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Abstract

We report herein the discovery of a positron emission tomography (PET) tracer for the (NOD)-

like receptor protein 3 (NLRP3). Our recent medicinal chemistry campaign on developing 

sulfonamide-based NLRP3 inhibitors led to an analog, 1, with a methoxy substituent amenable 

to labeling with carbon-11. PET/CT imaging studies indicated that [11C]1 exhibited rapid blood-

brain barrier (BBB) penetration and moderate brain uptake, as well as blockable uptake in 

the brain. [11C]1, thus suggesting the potential to serve as a useful tool for imaging NLRP3 

inflammasome in living brains.
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Inflammasomes are intracellular and multimeric protein complexes that mediate the 

innate immune response and the release of pro-inflammatory cytokines, i.e., interleukin 

(IL)-1β and IL-18.1 Inflammasomes that have been characterized include the nucleotide 

oligomerization domain (NOD)-like receptor (NLR) family, the absent in melanoma 2 

(AIM2), and retinoic acid-inducible gene I (RIG-I)-like receptor (RLR).2 Among these, 

the NLRP3 inflammasome has been extensively studied, and its essential roles in detecting 

a plethora of danger signals such as danger associated molecular patterns (DAMPs) and 

pathogen associated molecular patterns (PAMPs) have been well documented.3 Aberrant 

activation of the NLRP3 inflammasome has been observed in the pathogenesis of numerous 

human disorders, including auto-inflammatory and auto-immune diseases, diabetes, and 

neurodegenerative diseases.4–7 Therefore, inhibition of the NLRP3 inflammasome has 

attracted great interests as a promising strategy to achieve disease interventions.

To better understand the NLRP3 biology and assist drug discovery that targets the NLRP3 

inflammasome, a suitable single photon emission computed tomography (SPECT) or 

positron emission tomography (PET) tracer will be valuable. Such tracers will allow for 

visualization of the NLRP3 inflammasome in living organs under normal and disease 

conditions with minimal perturbation of the biological state, and this is particularly essential 

for central nervous system (CNS) drug discovery. PET is a well-established noninvasive 

imaging modality, providing valuable information on target expression, occupancy and 

biodistribution.8–10 A number of structurally diverse inhibitors targeting this inflammasome 

have recently been reported, including benzenesulfonamide-based derivatives, sulfonylurea 

analogs, boron derivatives, acrylate derivatives, and acrylamide derivatives, among others 

(Fig. 1).11–18 To the best of our knowledge, only a sulfonylurea based PET tracer, 

[11C]MCC950, has been developed and characterized in healthy mouse, rat and rhesus 

monkey.19 However, PET imaging studies of this tracer revealed its poor brain uptake 

and rapid washout.19 Therefore, PET tracers of the NLRP3 inflammasome with desirable 

properties to enable the preclinical and clinical characterizations of NLRP3 inflammasome 

are urgently needed. As our continuing interests in developing CNS PET tracers, herein, 

we are reporting the characterization of a carbon-11 labeled sulfonamide-based NLRP3 

inhibitor as a novel PET tracer for imaging brain NLRP3 inflammasome.20–22
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The initial lead compound, JC124, was identified as a selective inhibitor that directly targets 

the NLRP3 inflammasome complex with an IC50 of 3.25 ± 1.34 µM by our group (Fig. 2).12 

To improve the inhibitory potency and pharmacokinetic properties, medicinal chemistry 

campaign led to the identification of YQ128 with significantly improved inhibitory potency 

(IC50 = 0.30 ± 0.01 µM) and retained selectivity to the NLRP3 inflammasome.23 Further 

studies also demonstrated its blood-brain barrier (BBB) penetration in mice. Despite the 

favorable biological properties, a reliable route for radiolabeling YQ128 was not feasible. 

Thus, our efforts were focused on sulfonamide 1, an analog of YQ128 with comparable 

potency (IC50 = 0.90 ± 0.06 µM, Clog P = 4.548) to develop a PET tracer by taking 

advantage of the O-methyl substituent that is amenable to labeling with carbon-11.

The chemical synthesis of sulfonamide 1 and [11C]1 is outlined in Scheme 1. Briefly, 

reaction of sulfonyl chloride 2 with propargylamine 3 yielded compound 4 in 75% yield. 

Compound 4 was then deprotected with methylhydrazine followed by reduction amination 

with aldehyde 7 to give compound 8. Coupling reaction of 8 with 3-thiopheneacetic acid 

to afford sulfonamide 1 in 57% yield. TBS-protected aldehyde 6 was reacted with amine 

5 and followed by the removal of TBS protecting group in the presence of TBAF and 

coupling reaction with 3-thiopheneacetic acid to give precursor 10. Radiosynthesis of [11C]1 
was successfully achieved by the methylation of precursor 10 with [11C]CH3I. [11C]1 was 

afforded with a radiochemical yield of 49 ± 10% (n = 3, decay corrected). Total synthesis 

time from the end of cyclotron bombardment was 38 ± 3 min. The resultant [11C]1 was 

reformulated via solid-phase exchange (SPE) C-18 cartridge and reconstituted in sterile 

saline containing <10% (v/v) ethanol. Quality control testing confirmed radiochemical 

purities >99%, molar radioactivity = 418 GBq/µmol at time of injection.

a Reagents and conditions: (i): Trimethylamine, CH2Cl2, rt. (ii): NH2NH2, EtOH, 

60 °C. (iii): Iodomethane, K2CO3, DMF, rt. (iv): 1. amine 5, trimethylamine, 

MeOH, rt; 2. Acetic acid, NaCNBH3, MeOH, rt. (v): 3-Thiopheneacetic 

acid, EDCI (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride), HOBt (1-

hydroxybenzotriazole), trimethylamine, CH2Cl2, rt. (vi): TBSCl, imidazole, CH2Cl2, rt. 

(vii): 1. amine 5, trimethylamine, MeOH, rt; 2. Acetic acid, NaCNBH3, MeOH, rt; 3. 1M 

TBAF, THF, rt; 4. 3-Thiopheneacetic acid, EDCI, HOBt, trimethylamine, CH2Cl2, rt. (viii): 

[11C]CH3I, K2CO3, DMF, 80 °C.

Next, [11C]1 was characterized by PET/CT scanning in isoflurane anesthetized C57BL/6 

mice (24–26 g, male) after a single intravenously administration (~7.4 MBq). The data 

were expressed as the percentage of injected dose per cubic centimetre (% ID/cc) and 

plotted for the 60 min scan window. As shown in Fig. 3, radioactivity in organs of interest 

was quantified to measure accumulation of [11C]1 and to determine potential metabolic 

pathways of [11C]1. Significant and quick initial uptakes in blood and liver (10.15% ID/cc 

and 22.60% ID/cc at 2 min post injection, respectively) were observed, followed by fast 

clearance (1.92% ID/cc and 8.41% ID/cc at 60 min post injection, respectively). [11C]1 also 

showed significant initial uptake in intestine (10.58% ID/cc at 2 min post injection), then 

increased rapidly (43.43% ID/cc at 60 min post injection). This may suggest that [11C]1 is 

mainly excreted through feces. The lung uptake peaked at 2 min (8.73% ID/cc) and washed 
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out rapidly (1.76% ID/cc at 60 min post injection). Compared with other organs, the uptake 

of [11C]1 in heart, kidney and muscle was low and decreased slowly over time.

Next, we investigated the brain uptake of [11C]1 as the sulfonamide based NLRP3 inhibitors 

were designed as potential CNS agents for Alzheimer’s disease. As shown in Fig. 4, the 

baseline studies (n = 2) demonstrated that [11C]1 rapidly crossed the BBB and accumulated 

in the brain regions homogeneously. [11C]1 exhibited moderate brain uptake with a 

maximum signal of ~1.7 % ID/cc at 1 min post injection. The signal declined rapidly to 

~0.9 % ID/cc at 5 min post injection. Self-blocking studies (n = 2) with sulfonamide 1 
revealed that the specific signal ratio (total signal ratio/nonspecific signal ratio) was ~1.4:1 

after 15 min post injection, close to the criteria of a desirable CNS PET tracer (specific 

signal ratio = ~1.5:1).24 Notably, the accumulation of [11C]1 in thyroid gland was blocked 

by sulfonamide 1, indicating specific binding of [11C]1 to thyroid gland NLRP3 (26% 

specific binding at 60 min, listed in Support Information, Fig. S3), which suggested that 

[11C]1 could be a suitable PET tracer for imaging tumors in the thyroid gland. However, 

compared to the desirable properties of a successful CNS PET tracer, the brain uptake of 

[11C]1 still needs to be optimized. [11C]1, therefore, can serve as a lead compound for 

the further structural exploration and optimization studies. Collectively, the results strongly 

encourage further studies of [11C]1 in preclinical models of neurodegenerative disorders 

with aberrant activation of NLRP3 and development of optimized PET tracers based on this 

chemical scaffold.

In conclusion, a novel PET tracer for the NLRP3 inflammasome, [11C]1, was synthesized 

and characterized through PET/CT imaging studies in C57BL/6 mice. [11C]1 exhibited rapid 

BBB penetration and moderate brain uptake, as well as blockable uptake in brain. This tracer 

successfully resulted in visualization of NLRP3 physiological condition in animal brains. 

Thus, [11C]1 serves as a useful tool with the potential to characterize NLRP3 inflammasome 

in living brains linked to various NLRP3-related neurological conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Structures of some representative NLRP3 inflammasome inhibitors.
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Fig. 2. 
Design of the NLRP3 PET tracer in our group.
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Scheme 1. 
Synthesis of sulfonamide derivative 1 and [11C]1a
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Fig. 3. 
Biodistribution histogram of [11C]1 in C57BL/6 mice. All data are the mean. Data are 

expressed as the percentage of injected dose per cubic centimeter (% ID/cc).
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Fig. 4. 
Above: Sagittal PET/CT images of [11C]1 in baseline and blocking experiments (summed 

15–60 mins). Below (left): Baseline TACs in six representative mouse brain regions. Below 

(right): TACs of baseline and blocking experiments in C57BL/6 mouse brains. All data are 

the mean. Data are expressed as the percentage of injected dose per cubic centimetre (% 

ID/cc).
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