in the abdominal aorta
of all groups (Figure 3, Table 1). In 6MO SHRSPs, relaxa-
tion to ACh was similar in vehicle- and RLX-treated groups
(P50.20) (Figure 3A, Table 1). However, the vasodilatory
response to ACh was less in the RLX1PD123319 group
compared with RLX treatment alone (64%64% versus
91%63%; P50.003) (Figure 3A, Table 1). A significant age-
induced vascular dysfunction was observed in female
SHRSPs (Emax: 57%68% in the 15MO vehicle group versus
78%65% in the 6MO vehicle group; P50.02) (Figure 3B,
Table 1). RLX treatment promoted aortic relaxation in
15MO SHRSPs (Emax: 95%63% versus 57%68%; P,0.001)
(Figure 3B, Table 1), but this was unchanged by
RLX1PD123319 treatment (P50.70) (Figure 3B, Table 1).

Organ Fibrosis
Renal interstitial fibrosis in the 6MO cohort was modest

in the vehicle- and RLX-treated groups (0.360.1 and
0.460.1, respectively; P50.50). In 6MO females, renal inter-
stitial fibrosis was greater in the RLX1PD123319 group as
compared with RLX treatment alone (0.760.1 versus
0.460.1; P50.003) (Figure 4, A and B). Renal interstitial
fibrosis (P,0.001), glomerulosclerosis (P,0.001), and glo-
merular hypertrophy (P50.02) were greater in 15MO com-
pared with 6MO females (Figure 4, Supplemental Figure
1). In 15MO females, renal interstitial fibrosis was signifi-
cantly less in the RLX-treated group as compared with the
vehicle-treated group (1.560.2 versus 2.160.2; P50.02)
(Figure 4, A and B). However, this effect was abolished by
RLX1PD123319 treatment (2.160.1; P50.009) (Figure 4, A
and B).

In the 6MO cohort, cardiac fibrosis was less following
RLX treatment compared with vehicle-treated SHRSPs
(1.860.1 versus 2.360.1; P50.01) (Figure 5). RLX1PD123319
infusion did not significantly reverse the effect of RLX
treatment alone (2.160.3; P50.20), but there was no signifi-
cant difference in cardiac fibrosis between vehicle- versus
RLX1RD123319–treated SHRSPs (Figure 5). Chronic RLX
infusion alone or in combination with PD123319 did not
modulate aortic fibrosis or media thickness in 6MO females
(Figure 6). Cardiac fibrosis (P50.01) (Figure 5) and aortic
fibrosis (P50.002) (Figure 6, A and B) were greater in
15MO female SHRSPs as compared with their 6MO coun-
terparts. The age-induced aortic fibrosis coincided with a
greater media thickness in 15MO relative to 6MO females
(P50.04) (Figure 6, A and C). Neither RLX alone nor
RLX1PD123319 treatment modified the level of cardiac
fibrosis in vehicle-treated 15MO SHRSPs (Figure 5). How-
ever, aortic fibrosis (1.760.2 versus 2.76 0.1; P5 0.003) and
intima media thickness (16663 versus 18165mm; P50.007)
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were significantly attenuated in RLX-treated 15MO SHRSPs
compared with vehicle (Figure 6). Coinfusion of RLX1
PD123319 in 15MO animals blocked the RLX-mediated
attenuation of both aortic fibrosis (P,0.001) and media
thickness (P50.01) (Figure 6).

Renal Gene Expression
RXFP1, AT1aR, and AT2R gene expression was identified

in the kidneys of 6MO and 15MO SHRSPs (Supplemental
Figure 2). However, there was no significant effect of age
or any treatment investigated on the gene expression of
these receptors in the kidney.

Discussion
This study demonstrated that the antifibrotic and

cardiorenal-protective effects of RLX in female SHRSPs are
mediated to a large extent via the AT2R and that RLX treat-
ment in aged reproductively senescent females reduced
cardiorenal injury. Chronic RLX infusion improved GFR
and reduced cardiac fibrosis in 6MO female SHRSPs. In
15MO female SHRSPs, RLX treatment reduced SBP and
renal and aortic fibrosis and attenuated endothelial dys-
function. The RLX-mediated improvement of GFR and the
reduction of SBP and renal fibrosis in female SHRSPs
occurred via an AT2R-dependent mechanism because AT2R
blockade prevented these effects. Importantly, our data
suggested that endogenous RLX via the AT2R in female
6MO SHRSPs may be exerting protective actions because
renal fibrosis was greater during AT2R blockade. Our data,
therefore, provide evidence for a significant role of the
AT2R in the antifibrotic, vasodilatory, and antihypertensive
effects of RLX in adult and aged reproductively senescent
females.

Organ fibrosis increased with age in female SHRSPs. The
antifibrotic properties of RLX have been reported previ-
ously in preclinical models of aging and disease, albeit
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tylcholine (ACh) in isolated aortic rings was obtained from (A)
6MO and (B) 15MO female stroke-prone spontaneously hyperten-
sive rats (n56–10 per group) after 4 weeks of Veh (20 mM sodium
acetate subcutaneously), RLX (0.5 mg/kg per day subcutaneously),
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of the preconstriction response to U46619 (Table 1). The same
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Table 1. Aortic vascular function

Treatment Group pEC50 Emax

6MO SHR
Veh 7.560.3 7865
RLX 7.760.2 9163
RLX1PD 7.660.3 6464a

15MO SHR
Veh 6.960.4 5768b

RLX 7.260.2 9563c

RLX 1 PD 7.260.3 8664

The molar concentration of agonist producing 50% of the
maximum response presented as 210log EC50 (pEC50) and
the maximal effect generated by the agonist (Emax) values for
acetylcholine in isolated aortic arteries of 6-month-old (6MO)
and 15-month-old (15MO) female stroke-prone spontane-
ously hypertensive rat (SHR) following 4 weeks of treatment
with vehicle (Veh; 20 mM sodium acetate subcutaneously),
relaxin ([RLX]; 0.5 mg/kg per day subcutaneously), or
RLX1PD123319 (RLX1PD; angiotensin type 2 receptor
antagonist; 3 mg/kg per day subcutaneously) are shown.
Data are presented as mean6SEM (n54–7 per group).
Acetylcholine relaxation responses were analyzed using
nonlinear regression to obtain pEC50 and Emax. Data were
analyzed using an ANOVA with selected post hoc
comparisons with Bonferroni post hoc tests. P50.05 was
considered statistically significant.
aP50.01 relative to 6MO RLX.
bP50.05 relative to 6MO Veh.
cP,0.001 relative to 15MO Veh.
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primarily in males (10,26). A role for RLX in organ fibrosis
in females has not been widely studied and has not been
consistently demonstrated. Recently, chronic RLX treat-
ment of aged (24-month-old) female F-344/Brown Norway
rats was found to decrease the expression of atrial natri-
uretic peptide and TGF-b1 (markers associated with car-
diac hypertrophy and fibrosis) to levels measured in adult
(9-month-old) females (27). Similarly, adenoviral treatment
with RLX attenuated left ventricular fibrosis in adult (7-
month-old) female b2-adrenoreceptor transgenic mice (a
model of fibrotic cardiomyopathy) (28). However, in other
studies, cardiac and renal fibrosis in RLX-knockout mice
was age-dependently increased in males but not in females
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Figure 4. | Renal fibrosis. Tubulointerstitial fibrosis and glomerulo-
sclerosis index measured in 6MO and 15MO female stroke-prone
spontaneously hypertensive rats (n56–10 per group) after 4 weeks
of Veh (20 mM sodium acetate subcutaneously), RLX (0.5 mg/kg
per day subcutaneously), or RLX1PD123319 (angiotensin type 2
receptor antagonist; 3 mg/kg per day subcutaneously) treatment. (A)
Representative images of the Masson trichrome staining of renal
cortex in female stroke-prone spontaneously hypertensive rats dem-
onstrate the extent of extracellular matrix (ECM) deposition (fibro-
sis; blue staining) in each of the groups studied. Scale bar: 200 mm.
(B and C) Data are presented as mean6SEM (n56–10 per group)
and were analyzed using a Mann–Whitney test. *P50.05;
**P50.01; ***P,0.001; ****P,0.001.
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Figure 5. | Cardiac fibrosis. Cardiac fibrosis measured in 6MO
and 15MO female stroke-prone spontaneously hypertensive rats
(n56–10 per group) after 4 weeks of Veh (20 mM sodium acetate
subcutaneously), RLX (0.5 mg/kg per day subcutaneously), or
RLX1PD123319 (angiotensin type 2 receptor antagonist; 3 mg/kg
per day subcutaneously) treatment. (A) Representative images of
Picrosirius red staining show the extent of interstitial fibrosis within
the left ventricle (LV) of each of the groups studied. Scale bar: 300
mm. (B) LV histopathology was expressed as a score on the basis of
pathology severity as quantified from Picrosirius red staining: zero,
normal; one, minimal; two, moderate; three, moderately severe;
and four, severe. Data are presented as mean6SEM (n56–10 per
group) and were analyzed using a Mann–Whitney test. *P50.05;
**P50.01.
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Figure 6. | Aortic fibrosis and media thickness. Aortic fibrosis and media thickness of aorta measured in 6MO and 15MO female stroke-
prone spontaneously hypertensive rats (n56–10 per group) after 4 weeks of Veh (20 mM sodium acetate subcutaneously), RLX (0.5 mg/kg
per day subcutaneously), or RLX1PD123319 (angiotensin type 2 receptor antagonist; 3 mg/kg per day subcutaneously) treatment. (A) Rep-
resentative images of Picrosirius red staining of aorta sections in female stroke-prone spontaneously hypertensive rats show the extent of
fibrosis in each of the groups studied. Scale bar: 100 mm. (B) Aortic histopathology was expressed as a score on the basis of pathology
severity as quantified by Picrosirius red staining: zero, normal; one, minimal; two, moderate; three, moderately severe; and four, severe.
(C) Media thickness (micrometers) of the aorta. Data in (B) and (C) are presented as mean6SEM (n56–10 per group) and were analyzed
using a Mann–Whitney test. *P50.05; **P50.01; ***P,0.001.
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(29,30). This suggested that endogenous RLX alone did not
protect against fibrosis in females, whereas it appeared to
play a greater antifibrotic role in males. In this study, we
showed that chronic RLX treatment attenuated cardiac
fibrosis in 6MO female SHRSPs, whereas RLX treatment of
15MO female SHRSPs attenuated renal interstitial and aor-
tic fibrosis. The temporal and organ-specific effects of RLX
in this study may be related to the fact that cardiac fibrosis
is more advanced than renal fibrosis in the SHRSPs, with
cardiac fibrosis present by approximately 2–3 months of
age (31) versus renal fibrosis present by approximately 6–7
months of age (32). Thus, an antifibrotic effect of RLX was
apparent at an earlier time point in the heart but delayed in
the kidney. The inability of RLX to significantly ameliorate
cardiac fibrosis at 15 months of age is in line with evidence
indicating that the potency and efficacy of RLX as an antifi-
brotic agent are limited in severe established organ fibrosis
(10). Therefore, our findings suggest that exogenous RLX
has antifibrotic effects in a severe, genetic model of essen-
tial hypertension in females that are both age and organ
specific. Thus, further investigation of the potential of RLX
as an antifibrotic agent in females is warranted.
The AT2R counter-regulates the prohypertensive and

profibrotic actions of AT1R, with the contribution being
greater in young adult females compared with age-
matched males or aged reproductively senescent females
(33). Our findings that the antifibrotic effects of RLX in the
kidney and aorta of aged female SHRSPs were abrogated
by concomitant treatment with PD123319 confirmed a role
for AT2R in the fibrotic pathways. Moreover, the organ-
specific effects of RLX on fibrosis may relate to differences
in AT2R gene expression as the heart has been shown to
have lower expression than the kidney and vasculature
(34). RLX does not directly bind to AT2R (13). However, an
RLX-RXFP1-AT2R interaction has been shown to drive a
cascade of signaling transduction events that regulate and
diminish ECM deposition to ameliorate renal fibrosis in
males. This included the activation of extracellular
signal–related kinase 1/2 phosphorylation and a neuronal
nitric oxide synthase-nitric oxide-cyclic guanosine
monophosphate–dependent pathway that resulted in the
inhibition of the TGF-b/Smad2/Smad3–mediated differen-
tiation and accumulation of renal myofibroblasts and the
promotion of various collagen-degrading matrix metallo-
proteinase levels (12). Furthermore, in young adult female
SHRSPs, RLX alone did not alter organ fibrosis or improve
vascular function. AT2R appeared to be limiting renal inter-
stitial fibrosis because after PD123319 treatment, renal
fibrosis was greater. A similar pattern in 6MO females was
seen in BP, and vascular function in that AT2R blockade
increased SBP and reduced aortic ACh-induced relaxation.
These data suggest that endogenous RLX in young females
may be acting via AT2R to exert cardioprotective effects,
but this needs to be confirmed under conditions of RXFP1
blockade. Therefore, it is possible that RLX mediates its
antifibrotic and related cardiorenal protective effects via an
interaction with AT2R, and this warrants further
investigation.
In this study, beneficial effects of RLX on BP and vascu-

lar and renal function were also observed. RLX caused a
modest reduction in SBP in aged females, an effect that
was abolished by AT2R blockade. Previous reports on the

effects of chronic RLX on arterial pressure are equivocal. In
young adult or aged normotensive male and female rats,
chronic RLX administration had no effect on mean arterial
pressure due to a decrease in peripheral resistance that was
balanced by increased cardiac output (35,36). However, in
the context of chronic hypertension, chronic RLX infusion
lowered mean arterial pressure, as reported in the 5/6th
renal mass reduction model (37), spontaneously hyperten-
sive rats (19), and rats chronically infused with angiotensin
II (38). Clearly, the effect of RLX on arterial pressure is
dependent on baseline levels of cardiac function and vascu-
lar tone. Furthermore, the reduction in SBP may reflect the
duration of treatment in this study (4 weeks), which was
longer than that used in most previous studies (2–3 weeks).
Our findings, therefore, support the several lines of evi-
dence demonstrating that RLX lowers arterial pressure in
the setting of hypertension. The fall in SBP in the aged
females in response to RLX infusion was prevented by
AT2R blockade. This could be due to reduced tubular
sodium reabsorption as AT2R has been shown to cause a
leftward shift in the pressure-natriuresis-diuresis mecha-
nism in male and female rats (39) and mice (7). However,
we also demonstrated an age-related decline (approxi-
mately 30%) in vascular function in female SHRSPs, which
was markedly reversed by chronic RLX treatment (approxi-
mately 45% increase in relaxation), independent of the
AT2R. This agrees with previous studies showing that RLX
treatment enhances vasodilation in animal and human
blood vessels, which could also contribute to the fall in
BP (26).
The antifibrotic effects of RLX in the kidney may also be

linked to changes in renal hemodynamic and tubular func-
tion. Acute and chronic RLX infusion in nonpregnant,
intact, or ovariectomized female rats and in male rats has
been shown to cause vasodilation, increase GFR and urine
flow, and reduce urinary protein excretion (40–44). In the
kidney, RLX is a potent vasodilator dependent on a
functional nitric oxide synthase-nitric oxide system (45).
Mechanistically, RLX dilates both the afferent and efferent
arterioles, causing a significant increase in renal blood flow
and a marked increase in GFR and urine flow (40,43,44). In
addition, RLX has direct effects on the renal tubules, possi-
bly via an AT2R-bradykinin-nitric oxide-cyclic guanosine
monophosphate mechanism (46,47), to inhibit sodium reab-
sorption (40), which may also contribute to an increase in
urine flow. An increase in renal blood flow may drive a
reduction in proteinuria through increased hydrostatic
pressure and shear stress/nitric oxide production within
the glomerular capillary (48). In line with these findings, it
was demonstrated in this study that 4 weeks of RLX treat-
ment in adult, but not aged, female SHRSPs improved
GFR. In addition, chronic RLX administration enhanced
urine flow in both adult and aged SHRSPs. However, these
RLX-mediated changes in renal hemodynamics were not
associated with a reduction in glomerulosclerosis or uri-
nary protein excretion. Furthermore, we now understand
that AT2R plays a greater role in the regulation of renal
function in adult as compared with aged reproductively
senescent females (33). Given that RLX improved GFR via
an AT2R-mediated mechanism in adult but not aged
females, this suggests that the AT2R may be associated
with the renal vasodilator effects of RLX in adult
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hypertensive females and that the renal vasodilatory effects
of RLX may be blunted by age. This may be attributed to a
reduction in AT2R gene expression and/or a reduction in
nitric oxide availability in the kidney. Although renal AT2R
gene expression was not altered by age in our model, defi-
cits in the downstream signaling pathways of the AT2R
with age in the renal vasculature may directly attenuate the
ability of RLX to promote its vasodilatory effects (49).
There were a number of strengths and weakness in this

study. A major strength was the inclusion of aged animals
as successful clinical translation of potential new therapies
often fail because they are not tested in aged animals with
established fibrosis. A limitation of this study was that a
group receiving the AT2R antagonist alone was not
included in the experimental design. However, previous
studies have shown that PD123319 alone does not affect
cardiovascular end points in female or male rats (34,50,51).
Another limitation is that the renal, vascular, and antifi-
brotic effects of RLX cannot be dissociated from the fall in
BP. Future studies should address whether RLX treatment
in aged females directly attenuates fibrosis and improves
both GFR and vasorelaxation or whether such changes are
secondary to the BP-lowering effect of RLX. Specifically, it
will be important to confirm the BP effects via radioteleme-
try recording (particularly given that the fall in SBP was
not reflected by a reduction in cardiac hypertrophy) and to
examine the effect of blocking the RXFP1 receptor on the
response to RLX treatment.
In conclusion, this study supports a role for RLX within

the kidney, heart, and aorta to reduce fibrosis via the AT2R.
Importantly, RLX replacement therapy in aged reproduc-
tively senescent females attenuated renal interstitial and
vascular fibrosis. Ongoing studies are required to further
investigate the mechanistic pathways involved in the RLX-
mediated antifibrotic effects. This study highlights the
potential of RLX as an emerging antifibrotic therapeutic for
cardiovascular and kidney disease in postmenopausal
women.
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