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Abstract

AKI remains highly prevalent, yet no optimal therapy is available to prevent it or promote recovery after
initial insult. Experimental studies have demonstrated that both innate and adaptive immune responses play
a central role during AKI. In response to injury, myeloid cells are first recruited and activated on the basis of
specific signals from the damaged microenvironment. The subsequent recruitment and activation state of the
immune cells depends on the stage of injury and recovery, reflecting a dynamic and diverse spectrum of
immunophenotypes. In this review, we highlight our current understanding of the mechanisms by which
myeloid cells contribute to injury, repair, and fibrosis after AKI.
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Introduction
Kidneys maintain fluid, electrolyte and acid-base bal-
ance, excrete waste products, and regulate BP with
high metabolic activity, which renders them suscepti-
ble to injury from aseptic insults to asepsis. These
insults cause AKI characterized by a rapid decline in
renal function. AKI is common in patients who are
hospitalized, especially those in the intensive care
unit. Patients who survive AKI are at an 8.8-fold
increased risk for developing CKD and a 3.3-fold
increased risk for ESKD (1–3). However, optimal ther-
apy has not yet been developed to prevent such injury
or promote recovery after AKI. Understanding the
underlying mechanism(s) of AKI will help identify
novel targets and develop therapeutic strategies for
AKI to mitigate the burden of this disease.

The pathophysiology of AKI ranges from dimin-
ished renal perfusion with no structural damage to
intrinsic kidney disease, including vascular endothe-
lial injury, GN, acute interstitial nephritis, acute tubu-
lar injury, and obstruction of urinary outflow with
associated apoptosis of tubular cells. Recently, the
advanced technology of single-cell RNA sequencing
(scRNA-seq) or single-nucleus RNA-seq allows
researchers to unbiasedly map the cellular complexity
of the kidneys, in both human and mice, and to study
the mechanism(s) of AKI at the single-cell level. For
instance, unsupervised clustering of scRNA-seq data
from the allograft biopsy specimen (histologically
read as mixed rejection) reveals most native kidney
cell types and all of the major immune cells, including
monocytes, mast cells, T cells, B cells, and plasma cells
(4). Consistently, the data from mouse models of AKI
(i.e., ischemia-reperfusion injury [IRI], reversible uni-
lateral ureter obstruction) show most cell types that
comprise the kidney with a multitude of resident
and infiltrating immune cells, including monocytes/

macrophages, neutrophils, dendritic cells (DCs), T
cells, B cells, and natural killer cells (5–8). The clinical
and experimental evidence suggest that both myeloid
and lymphoid cells are involved in immune-
mediating damage to renal tubular cells and in recov-
ery from AKI (9–12). This review will focus on the
role(s) of myeloid cells in the course of AKI and kid-
ney repair (briefly summarized in Figure 1).

The Origins and Plasticity of Myeloid Cells in
the Kidney
One of the hallmarks of most immune cells is their

continuous replenishment from precursors that are
ultimately derived from bone marrow–derived hema-
topoietic stem cells (HSCs) (13). In kidney, all myeloid
cells, including granulocytes (neutrophils, eosinophils,
basophils, and mast cells [in a small number]), mono-
cytes, and DCs are derived from HSCs, except tissue-
resident macrophages (Table 1). Studies also show
that kidney-resident mononuclear phagocytes are
derived from the yolk sac at the embryogenesis stages.
The kidney macrophages are originated from HSCs
and replaced continually from DC precursors (21–23).
Regardless of the initial cause of injury, sepsis or

kidney damage via aseptic insult, the innate immune
system is first activated not only by the resident
immune cells but also by a rapid influx of myeloid
cells from systemic immune factors during AKI.
Injury leads to oxidative stress, endoplasmic reticulum
stress, and mitochondrial dysfunction in both endo-
thelial and tubular epithelial cells, in which c-Jun
N-terminal kinase, caspase cascade, and receptor-
interacting protein kinase 1 pathways are activated to
induce apoptosis (predominantly) and necrosis, and
downstream proinflammatory cytokines are also acti-
vated to promote the inflammatory milieu (24,25).
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Figure 1. | Myeloid cells mediate tubular injury and repair following AKI. In response to AKI, endothelial cells express fractalkine
(CX3CL1) and ICAM-1 and VCAM-1 to recruit neutrophils and monocytes into the injured kidney and promote leukocyte-endothelial cell
adhesion, respectively. IL-1b, IL-6, IL-18, and TNF-a released from neutrophils/dendritic cells induce apoptosis and/or necrosis of tubular
epithelial cells. Proinflammatory cytokines, ROS, HIFs, and DAMPs released by degranulating PMNs and injured or dying tubular cells
lead to the proinflammatory activation of macrophages. These proinflammatory macrophages then subsequently produce proinflammatory
cytokines and NO, which lead to further tubular injury. The inflammatory milieu in the early phase is later reversed during the repair
phase. Downregulation of ICAM-1 and VCAM-1 limits inflammatory cell infiltration. Macrophage growth and differentiation factors M-CSF
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Injured or necrotic tubular cells, in turn, release damage-
associated molecular patterns (DAMPs) and hypoxia-
inducible factors, which are responsible for recruiting the
circulating immune cells to the injured kidney. Both resi-
dent macrophages and DCs ensure inflammation by releas-
ing proinflammatory cytokines, such as TNF-a, which is
amplified by infiltrated myeloid cells through chemokines
and cytokines (26,27).
Because of their heterogeneity and inherent plasticity,

monocytes/macrophages may adopt different phenotypes
in response to the microenvironmental stimuli, such as
injury, cell debris, DAMPs, and extracellular matrix (ECM).
For instance, using fate mapping, four subsets of mononu-
clear phagocytes (macrophages and DCs) found in the kid-
neys from adult mice are phenotypically, functionally, and
transcriptionally distinct from each other (28). These
mononuclear phagocytes exhibit unique age-dependent
developmental heterogeneity. A recent scRNA-seq analysis
identifies 13 subtypes of myeloid cells, and the pseudotime
analysis reveals a dynamic change in monocyte and macro-
phage phenotypes during AKI progression after ureter
obstruction and AKI regression after reversible ureter
obstruction (7).

Myeloid Cell–Mediated Inflammation during Initial
Kidney Injury
In the obstructive kidney or ischemic kidney after reper-

fusion, neutrophils are first recruited followed by expan-
sion of macrophages and T cells, which persist beyond the
reversal of obstruction or in the repair phase after IRI. In
response to ischemic injury, endothelial cells increase
expression of intracellular adhesion molecule 1 (ICAM-1)
and vascular cell adhesion molecule 1, which are important
determinants of leukocyte-endothelial cell adhesion (29,30).
The infiltrated neutrophils release reactive oxygen species
(ROS), cytokines, and proteases, which promote kidney
injury (31). Genetically knocking out Icam1, using neutraliz-
ing antibody against ICAM-1, or directly depleting neutro-
phils, using anti–mouse neutrophil serum, protects mice
against ischemic injury (32). In addition, histone secretion
from ischemically injured tubular epithelial cells primes
neutrophils to form neutrophil extracellular traps (NETs),
which further induce tubular epithelial cell death and accel-
erate NETs production in fresh neutrophils (33). Pretreat-
ment with inhibitors of NETs formation protects kidney

from injury, which can be enhanced by dual inhibition of
NETs formation and tubular cell necrosis (33). After
cisplatin-induced AKI, neutrophil infiltration into kidneys
is mediated by caspase-1–dependent proinflammatory
cytokines, including IL-1b, IL-18, and IL-6. Knocking out
caspase-1 protects mice against cisplatin-induced acute
renal failure (34). However, individually inhibiting these
cytokines or blocking neutrophil infiltration is insufficient
to protect against cisplatin-induced acute renal failure
(Table 2) (35), suggesting neutrophils are not essential for
cisplatin-induced AKI.

One of the major cell types that accumulate around
injured tubules in the kidney after AKI is the mononuclear
phagocyte or macrophage (37). After neutrophils, the early
recruitment of monocytes to the kidney after ischemic or
obstructive injury is primarily mediated by CCR2 (the che-
mokine receptor for CCL2) and CX3CR1 (the chemokine
receptor for CX3CL1) (41). At the single-cell level, both
Ly6c21 proinflammatory macrophages and reparative
arginase-11 (Arg11) macrophages, which predominantly
accumulate in the kidney 2 days after obstructive injury,
express Cx3cr1 and Ccr2, suggesting these macrophages are
derived from recruited monocytes (7). Consistently, in the
kidney 2 days after ischemic injury, proximal tubular epi-
thelial cells of failed repair are projected to signal mono-
cytes via a variety of chemokines and proinflammatory
cytokines, including Ccl2, Ccl5, Ccl7, Ccl8, Cxcl10, Csf1, and
Tnf (6). The immunostaining of kidney sections 1 day after
ischemic injury confirms that monocyte chemoattractant
protein-1 (also known as Ccl2) is predominantly expressed
in the tubular epithelial cells (42), whereas CX3CL1 (also
known as fractalkine) is highly expressed in the injured
endothelial cells (43). In response to proinflammatory cyto-
kines, tubular epithelial cells upregulate macrophage
colony-stimulating factor 1, IL-34, and macrophage migra-
tion inhibitory factor (Mif), which signal macrophage pro-
liferation and survival through CSF-1 receptor and CD74,
respectively (44,52,53,55,56). Knocking out Ccr2 or Mif or
depleting macrophages protects mice against ischemic
injury in the early phase (Table 2) (37,38,41–45), suggesting
macrophages are detrimental in the early phase of AKI.
Kidney-resident macrophages (KRMs) that are undifferen-
tiated from the infiltrating macrophages present as a dis-
tinct cellular subpopulation after AKI (57). However, injury
can result in KRMs reprogramming transcriptomes more
closely to those found in kidney development (postnatal
day 7), i.e., enriched Wingless-type MMTV integration site

Figure 1 | Continued. and GM-CSF and DAMPs released from the tubular epithelial cells lead to the reparative activation of macrophages.
BRP-39, WNT7B, LCN2, IL-22, and IGF1 secreted from reparative macrophages promote tubular cell proliferation and/or repair. In the set-
ting of adaptive kidney repair, macrophages release MMP13 to facilitate degradation of ECM, which is initially deposited after injury to
aid repair, and macrophage egress and/or apoptosis after the injury is resolved. However, in the setting of maladaptive kidney repair, mac-
rophages persist within the kidney. Macrophage growth factors, M-CSF, GM-CSF, and BRP-39 released from sustained injured tubular
epithelial cells promote further recruitment and/or retention of macrophages and polarize macrophages into a profibrotic phenotype. Profi-
brotic macrophages or MMTs can promote kidney fibrosis directly and indirectly by activating interstitial myofibroblasts and contribute to
the secondary tubular injury. BRP-39, breast regression protein 39; DAMP, damage-associated molecular pattern; DC, dendritic cell; ECM,
extracellular matrix; HIFs, hypoxia-inducible factors; ICAM-1, intracellular adhesion molecule 1; LCN-2, lipocalin-2; Mf, macrophage;
MCP-1, monocyte chemoattractant protein-1; M-CSF, macrophage colony-stimulating factor; MIF, macrophage migration inhibitory
factor; MMP13, matrix metallopeptidase 13; MMT, macrophage-to-myofibroblast transition; MRC1, mannose receptor 1; MSR1, macro-
phage scavenger receptor 1; NO, nitric oxide; PDGFb, platelet-derived growth factor subunit B; ROS, reactive oxygen species; SMAD3,
mothers against decapentaplegic homolog 3; TLR, Toll-like receptor; VCAM-1, vascular cell adhesion molecule-1, WNT7B, Wnt family
member 7B.
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family (Wnt) signaling, indicating that mechanisms
involved in kidney development may be functioning after
injury in KRMs (57).
Mechanistically, in response to the local microenviron-

ment with ROS and DAMPs released from neutrophils and
injured/necrotic tubular cells, respectively, the recruited
monocytes/macrophages and resident mononuclear phag-
ocytes have been shown to differentiate into a proinflam-
matory state, partially mediated through Toll-like receptors
(TLR2 and TLR4), and release proinflammatory cytokines,
including IL-6, IL-12, and TNF-a and nitric oxide (NO)
(11,24,37). NO can interact with ROS to generate cytotoxic
peroxynitrites that leads to oxidative stress and apoptosis
in tubular epithelial cells (11). However, similar to neutro-
phils, depleting macrophages or blocking macrophage
infiltration is insufficient to protect mice against cisplatin-
induced AKI (Table 2) (36), suggesting the role of myeloid
cells in the pathogenicity of cisplatin-induced nephrotoxi-
city may differ from that of ischemic and obstructive inju-
ries. Together, the current results suggest that macrophages
are classically activated (M1) to promote kidney injury in
the early phase of acute ischemic and obstructive injury.
In addition to macrophages, prolonged exposure of DCs

to proinflammatory cytokines and/or DAMPs triggers DC
maturation to activate T cells (58) and renal DCs to produce
IFN-a, TNF-a, and IL-6 (59,60), suggesting DCs have a
proinflammatory role in renal ischemic injury; however,
some studies show that kidney DCs prevent ischemic tissue
damage (61–63). For instance, blocking TNF-a via neutraliz-
ing binding protein or a pegylated form of soluble TNF
receptor type 1 protects mice against renal ischemic and
obstructive injury (64,65). Knocking out IL-6, IFN-g/IL-12,
or inducible NO synthase (iNOS; an enzyme to catalyze the
production of NO) protects mice against renal ischemic
injury (66–69). The data generated from the bulk RNA-seq
analyses indicate that these oxidative stress- and hypoxia-
initiated cascades of stress and immediate transcriptional
responses in the early phase of AKI are largely conserved
between mice and humans (70).

Myeloid Cell–Mediated Adaptive Kidney Repair
The inflammatory milieu is later reversed by the infil-

trated/infiltrating cells that promote a reparative microen-
vironment by secreting anti-inflammatory cytokines. These
cells include proreparative (also known as alternatively
activated M2) macrophages that predominate between
days 3 and 7 after ischemic injury (37). At the single-cell
level, mannose receptor 11 (Mrc11) macrophages and
Ccr21 macrophages are predominantly found in the kid-
ney 7 days after obstructive injury (7). Those Mrc11 macro-
phages express multiple scavenger receptors, including
Mrc1, Fcrls, Stab1, and Igf1, but downregulate MHC-II, sug-
gesting the monocytes transition to a reparative state that
can play a role in scavenging debris/excess ECM and
kidney repair. Consistently, evidence shows that IFN-
g–primed proinflammatory macrophages switch to an anti-
inflammatory (reparative) phenotype in the kidney 7 days
after ischemic injury by upregulating Arg1, Mrc1, macro-
phage scavenger receptor 1, and Igf1 via STAT6 activation
but downregulating iNos expression (37,71). Depleting
macrophages during the repair phase diminishes kidney
repair after ischemic injury (Table 2) (37,46,72), which can
be recovered with reinjection of macrophages after deple-
tion (73).
Mechanistically, tubular epithelial cells are involved in

the activation of reparative macrophages through the
production of macrophage growth factors, including
macrophage colony-stimulating factor 1 and GM-CSF.
Reparative macrophages are activated to express factors,
including WNT7b, BRP-39 (also known as YKL-40, the
orthologous human protein), and IL-22, that directly pro-
mote tubular repair after ischemic injury (46,74,75). For
instance, depleting GM-CSF using neutralizing antibody
during the repair phase attenuates the reparative macro-
phage activation and suppresses tubular proliferation
after ischemic injury (71). DAMP released from injured
and necrotic tubular epithelial cells induces proinflamma-
tory macrophages via TLR4 to express IL-22, which pro-
motes tubular epithelial cell proliferation and kidney

Table 1. The markers and origin(s) of myeloid cells in kidney

Myeloid Cell Type Marker(s) Origin Reference

Neutrophil CD451, CD161, CD66b1 (homo), CD451, Ly-6G/
Gr-11, CD11b1 (mus)

HSCs (14)

Eosinophil CCR31, CD1251, CD49d1, Siglec-81 (homo), Siglec-F
(mus)

HSCs (15)

Basophil Fc«RIa1, CD49b1, CD203c1, Thy11, c-Kit-, FcgR1,
Siglec-21 (homo)

HSCs (16)

Mast cell CD11b2, Lin2, c-Kithigh, MITF1, CD331 (homo),
Fc«RIa1, IL-3Ra1, CD203c1

HSCs (17)

Monocyte/macrophage CD11b1, CSF1R1, Ly-6C1, Ly-6G2, F4/801 (mus),
EMR11 (homo), CX3CR11, CCR21

HSCs (18)

Resident macrophage CD451, CD11blow, F4/80high, Ly-6C2 (yolk sac EMP-
derived resident macrophage)

Yolk sac EMPs, fetal liver
EMPs, and HSCs

(19)

Dendritic cell CD11c1, MHC-II1, CD1031, CD11blow, CX3CR12, F4/
802, SIRP-a2 (CD1031 renal DC), CD11b1, CD1032,
CX3CR11, F4/801, SIRP-a1 (CD11b1 DC)

HSCs (18,20)

homo, Homo sapiens; mus, Mus musculus; HSCs, hematopoietic stem cells; EMP, erythro-myeloid progenitor; DC, dendritic cell.
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Table 2. Specific depletion of myeloid cells and its outcomes in the rodent models of AKI and kidney repair

Rodent Model(s) Phase of Injury Targeting Cell(s) Depletion Method(s) Major Finding(s) Reference

Cisplatin-induced
AKI

Early phase Neutrophil Injection (i.p.) of neutralizing Ab
(RB6-8C5) against Ly-6G on days
21, 0, 11, and 12 relative to the
day of cisplatin injection

Neutrophil depletion insufficiently
protects against cisplatin-induced
ARF.

(35)

Early phase Macrophage Injection (i.v.) of liposomal-
encapsulated clodronate 2 days
before and 1 day after cisplatin
injection

Depletion of CD11b1 macrophages
insufficiently protects against
cisplatin-induced ARF.

(36)

Early phase Macrophage Knocking out Cx3cr1 or
administration of neutralizing Ab
against CX3CR1 either 1 hour or 1
day after cisplatin injection

Blockage of CX3CR1 is insufficient to
prevent cisplatin-induced ARF.

(36)

IRI Early phase Myeloid phagocytes
(circulating
monocyte, tissue
macrophage,
CD11c1 dendritic
cell, and
neutrophil)

Injection (i.p.) of liposomal-
encapsulated clodronate on two
successive days before IRI

Depletion of myeloid phagocytes
before IRI protects tubular
epithelial cells from injury and
ameliorates the loss of renal
function induced by IRI.

(37,38,
39,40)

Early phase Macrophage Knocking out Ccr2, Ccl2, or Cx3cr1 Deletion of Ccr2 and Cx3cr1, but not
Ccl2, suppresses macrophage
infiltration and protects kidneys
from IRI.

(41,42)

Early phase Macrophage Injection (i.p.) of neutralizing Ab
against CX3CR1 1 hour before IRI

Neutralizing Ab against CX3CR1
partially suppresses macrophage
infiltration and protects kidneys
from IRI.

(43)

Early phase Macrophage Administration (orally) of CCR2
antagonist (RS-504393) every 12
hours from the day of IRI or
propagermanium, which targets
glycosylphosphatidylinositol-
anchored proteins that are closely
associated with CCR2, from 8 days
before IRI

Both RS-504393 and propagermanium
suppress macrophage infiltration
and protects against tubular
necrosis after IRI.

(42)

Early phase Macrophage Knocking out Mif Deletion of Mif reduces kidney
macrophage accumulation in the
area of damaged tubules and
associated inflammation and
protects kidneys from IRI.

(44)

Early phase Leukocyte Injection (s.c.) of CXCR4 antagonists,
plerixafor (AMD3100) or its
monocyclam analogue (AMD3465)

CXCR4 antagonists suppress CD11b1
(neutrophils and monocytes) and
CD41 lymphocytes 24 hours after

(45)
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Table 2. (Continued)

Rodent Model(s) Phase of Injury Targeting Cell(s) Depletion Method(s) Major Finding(s) Reference

3.5 hours after IRI every 12 hours
for 2 days

IRI, diminish epithelial and
endothelial injury and interstitial
inflammation, and ameliorate the
loss of renal function induced by
IRI.

Adaptive repair
phase

Myeloid phagocytes
(circulating
monocyte, tissue
macrophage,
CD11c1 dendritic
cell, and
neutrophil)

Injection (i.p.) of liposomal-
encapsulated clodronate on two
successive days 2 days after IRI

Depletion of myeloid phagocytes on
day 3 after IRI diminishes tubular
recovery from IRI, as shown in
persistent luminal casts and
decreased regenerating tubules.

(37)

Adaptive repair
phase

Macrophage Injection (i.v.) diphtheria toxin to
CD11b-DTR allele mice on day 3
and day 5 after IRI

Depletion of macrophages on day 3
and day 5 leads to a striking failure
of normal regeneration of kidney
tubule epithelium and normal
functional recovery of the kidneys.

(46)

Adaptive repair
phase

Macrophage and
dendritic cell

Injection (i.v.) diphtheria toxin to
g-GT Cre:CSF-1f/f:DTR mice

Proximal tubule–specific depletion of
Csf1 decreases reparative
macrophage polarization, delays
functional and structural recovery,
and increases interstitial fibrosis.

(47)

Adaptive repair
phase

F4/801, CD11c1

dendritic cell
Injection (i.v.) of liposomal-

encapsulated clodronate on day 1
and day 3

Depletion of dendritic cells is
associated with persistent kidney
injury, apoptosis, inflammation, and
impaired tubular cell proliferation.

(48)

Maladaptive repair
phase

Macrophage Injection (i.v.) of liposomal-
encapsulated clodronate on day 3
every 5 days thereafter until
8 weeks or every 7 days thereafter
until 4 weeks after IRI

Depletion of macrophages attenuates
interstitial fibrosis, inflammation,
and the renal function impairment
in the long-term (8 weeks) follow-
up after IRI.

(49,50)

Maladaptive repair
phase

Macrophage Knocking out Ccr2 or injection (i.p.) of
CCR2 antagonist (RS102895) on day
7 after IRI and every 12 hours for 7
days

Blockage of MCP-1/CCR2 signaling
markedly decreases macrophage
infiltration and attenuates
interstitial fibrosis and sustained
inflammation during AKI-to-CKD
transition.

(51)

Maladaptive repair
phase

Macrophage Knocking out Il34 Deletion of Il34 markedly suppresses
macrophage proliferation and
protects kidneys from AKI and
subsequent CKD.

(52)

K
ID

N
EY

360
2:

1852
–1864,

N
ovem

ber,
2021

M
yeloid

C
ells

in
A
K
I
and

K
idney

R
epair,

X
u

1857



Table 2. (Continued)

Rodent Model(s) Phase of Injury Targeting Cell(s) Depletion Method(s) Major Finding(s) Reference

Proximal tubule
injury–mediated
by diphtheria
toxin in the Ggt1
DTR transgenic
mice

Adaptive repair
phase

Macrophage and
dendritic cell

Injection (i.p.) of liposomal-
encapsulated clodronate after DT
injection every 3 days or injection
of DT in the Ggt1/CD11c DTR
double transgenic mice

Depletion of macrophages/dendritic
cells induces a striking increase of
tubular injury and kidney
dysfunction and delays recovery
after injury.

(53)

Adaptive repair
phase

Macrophage and
dendritic cell

Knocking out Csf1 or administration
of CSF-1R inhibitor (GW2580, an
inhibitor of c-fms, via gastric
gavage) twice per day

Blocking CSF-1/CSF-1R signaling
decreases macrophage/dendritic
cell proliferation, markedly inhibits
macrophage phenotype transition
(from proinflammatory to
reparative), and delays recovery
from proximal tubule injury.

(53)

Adaptive repair
phase

Macrophage and
dendritic cell

Injection (i.v.) diphtheria toxin to
g-GT Cre:CSF-1f/f:DTR mice

Proximal tubule–specific depletion of
Csf1 decreases reparative
macrophage polarization, delays
functional and structural recovery,
and increases interstitial fibrosis.

(47)

Rhabdomyolysis
(intramuscular
injection of
glycerol)-induced
AKI

Early phase and
maladaptive
repair phase

Macrophage Injection (i.p.) of liposomal-
encapsulated clodronate 1 day
before or after the glycerol injection

Depletion of macrophage before
rhabdomyolysis improves animal
survival and the eGFR at day 2 and
subsequently attenuates interstitial
fibrosis and inflammation 7 months
after rhabdomyolysis.

(54)

i.p., intraperitoneal; Ab, antibody; ARF, acute renal failure; i.v., intravenous; IRI, ischemic-reperfusion injury; Mif, macrophage migration inhibitory factor; s.c., subcutaneous; DTR,
diphtheria toxin receptor; MCP-1, monocyte chemoattractant protein-1; DT, diphtheria toxin.
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repair (75). Of note, the downstream signaling of TLR4 is
time dependent: early blockade of TLR4/IL-22 signaling
prevents tubular necrosis, and late blockade of TLR4/
IL-22 impairs tubular regeneration (75). In addition,
macrophages can promote tubular repair indirectly. For
instance, vascular-resident CD1691 macrophages prevent
excessive inflammation in the kidney after ischemic injury
by downregulating ICAM-1 expression on vascular endo-
thelial cells (76). Depleting CD1691 cells enhances endo-
thelial ICAM-1 expression, resulting in irreversible renal
damage associated with infiltration of a large number of
neutrophils (76).
Similarly to macrophages, DCs may contribute to the

recovery process by a dynamic phenotype change from a
proinflammatory to anti-inflammatory (expressing high
levels of IL-10) state with modulation of immune response
(48). After ischemic injury, oxidative stress can also activate
DCs to express IFN regulatory factor 4, which attenuates
secretion of proinflammatory cytokines from resident
antigen-presenting cells and prevents excess ischemic dam-
age (77). Depleting DCs during the repair phase leads to
persistence of the inflammatory milieu, tubular injury, and
apoptosis in both ischemic and nephrotoxic nephritis mod-
els (Table 2) (48,78).
Myeloid-derived suppressor cells are a heterogeneous

population of cells, generally composed of progenitors and
precursors of DCs, macrophages, and granulocytes at vari-
ous stages of differentiation. Myeloid-derived suppressor
cells can also be recruited into the injured kidneys after the
interaction of CXCL1 and CXCL2 with their receptor
CXCR2 (79,80) to protect the kidney from ischemic injury
by suppressing effector T-cell activation and subsequently
downregulating production of proinflammatory cytokines
(IFN-g, IL-1b, and IL-6) (80).

Myeloid Cell–Mediated Maladaptive Kidney Repair
In the event of optimal repair, deactivation or egress of

macrophages is required for resolution of inflammation
after ischemic injury. However, persistent parenchymal
inflammation or more severe injury leads to macrophage
persistence, which is strongly associated with renal fibrosis,
tubular atrophy, and progressive CKD (81,82). For instance,
knocking out IRAK-M, a cell-intrinsic pathway that sup-
presses TLR/IL-1R signaling, leads to persistence of proin-
flammatory macrophages and late tubular atrophy (83).
Sustained tubular injury after ischemic injury leads to tubu-
lar expression of GM-CSF and BRP-39, which, in turn,
activate interstitial macrophages to express monocyte che-
moattractant protein-1 to recruit monocytes/macrophages
and transition to a profibrotic phenotype, respectively
(51,84). These profibrotic macrophages, a MRC11
(CD2061) subset of reparative macrophages, persist in the
kidney interstitium adjacent to nonrepaired tubules and
promote kidney fibrosis directly or indirectly through myo-
fibroblast activation in both human and mouse models
(50,51,84–88). Long-term depletion of macrophages or
blockade of certain macrophage homing signaling path-
ways attenuates late renal fibrosis after ischemic injury
(Table 2) (49–51), which is also shown in the obstructive
injury model (unilateral ureter obstruction) (89–91).

Macrophages isolated from kidney at the late stage of
ischemic injury reveal high-level expression of Lgals3 (also
known as galectin-3), Pdgfb, Tgfb1, Tgfb2, and Egf (profi-
brotic growth factors), but low-level expression of Nos2
and Arg1 (proinflammatory and reparative phenotype
markers) (84). Myeloid cell–specific knockout of Lgals3
reduces late fibrosis severity but does not alter macrophage
recruitment in the kidney after obstructive injury, suggest-
ing galectin-3 promotes interstitial fibrosis through fibro-
blast/myofibroblast activation. Macrophages are also a
major source for matrix metalloproteinases (MMPs) (6,7),
which play a complex role in the development of kidney
fibrosis by promoting fibrosis and degrading ECM. For
instance, whole-body knockout of Mmp2 and Mmp9, but
not Mmp12, promotes macrophage accumulation and kid-
ney fibrosis after obstructive injury (40,92,93), suggesting
MMP2 and MMP9, but not MMP12, are required for mac-
rophage migration within the tubulointerstitium.
Macrophage-specific knockout of twist-related protein 1, a
transcription factor that regulates the expression of several
MMPs, such as MMP13, to facilitate ECM degradation, pro-
motes kidney fibrosis after obstructive injury (94,95). In
addition, macrophages may potentially promote renal
fibrosis directly via macrophage-myofibroblast transition
(MMT), which is driven by TGF-b1/SMAD3 signaling via
an Src-centric regulatory network (96). These MMT cells
are recognized by coexpressing macrophage marker CD68
and myofibroblast marker a-smooth muscle actin in the
diseased kidneys in both mouse obstructive model and
human biopsy specimen (96–98). The MMTs may serve as
a key checkpoint in the progression of chronic inflamma-
tion to renal fibrosis (99). In contrast, evidence shows that
DCs do not directly promote kidney fibrosis after obstruc-
tive injury (100), suggesting fibrosis is mainly driven by
profibrotic macrophages. However, DCs adopt a proin-
flammatory phenotype and become more effective antigen-
presenting cells to activate T cells after ischemic and
obstructive injury (62,100,101).

Discussion and Outlook
To date, the roles of myeloid cells in AKI and kidney

repair remain heavily studied in rodent models of kidney
injury using ischemia/reperfusion, ureteral obstruction, or
nephrotoxin administration. By manipulating models and
controlling time, researchers can reveal the biologic
responses that lead to inflammation, cell death/prolifera-
tion, kidney repair, and long-term fibrosis after the injury.
Among the myeloid cells (Table 1), the roles of eosinophils
and basophils in AKI have been reported in a small num-
ber of case reports and observational studies (102,103). In
contrast, mast cells have been shown to not necessarily be
involved in the development of kidney pathology, but
could have a beneficial role in restoration of normal kidney
homeostasis (104). Neutrophils, macrophages, and DCs
become the major players in response to AKI and kidney
repair (Table 2). Consistently, an increase in the number of
neutrophils and macrophages has also been observed in
the biopsy specimens from patients with sepsis-induced
AKI, acute tubular necrosis and acute tubular injury, and
DCs in the biopsy specimens from patients with GN
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(105–108). However, the substantial increase of understand-
ing rodent AKI has not led to effective therapies to treat
patients with AKI. The disconnection between rodent mod-
els and human AKI may be due to many causes, including,
but not limited to, distinct pathogenic pathways that are
activated by different initial stressors and distinct biologic
and immune responses that are not identical between
rodent models and human diseases. For instance, in the
rodent models of AKI, myeloid cells, such as macrophages
and DCs, generally promote kidney injury in the early
phase, kidney repair afterwards, and kidney fibrosis in the
maladaptive kidney repair after IRI; however, depletion of
macrophages or DCs does not protect kidneys from
cisplatin-induced AKI, suggesting the involvement of mye-
loid cells is likely different not only depending on the time
but also the types of injury.
Recently, kidney tissues obtained from patients with dia-

betes undergoing partial or radical nephrectomy, kidney
transplant biopsy, normal kidney tissues obtained at least 2
cm away from tumor tissue, and fetal kidneys from gesta-
tional weeks 7–25 have been subjected to the scRNA-seq or
single-nucleus RNA-seq to understand the pathogenesis of
diabetic nephropathy, chronic transplant rejection, and kid-
ney development in humans (4,109–113). The application of
single-cell technologies on human AKI biopsy specimens
holds the potential to fill the gap for understanding the
pathogenesis of human AKI, especially the roles of myeloid
cells in AKI, and how it may differ from those in the rodent
models of AKI. Such technology, however, relies on tissue
dissociation and does not offer spatial context, e.g., what
specific type(s) of myeloid cells are adjacent to the tubular
epithelial/endothelial cells at the point of injury, apoptosis,
necrosis, repair, proliferation, or fibrosis (to the interstitial
fibroblast/myofibroblasts). Recent advanced mass cytome-
try technology, i.e., imaging mass cytometry supports
simultaneous detection of .40 protein markers on a single
section of formalin-fixed, paraffin-embedded kidney biopsy
specimen, termed Kidney-MAPPS (multiplexed antibody-
based profiling with preservation of spatial context) (114).
In addition to single-cell technologies, the application of
Kidney-MAPPS holds the potential to greatly expand our
understanding of the role of myeloid cells in human AKI.
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