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Summary

Neurodegenerative diseases are characterized by progressive cell loss leading to disruption of the 

structure and function of the central nervous system. Amyotrophic lateral sclerosis (ALS) was 

among the first of these disorders modeled in patient-specific iPSCs, and recent findings have 

translated into some of the earliest iPSC-inspired clinical trials. Focusing on ALS as an example, 

we evaluate the status of modeling neurodegenerative diseases using iPSCs, including methods for 

deriving and using disease-relevant neuronal and glial lineages. We further highlight the remaining 

challenges in exploiting the full potential of iPSC technology for understanding and potentially 

treating neurodegenerative diseases such as ALS.
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Introduction

Neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS), Parkinson’s 

disease (PD), and Alzheimer’s disease (AD), are characterised by a high level of 

etiological heterogeneity, with diverse genetic causes, environmental factors and complex 

pathophysiologies played out in the multicellular environment of the aging nervous system. 

This complexity poses significant challenges for in vitro modeling. However, the advent of 
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human induced pluripotent stem cell (hiPSC) technology (Takahashi and Yamanaka, 2006) 

has dramatically changed our ability to create physiologically relevant in vitro models 

for such diseases. As the genetic background of the cell donor is maintained during 

cell reprogramming, hiPSCs provide an excellent means to evaluate the effect of disease-

causing mutations on the relevant, otherwise non-accessible cell types in neurodegenerative 

disorders, such as neurons and glial cells. In addition to monoculture differentiation 

protocols, more complex in vitro models, including multicellular and three-dimensional (3D) 

culture compositions, are now also becoming available to capture disease-relevant cellular 

interactions.

ALS has a significant monogenic contribution to causation, and the cell types (principally 

spinal motor neurons) affected by the disease can be produced to a high level of purity 

in vitro from stem cells. It therefore serves as an exemplar for the use of hiPSCs for 

discovery and translational neuroscience with implications more widely for the fields 

of neurodegenerative disease modeling and stem cell differentiation. In this review, we 

critically evaluate hiPSC differentiation protocols for the most ALS-relevant cell types 

(spinal motor neurons, cortical neurons, astrocytes and microglia) and summarize the impact 

of these models on our understanding of ALS pathogenesis. We also provide a perspective 

on the use of multicellular and 3D models, then review the remaining challenges and 

possible solutions in hiPSC research, including emerging technologies, and the role of 

hiPSC-based findings in improving prospects for successful clinical trials in ALS.

Amyotrophic lateral sclerosis: disease mechanisms and pathology

Amyotrophic lateral sclerosis (ALS), is a neurodegenerative disorder with a prevalence 

of ~5/100,000 people and a mean age of onset of ~64 years (life-time risk ~1:400) 

in populations of European genetic heritage (Chio et al., 2013; Kiernan et al., 2011). 

Characterized by the degeneration of MNs in the cortex, brainstem, and spinal cord, 

ALS results in progressive muscle weakness and paralysis, with death typically due to 

neuromuscular respiratory failure a median of 2.5 years from symptom onset, although there 

is considerable heterogeneity, with approximately 5% of cases surviving for more than 10 

years (Chio et al., 2011).

Approximately 90% ALS cases are considered sporadic (sALS), in the absence of a family 

history of ALS or the related condition frontotemporal dementia (FTD). However, in ~10% 

of all ALS patients, including in a significant minority of apparently sALS cases, a disease-

determining genetic variant can be identified, suggesting that the genetic contribution to 

ALS risk is substantially driven by rare variants (Talbot et al., 2018). The commonest 

mutation, a dynamic hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in the 

first intron of C9orf72 (DeJesus-Hernandez et al., 2011; Renton et al., 2011), accounts for 

20-50% of fALS cases and 3-5% of sALS patients, respectively (Kiernan et al., 2021). In 

another 10-20% of fALS and 1-2% of sALS cases, mutations are identified in the SOD1 
gene (Rosen et al., 1993). Mutations in TARDBP (encoding for the 43 kDa transactive 

response DNA binding protein TDP-43) and FUS are each found in 5% of fALS and less 

than 1% of sALS cases (Sreedharan et al., 2008; Vance et al., 2009), while a multitude 

of other, less commonly mutated genes, including MAT3, OPTN, UBQLN2, TBK1, and 
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NEK1, are also known to cause fALS and sALS. Based on founder effects, the contribution 

of genetic mutations to ALS varies between populations of different geographic origin. For 

instance, mutations in C9orf72 are rare in Japan (Ogaki et al., 2012), while mutations in 

TARDBP are common in Sardinia (Borghero et al., 2014).

Neuropathologically, almost all ALS cases (~97%), except for the ~3% caused by mutations 

in the FUS and SOD1 genes, show nuclear clearing and cytoplasmic aggregation of 

TDP-43 in neuronal and non-neuronal cells (Neumann et al., 2006). This characteristic 

TDP-43 pathology is also found in 40-50% of patients with isolated frontotemporal 

degeneration (FTD), a neurodegenerative disease characterized clinically by deterioration 

of social cognition and language, with relative preservation of memory, and pathologically 

by frontotemporal lobar degeneration (FTLD). Clinical overlap exists between ALS and 

FTD, with 3-5% of ALS patients showing overt behavioral variant FTD, while more subtle 

forms of loss of executive functions are found in up to 50% of ALS patients (Beeldman 

et al., 2018; Talbot et al., 2018). This suggests that FTLD-TDP and ALS share substantial 

biological features and potential treatment strategies (Burrell et al., 2016).

Over the past decades of ALS research, a multitude of in vitro and in vivo models have been 

created in an effort to recapitulate and study the processes that lead to MN degeneration 

in ALS patients. In agreement with data from neuroimaging and postmortem studies, these 

models suggest that ALS arises through a combination of primary neuronal damage with 

contributions to pathogenesis from non-neuronal cells such as glia (Vahsen et al., 2021). 

Despite this increasing understanding of ALS pathophysiology, there are currently only 

two licensed therapeutic options for ALS patients, riluzole and edaravone, which only very 

moderately improve survival and rate of progression (Kiernan et al., 2021). A large number 

of drug candidates showing promising results in preclinical models have so far failed to 

translate into benefits for patients. With the notable exception of antisense oligonucleotides 

(ASOs), which are currently undergoing clinical trials in patients carrying mutations in the 

SOD1 or C9orf72 genes, there is no prospect yet of substantial therapeutic options for ALS 

patients.

The failed development of new drugs that alter natural history can, in part, be explained 

by a lack of accurate disease models. ALS research has heavily relied on animal models 

overexpressing mutant forms of SOD1, which only occur in a small fraction of ALS 

cases, and crucially do not show TDP-43 aggregation. Inherent species differences in 

gene expression and the functional organization of the motor system also contribute to 

the difficultly in translating findings from animal models to humans (Herculano-Houzel 

et al., 2015; Lin et al., 2014; Schieber, 2007). hiPSC technology has offered a new and 

powerful tool to circumvent such issues through the development of in vitro differentiation 

protocols for the most ALS-relevant cell types that are discussed below. Methods which 

directly re-program fibroblasts into relevant cell types, by bypassing the hiPSC stage, 

are complementary to hiPSC technology for the modeling of conditions such as ALS, 

since some age-dependent molecular profiles are preserved while they are lost upon hiPSC 

reprogramming (Mertens et al., 2015). This concept has been reviewed in detail elsewhere 

(Mertens et al., 2018).
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Differentiation of hiPSCs into motor neurons and cortical neurons

From hiPSCs to spinal motor neurons

The direct differentiation of hiPSCs to spinal MNs, which we will refer here as MNs, is the 

first essential step toward their use in the study of neurodevelopment, neurodegeneration, 

and potential future use in the clinic. Mimicking embryonic neurodevelopment, the 

generation of hiPSC-derived MNs involves several now clearly defined developmental steps:

1. Neural induction starts with inhibition of bone morphogenetic protein BMP 

and transforming growth factor beta (TGFb) signalling (referred as dual-SMAD 

inhibition) (Chambers et al., 2009) as well as inhibition of WNT signalling 

(Wilson et al., 2001), following the neural default model (Munoz-Sanjuan and 

Brivanlou, 2002). A positive role for fibroblast growth factor (FGF) signaling has 

been described in the chick embryo (Wilson et al., 2000) but may not be required 

for anterior neuroecotderm induction in hiPSCs.

2. Rostral neural progenitors can be induced to adopt a more posterior positional 

identity, governed by a response to caudalizing signals (i.e. retinoic acid, 

RA) (Durston et al., 1998; Muhr et al., 1999). Alternatively, posterior neural 

precursors can be induced directly in the presence of FGF and WNT signalling 

(Peljto et al., 2010) via induction of a transient posterior precursor referred to 

as neuro-mesodermal precursor (Lippmann et al., 2015). While the RA-based 

caudalization yields mostly brachial level progenitors, the WNT/FGF based 

pattern provides access to trunk and lumbar progenitors.

3. The resulting spinal progenitor cells then acquire a MN progenitor identity, 

induced by the ventralizing action of sonic hedgehog (SHH) signaling (Briscoe 

and Ericson, 2001). The activation of the SHH pathway inhibits the expression of 

dorsal progenitors in a concentration-dependent manner that mimics the response 

of primary spinal progenitor cells (Wichterle et al., 2002).

It has become clear that the systematic variation in the identity, timing and concentration 

of the patterning factors that hiPSCs are exposed to in the early phases can determine 

the efficiency, identity, and functional maturity of the final cultures, and may explain the 

discordant results reported by different groups when modelling ALS in hiPSC-derived MNs. 

The first reported generation of hiPSCs and successful differentiation to MNs from an ALS 

patient came from the Eggan laboratory in 2008 (Dimos et al., 2008). The authors used a 

directed differentiation protocol previously developed for mouse and human embryonic stem 

cells (hESCs) to produce spinal MNs (Lee et al., 2007; Li et al., 2005; Wichterle et al., 

2002). This was soon followed by a comprehensive MN differentiation protocol for hESCs 

and hiPSCs (Hu and Zhang, 2009), and subsequently by numerous publications describing 

variations in MN differentiation protocols used in ALS research (Table 1).

Spinal MN differentiation protocols based on dual SMAD inhibition for the neural induction 

step rely on small molecule compounds, such as SB431542 (SB, an inhibitor of activin-

nodal signaling) and LDN193189 (LDN, an inhibitor of BMP signaling). Several alternative 

BMP inhibitors have been used including dorsomorphin, recombinant noggin and DMH1 
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(Neely et al., 2012). In some instances, dual SMAD inhibition is combined with CHIR99021 

(CHIR, an activator of the Wnt signaling pathway) that promote posterior identities and 

neuroepithelial proliferation (Li et al., 2011). Although now commonly used in MN 

differentiation protocols in ALS (Amoroso et al., 2013; Devlin et al., 2015; Kiskinis et 

al., 2014; Maury et al., 2015), it is noteworthy that the first studies on MN differentiations 

did not include a SMAD inhibition stage (Dimos et al., 2008; Hu and Zhang, 2009).

After initial neural induction, hiPSCs must be directed towards a caudal and ventral identity 

using RA and recombinant SHH or its agonist (SAG) respectively (Wichterle et al., 2002). 

In 2015, Maury and colleagues performed a comprehensive study of the effect of varying the 

concentration and timing of these two morphogens on differentiation efficiency as well as 

impact on MN subtype identity (Maury et al., 2015). This protocol has been used in several 

recent studies for C9orf72 hiPSC-MNs (Dafinca et al., 2020; Mehta et al., 2021; Selvaraj 

et al., 2018). Overall, the concentration of RA in different protocols ranges from 100 nM 

(Hu and Zhang, 2009) to 1 μM (Dafinca et al., 2016; Karumbayaram et al., 2009; Maury et 

al., 2015), while one study showed the generation of MNs in the absence of activators of 

retinoid signaling (Patani et al., 2011). Conversely, Calder et al showed in 2015 that efficient 

MN generation can be obtained by early exposure to RA in the absence of SHH pathway 

agonists via suppression of GLI3 signaling (Calder et al., 2015).

Before maturation, neurons are generally dissociated and plated at lower densities to 

stimulate neurite outgrowth. Depending on the protocol, this stage can occur as early as 

9 days (Maury et al., 2015; Qu et al., 2014) or as late as 45 days post-induction (Devlin 

et al., 2015). When final neural maturation is induced, the growth medium is usually 

supplemented with brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic 

factor (GDNF) (Dafinca et al., 2020; Dafinca et al., 2016; Devlin et al., 2015; Dimos et al., 

2008; Hu and Zhang, 2009; Kiskinis et al., 2014; Qu et al., 2014; Selvaraj et al., 2018), 

as well as ciliary neurotrophic factor (CNTF) (Devlin et al., 2015; Dimos et al., 2008; 

Karumbayaram et al., 2009; Kiskinis et al., 2014) or IGF-1 (Dafinca et al., 2020; Dafinca et 

al., 2016; Hu and Zhang, 2009; Qu et al., 2014).

Despite the well-defined phases of MN differentiation, the marked variability in 

differentiation protocols, as well as in the identity of the final cultures, even between 

different hiPSC lines differentiated in parallel, requires objective assessment of MN identity 

and purity if studies are to be meaningfully compared. Postmitotic MNs can be identified 

by specific MN transcription factors, such as ISL1 and HB9, while more mature MNs 

express choline acetyltransferase (ChAT) and the vesicular acetylcholine neurotransmitter 

transporter (vAChT) (Amoroso et al., 2013; Karumbayaram et al., 2009). While all 

MNs will initially follow this pattern of expression, it has become clear that during the 

differentiation process only a subset of these proteins may be expressed (Amoroso et al., 

2013; Maury et al., 2015). Depending on the markers used to define MN identity, the purity 

of MN cultures reported in the ALS literature ranges from 20-30% (Amoroso et al., 2013; 

Dimos et al., 2008), 40-50% (Devlin et al., 2015; Hu and Zhang, 2009; Maury et al., 2015) 

to 95% (Du et al., 2015). One strategy to reduce heterogeneity of MN cultures is to enrich 

for MNs by fluorescence activated cell sorting (FACS) of neural progenitors, for example 

by adenoviral transduction with HB9:GFP (Amoroso et al., 2013; Wainger et al., 2014). 
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However, restriction of HB9 expression to early development favors selection of immature 

neurons which may not be the most relevant disease models for neurodegenerative disorders.

Assessment of the functional maturity of hiPSC-MNs by electrophysiology involve the 

presence of action potentials and sustained trains of action potentials which occur only at 

later stages of MN differentiation (Hu and Zhang, 2009). In heterogeneous cultures MNs 

are generally identified and patch-clamped on the basis of size, not molecular identity. 

Studies focusing on electrophysiological properties in ALS hiPSC-MNs therefore typically 

use extended maturation periods (Devlin et al., 2015). However, it is important to note that 

different subtypes of MNs have different electrophysiological properties such as rate and 

amplitude of action potential and the presence of action potentials alone is not sufficient 

to categorize a MN as mature. Other parameters of functional maturity in MN cultures 

include evidence of synaptic connectivity such as the presence of miniature excitatory or 

inhibitory postsynaptic currents. Furthermore, whole cell patch clamping is a technically 

challenging, low throughout method that may be inefficient at determining the real variation 

present within a neuronal culture. Therefore, there is growing effort to implement optical 

readouts of neuronal activity that can be monitored across thousands of neurons in parallel 

such as Calcium imaging, use of fluorescent voltage indicators combined with optogenetic 

stimulation (“all optical electrophysiology”) (Kiskinis et al., 2018) or activity measurements 

using multielectrode arrays (MEA) (Wainger et al., 2014), methods that may provide a 

better representation of overall network activity and connectivity in heterogeneous cultures 

(Ronchi et al., 2021).

From hiPSCs to cortical neurons

In many neural conversion protocols, hiPSCs undergo the formation of radially organized 

neuroepithelia (neural rosettes) (Zhang et al., 2001). The neural rosettes assume by default a 

primitive anterior identity (Pankratz et al., 2007) and yield glutamatergic forebrain neurons 

with dorsal telencephalic identity in the absence of morphogens (Elkabetz et al., 2008; Li et 

al., 2009). A default anterior and dorsal identity is also observed when using dual-SMAD 

inhibition-based neural induction protocols (Chambers et al., 2009).

Most current cortical neuron differentiation protocols do not selectively yield neurons from 

a particular cortical layer but lead to a mixture of deep and upper layer neurons. Their 

relevance to ALS, which is characterized by restricted degeneration of specific subsets of 

cortical neurons affecting corticofugal neurons in the motor cortex and their connections, 

is therefore less clear. In addition, there is considerable interest in modelling the related 

neurodegenerative disease FTD, which can occur as part of the ALS disease spectrum, but 

even less is understood of the specific cortical neuronal subtypes undergoing degeneration. 

We will briefly discuss here the specific protocols used in C9orf72-ALS/FTD research to 

generate hiPSC-derived cortical neurons in terms of length and how they differ at various 

stages (Table 2). However, further efforts are clearly needed in the field to yield cortical 

neuron differentiation protocols more directly relevant to ALS/FTD research.

Cortical neuron differentiation protocols currently used for ALS/FTD can be broadly defined 

by three main stages: hiPSCs convert to cortical neurepithelial stem cells, then to progenitor 
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cells, followed by differentiation and maturation into cortical neurons able to fire action 

potentials and form synapses.

Several studies in which cortical neurons have been differentiated from ALS hiPSCs were 

based on a protocol by (Delaloy et al., 2010), and have used cells carrying the G4C2 repeat 

expansion in C9orf72 (e.g. (Almeida et al., 2013; Freibaum et al., 2015; Yuva-Aydemir et 

al., 2019). Similar to the cortical neuron differentiation protocol by Shi et al. (Shi et al., 

2012), the first phase involves dissociation of hiPSC colonies and embryoid body (EB) 

formation. After a week, EBs are typically attached to laminin-coated dishes and allowed 

to form neural rosettes (e.g. (Almeida et al., 2013; Shi et al., 2012), which are then lifted 

and maintained as neurospheres in suspension for 1-2 weeks. Final differentiation is initiated 

by plating dissociated neurospheres on dishes coated with poly-D-lysine and laminin either 

without further addition of other growth factors (Shi et al., 2012) or with the addition of 

BDNF and GDNF to support neurite outgrowth (e.g. (Almeida et al., 2013; Dafinca et al., 

2016; Selvaraj et al., 2018).

In addition to the extrinsic factor-based MN and cortical differentiation strategies listed 

in this section, several groups have developed transcription factor-driven differentiation 

strategies. Those include the forced expression of Neurogenin 2 (NGN2), ISL1 and LHX3 

to convert control, sALS, and C9orf72 ALS/FTD patient-derived iPSCs into induced MNs 

(iMNs) (Shi et al., 2019; Shi et al., 2018) based on earlier work in mouse ESCs (Mazzoni 

et al., 2013). Transcription factor-based conversion of iPSCs into iMNs has been used for 

screening assays and for candidate evaluation studies in the context of SOD1, TARDBP, 
C9orf72 and sALS (Imamura et al., 2017). Forced expression of Neurogenin 1 (NGN1) and 

NGN2 (Busskamp et al., 2014; Lam et al., 2017), or NGN2 alone (Zhang et al., 2013), was 

also sufficient for the rapid induction of cortical-like neurons (iNs) from hiPSCs and can 

be combined with extrinsic patterning strategies (Nehme et al., 2018) to enhance cortical 

marker expression. NGN2-driven differentiation was adapted by Shlevkov et al. to perform 

a high-content screen which identified 6 small-molecule regulators of the axonal transport 

of mitochondria, some of which rescued transport deficits in iPSC MNs derived from a 

SOD1-ALS patient (Shlevkov et al., 2019).

Differentiation of hiPSCs into astrocytes and microglia

In neurodegenerative disorders such as ALS, astrocytes and microglia are thought to play a 

role in pathogenesis by promoting an inflammatory state in the brain (neuroinflammation). 

In the brain and spinal cord, astrocytes and microglia exert their primary functions on 

neurons, but also signal to one other (Matejuk and Ransohoff, 2020). These physiological, 

tricellular interactions are summarized in Figure 1. While changes in those interactions 

have been implicated in ALS (Filipi et al., 2020), it remains unclear what triggers 

neuroinflammation and how those changes contribute to neurodegeneration in ALS. 

Nevertheless, controlling neuroinflammation by modulating the communication between 

MNs and glia is under active study as a potential therapeutic strategy for ALS. The recent 

development of new differentiation protocols for hiPSC-derived astrocytes and microglia has 

opened up the opportunity to study the effect of ALS-causing mutations on glial cells as 

well as the interaction between human glial cells and MNs in vitro. Because the number of 
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astrocyte and microglia differentiation protocols used in ALS studies is still rather limited, 

we will cover differentiation strategies that have been utilized in both ALS and non-ALS 

studies.

From hiPSCs to astrocytes

Protocols to differentiate astrocytes from hiPSCs (Table 3) typically consist of four steps: (1) 

differentiation of hiPSCs into neural progenitor cells (NPCs); (2) neural patterning to specify 

astrocytes to defined regions of the CNS; (3) long-term culture or induction of gliogenic 

switch; and (4) astrocyte terminal differentiation and maturation (reviewed in (Krencik and 

Zhang, 2011; Tyzack et al., 2016).

Astrocyte differentiation protocols from hiPSCs are listed in table 3. During development, 

gliogenesis follows neurogenesis. In the late embryonic stage and early postnatal period, 

astrocyte progenitors are specified from NPCs via Notch signalling (Chambers et al., 2001). 

In vitro, NPCs can be derived from hiPSCs using 3D differentiation methods (Eiraku et 

al., 2008; Falk et al., 2012; Watanabe et al., 2005) or 2D monolayer strategies such as 

dual SMAD inhibition (Chambers et al., 2009. Regional specification of NPCs is obtained 

through the combination of growth factors and cytokines (i.e. FGF8, RA, SHH, BMP), 

which allows the generation of spinal cord-, midbrain-, and dorsal or ventral-forebrain 

specific astrocytes (Hjorth, 1993; Holmqvist et al., 2015; Krencik et al., 2011; Krencik and 

Zhang, 2011; Li et al., 2018; Roybon et al., 2013). Astrocyte lineage specification (gliogenic 

switch) via long-term NPC expansion and subsequent terminal astrocytic differentiation are 

then performed in media supplemented with various factors alone or in combination such as 

cAMP, CNTF, LIF, EGF, FGF2, BMP, or in presence of serum.

In the initial protocols for the derivation of astrocytes from hiPSCs, NPCs were expanded 

in the presence of RA, SHH and cAMP, cultured in suspension for two months in media 

consisting of DMEM/F12, N1 supplement and cAMP, after which they were cultured on 

plastic for an additional 7 days (Hu et al., 2010). Because gliogenesis follows neurogenesis 

during embryonic development, generation of astrocytes from hiPSCs can be protracted, 

requiring differentiation periods ranging from 3 to 6 months, making hiPSC studies 

laborious, costly and difficult to standardize (Studer et al., 2015). A recent method to 

efficiently generate astrocytes in 4 to 7 weeks from the hiPSC stage uses CRISPR/Cas9-

mediated inducible expression of the transcription factor nuclear factor I A (NFIA), or 

NFIA in combination with SRY-box transcription factor 9 (SOX9) (Li et al., 2018). The 

rapid, NFIA and SOX9 mediated transcriptional fate conversion was also reported for 

directly generating mouse astrocytes from postnatal skin fibroblast (Caiazzo et al., 2015). 

An alternative strategy is the use of NFIA to rapidly trigger the gliogenic switch in early 

spinal or cortical patterned NPCs followed by the astrocytic differentiation of those glial 

competent precursors into spinal cord or cortex- related astrocytes from hiPSCs using LIF or 

serum-based differentiation protocols (Tchieu et al., 2019).

To selectively enrich for astrocytes, glial-committed NPCs were positively sorted for A2B5 

by magnetic selection followed by re-plating in neurobasal medium containing CNTF for an 

additional 2 weeks (Mormone et al., 2014). Alternatively, a nearly pure astrocyte population 

can be isolated from 3D human cerebral cortical spheroids (hCS), which, after 590 days 
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in culture, were dissociated and immunopanned using anti-Thy1 to harvest neurons and 

anti-HepaCAM to harvest astrocytes (Sloan et al., 2017), methods developed previously for 

the isolation of astrocytes from the adult brain. CD49f is another marker which has been 

proposed to purify human fetal astrocytes in the spinal cord and spinal astrocytes derived 

from hiPSCs (Barbar et al., 2020). After FACS purification, CD49f+ astrocytes showed 

trophic support of neurons, glutamate uptake and phagocytic capability. In response to 

inflammatory stimuli, CD49f+ astrocytes acquired an A1-like reactive state characterized by 

impaired phagocytosis and glutamate uptake as well as loss of capability to support neuronal 

maturation. Moreover, conditioned medium from CD49f+ A1 astrocytes was toxic to human 

and rodent neurons.

However, for precise modeling of region-specific neurodegenerative disorders, it is 

important to consider that astrocytes possess heterogeneous region-specific morphologies 

and functions. In rodents, astrocytes are morphologically classified into two major subtypes: 

protoplasmic and fibrous, which are widely distributed in the brain and spinal cord 

(reviewed in (Tabata, 2015)). In the human cortex, two additional astrocyte subtypes exist: 

interlaminar and varicose projection astrocytes (Oberheim et al., 2012). These four astrocyte 

subtypes are characterized by different GFAP expression and morphology. In addition, 

functional differences exist between spinal and cortical, ventral and dorsal regions (as 

reviewed in (Tyzack et al., 2016). For instance, cortical astrocytes express high levels of 

the glutamate transporter GLT-1, whereas spinal astrocytes express lower levels of GLT-1 

but express glycine receptors. The hiPSC-derived astrocytes described to date still possess 

immature morphological and functional characteristics compared to adult astrocytes and are 

most likely mixed populations of different astrocyte subtypes, morphologies, and functions. 

Although some laboratories have attempted to generate cortical or spinal specific astrocytes, 

their region-specific functions have not been investigated in depth, and we are still lacking 

efficient ways to guide the astrocyte differentiation toward a well-defined dorsal vs ventral 

profile. Proper morphological and functional characterization will be key to understanding 

the pathogenesis of region-specific neurodegenerative disorders, and critical for precise 

hiPSC disease modeling.

From hPSCs to microglia

While protocols for the differentiation of hiPSCs into astrocytes have now been available for 

more than a decade, hiPSC-derived microglia have become available only recently (Muffat 

et al., 2016). These differentiation protocols principally aim to mimic microglial ontogeny, 

which is distinct from that of Myb-dependent blood macrophages, as microglia arise from 

Myb-independent yolk sac-derived progenitors (Ginhoux et al., 2010; Gomez Perdiguero 

et al., 2015; Kierdorf et al., 2013; Schulz et al., 2012). During neurodevelopment, these 

progenitors migrate into the brain to undergo final maturation to microglia in concert 

with neurons and then maintain their population by self-renewal (Bruttger et al., 2015). 

hiPSC-derived microglia are therefore more suitable for disease modelling compared to 

blood monocyte-derived macrophages, which are employed by some researchers as a 

proxy for brain macrophages. Several articles have recently reviewed the commonalities 

and differences between protocols for the differentiation of hiPSC-derived microglia (e.g. 

(Haenseler and Rajendran, 2019; Hasselmann and Blurton-Jones, 2020; Hedegaard et al., 
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2020; Speicher et al., 2019; Wurm et al., 2021)). Here, we briefly focus on key principles 

and limitations of current methods.

Typically, hiPSC microglial differentiation protocols consist of four steps (Table 4): (1) 

initial patterning into cells corresponding to the primitive streak ; (2) differentiation into 

hemangioblasts and primitive hematopoietic stem cells; (3) differentiation into myeloid 

progenitor cells; (4) terminal microglial differentiation and maturation. These milestones 

are achieved by protocols of diverging complexity and duration, either by simply exposing 

hiPSCs to different growth factors and cytokines, or additionally employing sophisticated 

sorting methods (FACS or MACS), or by inducing hypoxia. The initial patterning step 

can be performed via 3D EB formation (Haenseler et al., 2017; Muffat et al., 2016), or 

in 2D monolayers (Abud et al., 2017; Douvaras et al., 2017; Guttikonda et al., 2021; 

McQuade et al., 2018; Pandya et al., 2017; Takata et al., 2017). The differentiation of 

hemogenic endothelial cells into primitive haematopoetic stem cells is achieved by the 

addition of cytokines including IL-3 and M-CSF. This leads to the formation of yolk sac-like 

structures, progressively releasing myeloid progenitor cells into the culture medium, which 

can be simply harvested and re-plated for terminal differentiation or further enriched by 

FACS or MACS. Terminal differentiation into hiPSC-derived microglia is typically achieved 

by continuous CSF1R engagement, typically using IL-34. The resulting hiPSC-derived 

microglia generated by different protocols show similar properties: they are motile and 

functionally active in phagocytosis and secretion, and their transcriptome is similar to human 

fetal microglia. However, the regional identity of these cells, for instance, whether they 

represent spinal or cortical microglia, is usually ill-defined, emphasizing that there remains a 

need for better characterization of cells generated using currently available protocols.

Insights into ALS pathophysiology from hiPSC models

A wide range of cellular phenotypes have been described in models of ALS. A major 

challenge is how to relate these to the pathophysiology of the human disease in a way 

that improves the prospect of identifying disease-modifying drugs. It is fundamental to 

appreciate that ALS is a clinical syndrome in which neurodegeneration occurs in the 

complex network which produces voluntary movement (Talbot et al., 2018), with multiple 

genetic and non-genetic contributions. Disease modelling in ALS is likely to uncover 

common cellular phenotypes across different mutations (eg; alterations in excitability, 

defects in axonal transport), but these may be driven by distinct differences in upstream 

biological pathways.

Animal models, particularly rodents, continue to have a place in disease modelling 

in ALS and have provided important clues into core pathogenic pathways and the 

relative contribution of neuronal and non-neuronal cells in the context of intact tissue 

architecture, especially the neuromuscular synapse, which shows common features in its 

organization across species. However, animal models based on genetic manipulation, such 

as overexpression of human genes in mice from heterologous promoters designed to 

force a ‘strong’ phenotype, may not faithfully recapitulate the key pathways in human 

ALS, and may amplify interspecies differences in biology and response to therapy. 

Complementing vertebrate models, the fruit fly Drosophila Melanogaster and yeast models 
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have been employed by multiple labs in ALS research to gain additional insights into ALS 

pathogenesis and for drug discovery due to the recapitulation of specific aspects of ALS 

pathology and the availability of tools to rapidly manipulate gene and protein expression 

(reviewed in (Di Gregorio and Duennwald, 2018; Liguori et al., 2021; Zhang et al., 2018). 

In contrast, post-mortem tissue from ALS patients enables access to the full spectrum 

of disease heterogeneity but only captures a static snapshot at the end-stage of disease. 

Not all MNs are equally susceptible to degeneration in ALS, and those cells remaining 

at autopsy may reflect populations relatively resistant to the disease process, making the 

differentiation between disease drivers and compensatory mechanisms in post-mortem tissue 

samples difficult.

hiPSCs present a complementary platform to vertebrate, fly and yeast models and post-

mortem tissue, facilitating investigation of relevant disease processes in the context of the 

specific human cell-types targeted in ALS, across all genotypes, and potentially a way to 

address the difficult problem of modelling sporadic disease. With increased knowledge of 

neurodevelopment, hiPSCs will provide access to the full repertoire of ALS-relevant human 

cell types at scale, enabling high-throughput assays such as genetic and chemical screens 

(Fujimori et al., 2018; Imamura et al., 2017). An up-to-date list of ALS models using hiPSC 

technology as well as their main findings is provided in Table 5.

Motor neuron models

i) C9orf72—HRE mutations in the first intron of C9orf72 can be associated with pure 

ALS, pure FTD or ALS/FTD within the same pedigree, suggesting that the mutation 

acts on cortical neurons or spinal MNs in concert with complex genetic interactors and 

age-related cellular events. Given the challenges in generating rodent models of C9orf72-

related neurodegeneration (Mordes et al., 2020), hiPSCs represent a unique tool to study 

the differential effect of the mutation on neuron subtypes and the identification of potential 

modifiers.

MNs generated from C9orf72 hiPSCs consistently exhibit the characteristic RNA foci and 

dipeptide repeat-associated non-AUG (RAN) pathology of C9orf72-ALS/FTD (Almeida et 

al., 2019; Donnelly et al., 2013; Gendron et al., 2017; Sareen et al., 2013), and variable 

degrees of reduced C9orf72 protein expression (haploinsufficiency) (Donnelly et al., 2013) 

(Sareen et al., 2013). Although TDP-43 mislocalisation and aggregation is a core feature 

of C9orf72-ALS/FTD at post-mortem, few studies to date have convincingly demonstrated 

this in hiPSC-MNs. Whether this means that TDP-43 dysregulation in C9orf72-ALS can be 

dissociated from other aspects of pathophysiology, or whether further development in cell 

maturation is required for full pathological processing of TDP-43 is unknown. However, 

a range of phenotypes reported in C9orf72 lines suggest that the mutation is associated 

with reduced firing capacity, sensitivity to glutamate toxicity, impaired nucleocytoplasmic 

transport and altered vesicular and synaptic trafficking (Dafinca et al., 2016; Donnelly 

et al., 2013; Freibaum et al., 2015; Sareen et al., 2013; Zhang et al., 2015a). The use 

of hiPSC-MNs has been an important pre-clinical tool in demonstrating the effectiveness 

of ASO therapy currently in clinical trials (Sareen et al., 2013). C9orf72 hiPSC models 
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therefore remain an important tool for investigating pathophysiology and for validation of 

drugs targeting key aspects of C9orf72-ALS pathogenesis.

ii) SOD1—SOD1 was the first gene in which mutations were found in ALS, and it is 

therefore not surprising that SOD1 models have dominated translational research for the last 

20 years. However, with the exception of ASO therapy now in Phase 2 clinical trials, the 

results have been disappointing (Miller et al., 2020). Rodent models tended to emphasize 

the effects of high levels of misfolded mutant SOD1 on neurons and the contribution of glia 

and neuroinflammation, but despite a vast literature on work from transgenic mouse models, 

the mechanism whereby SOD1 mutations cause ALS is still unclear. hiPSC models showed 

that MNs in monoculture display phenotypes which can be disease relevant and independent 

of other cells types such as astrocytes. For instance, increased apoptosis, fewer neurites, 

reduced soma size, and neurite length specifically in MNs derived from a patient carrying 

the severe SOD1A4V mutant were rescued with genetic correction using a two-step, zinc-

finger nuclease (ZFN)-mediated gene targeting strategy (Kiskinis et al., 2014). Other studies 

also confirmed the effect of mutant SOD1 on neurofilament dynamics, axonal growth and 

function (Chen et al., 2014; Kim et al., 2020) and that misfolded mutant SOD1 is present 

in basal culture conditions. However, direct non-cell autonomous toxic effects of mutant 

SOD1-expressing astrocytes on MN survival have also been demonstrated and are discussed 

in the section on “non-neuronal cell types” below. Overall, SOD1 mutations have been less 

extensively studied in hiPSCs compared to C9orf72 or TARDBP.

iii) TARDBP—Given that the majority of ALS cases show TDP-43 pathology at autopsy, 

hiPSC-MNs carrying mutations in its gene TARDBP are of particular interest in potentially 

revealing a mechanism for loss of TDP-43 regulation in ALS. Studies have consistently 

shown that detergent insoluble TDP-43 levels are increased in the cytoplasm, though not 

generally in the form of clear aggregates. MNs showed reduced growth and survival 

(e.g. (Serio et al., 2013)), alterations in neurofilament organization and axonal vesicular 

trafficking (e.g. (Kreiter et al., 2018)), and a range of alterations in mitochondrial and other 

sub-cellular organelle dysfunction (e.g. (Dafinca et al., 2020)). Without genetic manipulation 

to specifically label TDP-43, which could promote artefacts, it is not possible to study 

its dynamic movement between nucleus and cytoplasm and in phase transition to form 

membraneless organelles which may be critical to the initiation of the pathological cascades 

driving observed phenotypes.

Of particular interest for its clinical potential, a study from Fang and colleagues performed 

a high-content screen of compounds to alter stress granule properties and TDP-43 aggregate-

like structures in hiPSC-MNs carrying mutations in TARDBP or FUS (Fang et al., 2019). 

Interestingly, compounds containing extended planar aromatic moieties decreased the 

recruitment of RNA-binding proteins such as TDP-43 into stress granules leading to reduced 

formation of TDP-43 aggregate-like structures, suggesting that such compounds could be 

used to treat ALS patients with TDP-43 pathology.

iv) FUS—Mutations in FUS account for a small minority of familial cases (<5%) and 

are associated with characteristic TDP-43 negative neuropathological changes at autopsy. 

Therefore, although an RNA binding protein, FUS may exert its pathological effects through 
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distinct mechanisms from most ALS cases. In accordance with postmortem tissue, FUS 

cytoplasmic mislocalization and accumulation has been recapitulated across multiple studies 

of (FUS) mutant hiPSC-MNs(Guo et al., 2017b; Higelin et al., 2016; Ichiyanagi et al., 2016; 

Marrone et al., 2018; Naumann et al., 2018). In addition to alterations in splicing (Ichiyanagi 

et al., 2016), FUS has been implicated in altered DNA damage repair (Higelin et al., 2016) 

and, of particular interest given the lower MN predominant pattern typical of FUS-ALS, in 

axonal RNA transport (Guo et al., 2017b) and NMJ stability (Picchiarelli et al., 2019).

v) Studies directly comparing different ALS-causing genes and sALS—One 

caveat to hiPSC studies comparing phenotypes across genotypes is that often such studies 

are done independently, thus, variability from cell purity, maturation, and the type of 

MNs generated from the differentiation protocol, as noted later, all act as confounding 

variables. A study that directly compared electrophysiological properties across hiPSC-MNs 

derived from SOD1A4V, FUSM511FS, FUSH517Q, and C9orf72 demonstrated that despite 

differences in firing patterns, all genotypes exhibited hyperexcitability that correlated with 

reduced cell survival and could be reversed with ezogabine (retigabine), a Kv7 or KCNQ 

voltage-gated potassium channel activator (Wainger et al., 2014). These data contrasted with 

studies demonstrating hypoexcitability in ALS hiPSC-MN cultures (Dafinca et al., 2020; 

Devlin et al., 2015). Longitudinal measurements of excitability in both TDP43M337V and 

C9orf72 hiPSC-MNs have shown that MNs initially exhibit hyperexcitability which converts 

to hypoexcitability upon prolonged culture (Dafinca et al., 2020).

Pathological phenotypes and sensitivity to stressors highlight both the overlap and 

heterogeneity captured by hiPSC models of ALS. Mitochondrial dysfunction and oxidative 

stress in hiPSC-MNs seem to be shared across multiple genotypes including SOD1A4V, 
C9orf72, TDP-43and sALS (Alves et al., 2015; Dafinca et al., 2016; Egawa et al., 2012; 

Kiskinis et al., 2014). However, transcriptomic and proteomic comparisons of C9orf72 and 

SOD1 hiPSC-MNs revealed differentially altered pathways, also reflected in expression 

profiles from MNs isolated from post-mortem spinal cord (Kiskinis et al., 2014; Wong 

and Venkatachalam, 2019). Multiple SOD1 mutant hiPSC-MNs have been linked with ER 

stress; however, TDP-43 MNs exhibit sensitivity to phophoinositide 3-kinase but not ER 

stress (Bhinge et al., 2017; Bilican et al., 2012). Conversely, nucleocytoplasmic transport 

defects have been detected in C9orf72 and TDP43 patient hiPSC-MNs but not with SOD1 
mutants, although mislocalization of nuclear pore complex proteins has been reported in 

SOD1 patients (Chou et al., 2018; Freibaum et al., 2015; Ortega et al., 2020; Wong and 

Venkatachalam, 2019; Zhang et al., 2015a). Together these data suggest that different 

genotypes may achieve MN degeneration via divergent mechanisms.

Studies from sALS hiPSCs particularly highlight the ability of hiPSCs to recapitulate the 

heterogeneous nature of ALS without known genetic origin. Burkhardt et al. ((Burkhardt 

et al., 2013)) showed that forebrain cortical neurons and spinal MNs derived from three of 

16 sALS patient hiPSCs exhibited TDP-43 aggregate-like structures. These aggregate-like 

structures seemed to recapitulate the pathology in post-mortem tissue samples from one 

of the same patients from which the hiPSC were derived. This was important as it led to 

a high-content chemical screen in both forebrain cortical neurons and spinal MNs which 

identified FDA-approved drugs (i.e. the cardiac glycoside Digoxin) as potential inhibitors 
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of TDP-43 aggregate-like structures, demonstrating the feasibility of patient-derived hiPSC-

based disease for drug screening. However, it is noteworthy that this is the only study that 

has shown TDP-43 aggregate-like structures in iPSC models and that the prototypical ALS 

neuropathology of TDP-43 aggregation has not been convincingly recapitulated in any other 

hiPSC-based study to-date. An extensive comparison of hiPSC-MNs derived from fALS 

patients with SOD1, FUS, and TDP43 mutations as well as 32 sALS patients across multiple 

cellular phenotypes, including neurite length, cell death, and abnormal protein aggregation, 

demonstrated variability across these in vitro phenotypes that correlated with patient clinical 

heterogeneity (Fujimori et al., 2018).

In a study analyzing the transcriptome of hiPSC-MNs from patients carrying mutations in 

the valosin containing protein (VCP) gene increased intron retention (IR) was identified 

as a dominant feature of the splicing program during early MN differentiation, which 

was also observed in independent RNAseq data sets from SOD1 and FUS MNs, with the 

most significant increase of IR in the Splicing Factor Proline and Glutamine rich (SFPQ) 

transcript (Luisier et al., 2018). As a result, the SFPQ protein binds extensively to its 

retained intron and is lost from the nuclei of VCP, FUS and SOD1 MNs. This was also 

observed in mouse transgenic ALS models and human postmortem tissue from sALS cases, 

identifying nuclear loss of SFPQ as a unifying hallmark across fALS and sALS.

In a study from 2018, Shi and colleagues found that C9orf72 interacted with endosomes and 

was required for normal vesicle trafficking and lysosomal biogenesis in hiPSC-MNs. HRE-

mediated C9orf72 haploinsufficiency caused neurodegeneration through i) accumulation of 

glutamate receptors and excitotoxicity and ii) impaired clearance of neurotoxic DPRs (Shi 

et al., 2018). In 2019, the same group found that iMNs from C9orf72 and several sALS 

patients showed impaired autophagosome formation and aberrant accumulation of glutamate 

receptors (Shi et al., 2019). Moreover, treatment with the anticoagulation-deficient form 

of activated protein C (3K3A-APC) was able to rescue these defects in both C9orf72 and 

sALS iMNs, decreased DPRs and restored TDP-43 localization. Of note, 3K3A-APC also 

decreased glutamate receptor expression and proteostasis in vivo in C9orf72 gain- and 

loss-of-function mouse models. Particularly important for its clinical potential, this study 

also identified that the ability of 3K3A-APC to rescue ALS iMN survival was dependent 

on its ability to activate protease-activated receptor 1 (PAR1), which identifies PAR1 as a 

therapeutic target for both C9orf72 and sALS (Shi et al., 2019).

Non-neuronal cell types

Numerous studies reported activation of astrocytes and microglia in post-mortem tissue 

samples from ALS patients and in murine models of ALS, implicating neuroinflammation 

as an important feature of ALS (Vahsen et al., 2021). Murine and human astrocytes differ 

in their size and complexity (Oberheim et al., 2009) and microglia exhibit important species-

specific differences in receptor expression and response to stimuli (Smith and Dragunow, 

2014). Thus, hiPSC models have a potentially important role to play in dissecting the 

interaction of these cells with MNs in ALS pathophysiology, and to identify effective 

therapies that target astrocytes and microglia and therefore neuroinflammation.
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Astrocytes expressing mutant SOD1 killed spinal primary and embryonic mouse stemcell 

derived MNs through soluble factors (Nagai et al., 2007). Similarly, MNs derived from 

mouse ESCs carrying the mutant SOD1G93A allele showed neurodegenerative properties 

when co-cultured with SOD1G93A glial cells (Di Giorgio et al., 2007). Astrocytes isolated 

from mutant SOD1-overexpressing mice or from postmortem brain tissue of sALS patients 

displayed toxicity to mouse- and human PSC-derived MNs in vitro (Brites and Vaz, 2014; 

Haidet-Phillips et al., 2011; Marchetto et al., 2008). Interestingly, this toxicity is specific 

for MNs as other neuronal subtypes in the same dish remained unaffected (Di Giorgio et 

al., 2008). Studies on C9orf72 hiPSC astrocytes showed that the C9orf72 mutation leads 

to both cell- autonomous astrocyte pathology and non- cell autonomous effects on MN 

pathophysiology. C9orf72 astrocytes co- cultured with MNs caused MNs to undergo a 

progressive loss of action potential output due to decreases in the magnitude of voltage- 

activated Na+and K+ currents. Notably, this phenotype was reversed by CRISPR/Cas- 9 

mediated excision of the C9orf72 repeat expansion (Zhao et al., 2020). Media conditioned 

by C9orf72 hiPSC astrocytes increased oxidative stress in wild type MNs, suggesting this 

contributes to MN degeneration in C9orf72 ALS, although it is noteworthy that this study 

was conducted in C9orf72 hiPSC astrocytes and hiPSC astrocytes from non-affected donors 

that were not genetically matched (Birger et al., 2019).

Studies on TARDBP hiPSC astrocytes are scarce in comparison, but TARDBP hiPSC 

astrocytes have increased TARDBP expression, higher levels of cytoplasmic TDP-43 

aggregation, and decreased cell survival compared to wild type controls, but co-culture with 

MNs did not induce MN cell death (Serio et al., 2013). In addition, a recent study showed 

that hiPSC MNs are more vulnerable to TDP-43 aggregation and toxicity compared with 

their astrocyte counterparts, and that astrocytes provide protection from seeded aggregation 

within MNs by reducing (mislocalized) cytoplasmic TDP-43, TDP-43 aggregation and cell 

toxicity (Smethurst et al., 2020).

To date, only one study has investigated hiPSC microglia derived from an ALS patient. 

C9orf72 hiPSC-derived microglia displayed a heightened immune response as well 

as altered expression of endosomal marker early endosome antigen 1 and lysosomal 

associated membrane protein 1, which was also confirmed in patient post-mortem tissue 

samples (Lorenzini et al., 2020). Investigating hiPSC-derived microglia in the context of 

ALS is crucial, considering the growing evidence for the involvement of microglia in 

ALS pathophysiology. Importantly, hiPSC-derived microglia express ALS-relevant genes, 

including C9orf72, SOD1, and TDP-43 (Haenseler et al., 2017), increasing the likelihood 

of identifying phenotypes in hiPSC-derived microglia from ALS patients carrying mutations 

in these genes. It will be of particular interest to investigate hiPSC-derived microglia in 

co-culture paradigms in order to further elucidate their putative toxic properties to MNs. 

Interestingly, co-culture studies demonstrated that astrocytes derived from C9orf72 but not 

TDP43 M337 hiPSCs reduced hiPSC-derived MN functional output and survival (Birger et 

al., 2019; Madill et al., 2017; Serio et al., 2013; Zhao et al., 2020). Systematic investigation 

of glia across different genotypes in parallel will be essential in future studies to exclude the 

confounding effects of technical variation.
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5. Challenges, possible solutions, and emerging technologies in hiPSC 

research

Despite the potential of hiPSCs to model ALS in vitro, several challenges remain. 

These, together with possible solutions and emerging technologies in hiPSC research, are 

summarized in Figure 2.

Multicellular and 3D culture models to study non-cell autonomous effects in ALS

While simplified hiPSC-derived neuronal, astrocytic, and microglial monoculture paradigms 

allow the study of cell-autonomous effects of disease-causing mutations, modelling crosstalk 

between neurons and glia is crucial to understanding their non-cell-autonomous interaction 

in disease. Co-culture with hiPSC-derived neuronal cells facilitates glial maturation in vitro, 
as this supports, for example, the ramified homeostatic state of microglia (Haenseler et 

al., 2017) and the highly branched homeostatic state of astrocytes (Enright et al., 2020). 

Astrocyte/MN co-cultures from hiPSCs have already been harnessed to study ALS patient-

derived cells (Smethurst et al., 2020), and protocols for hiPSC-derived MN/microglia co-

culture are in development. However, even more complex in vitro paradigms that incorporate 

and model the physiological interactions between all three cell types would be ideal. A 

triculture model of hiPSC-derived cortical neurons, astrocytes, and microglia has been 

recently described in the context of Alzheimer Disease (AD) (Guttikonda et al., 2021). 

A similar approach to study ALS will require adaptations to ensure hiPSC-derived MNs, 

microglia, and astrocytes reflect the spinal subtypes of these cells. Interestingly, recent 

evidence suggests the existence of multiple different and diverse subtypes of MNs in 

the mouse spinal cord (Alkaslasi et al., 2021; Blum et al., 2021). It would be intriguing 

to analyze how the transcriptome of iPSC-derived MNs in monoculture and co-culture 

corresponds to individual MN subtypes seen in vivo, and whether modifications to existing 

protocols could lead to an enrichment of different subtypes.

In the CNS, signaling from oligodendrocytes and infiltrating peripheral immune cells, such 

as macrophages, T-cells and NK cells, also contribute to ALS (Vahsen et al., 2021). In the 

peripheral nervous system (PNS), skeletal muscle (SkMs) and Schwann cell dysfunction 

might also play a role in ALS disease onset and progression (Arbour et al., 2017). A ‘motor 

unit-on-a-chip’ system (Osaki et al., 2020) has been used to test the effect of ALS candidate 

compounds on MN survival in a microenvironment that recapitulates the crosstalk between 

MNs and SkMs through the neuromuscular junction (NMJ).

An even more ambitious approach to the investigation of a large range of cell types in 3D 

is to combine multiple organoids in so-called ‘assembloids’ to model aspects of cellular 

crosstalk that occur between different tissues or organs (Andersen et al., 2020). Although 

variability between multiple organoids/assembloids remains a challenge, this technology 

may be important in understanding more complex, connectivity-dependent mechanisms 

across neuropsychiatric and neurodegenerative disorders including ALS (Marton and Pasca, 

2020).
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Overcoming sources of variability in hiPSC production

The emergence of hiPSC-derived models of ALS has coincided with widespread adoption 

of high-throughput technologies for the unbiased appraisal of the genome, transcriptome, 

proteome, and epigenome, allowing the in-depth characterization of hiPSC-derived neurons 

and glia. However, such studies have also demonstrated considerable variability even 

for cells from the same individual, across independent iPSC inductions and subsequent 

differentiations.

An extensive study of undifferentiated hiPSCs by the “Human-Induced Pluripotent Stem 

Cells Initiative” has shown that the primary cause of variability between cell lines is 

due to genetic variation between individuals, which explains 5.2–26.3% of methylation, 

gene expression and RNA sequencing differences as well as 21.4–45.8% of differences 

found in protein immunostaining (Kilpinen et al., 2017). The same study also found 

significant effects of cell culture conditions and copy number alterations acquired during 

reprogramming but only minor effects of passage number and biological sex. Other studies 

have focused on differences between hiPSC lines and established hESC lines, and have 

identified differences in regional methylation patterns and regulatory gene expression, 

suggesting an epigenetic memory of the somatic cell of origin (Ohi et al., 2011). However, 

the degree of variability from such bias appears significantly smaller than the genetic 

background of the donor, and likely abates after passaging (Bock et al., 2011; Burrows et 

al., 2016; Nishino et al., 2011). Concerns about reproducibility have therefore accompanied 

hiPSC-derived disease models including ALS.

One approach to address donor variability has been to greatly increase the number of control 

and patient replicates, as has been done in the “NeuroLINCS” consortium in ALS (Keenan 

et al., 2018). The availability of well-characterized cell lines, through international consortia 

like “Answer ALS” (https://www.answerals.org/) represents an opportunity to overcome the 

limitations of hiPSC donor variability by analyzing data from MNs differentiated from more 

than 1,000 patients and control hiPSC lines. In addition to the increased cost associated 

with scaling up hiPSC production, the challenge of such large, often multicenter, efforts 

is the introduction of additional sources of variation, related to technical differences in 

experimental methods, operator-driven differences and sequencing batch effects, which 

together can obscure the biology of interest (Volpato et al., 2018). On the other hand, the 

design of such studies enables the identification of these biases, which may otherwise pass 

by unnoticed in smaller scale experimental designs, and can allow unwanted variation to be 

regressed out of datasets using appropriate bioinformatic and statistical methods. However, 

there is a risk that disease-relevant variation may be lost in this process leading to the 

generation of an ‘idealized dataset’ (Risso et al., 2014).

Advances in genomic engineering have significantly improved the ability to control for 

genetic variability between individuals by allowing the correction of disease-causing 

mutations in hiPSCs to generate isogenic controls. (Figure 3). Isogenic hiPSCs lines have 

been developed using CRISPR/Cas9 technology for several genetic mutations in ALS: 

SOD1 (Bhinge et al., 2017; Bursch et al., 2019; Imamura et al., 2017; Kiskinis et al., 

2014; Wang et al., 2017) C9orf72 hexanucleotide repeat expansions (Abo-Rady et al., 2020; 

Bursch et al., 2019; Dafinca et al., 2020; Lopez-Gonzalez et al., 2019; Selvaraj et al., 
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2018),TARDBP (Tann et al., 2019),and FUS (R521C) (Bursch et al., 2019; Guo et al., 

2017a; Wang et al., 2017).

Of note, the correction of HRE in C9orf72 resulted in three non-overlapping datasets 

between three laboratories (Dafinca et al., 2020). The lack of reproducibility may stem from 

differences in the CRISPR/Cas9 strategy design between the three experiments but may also 

reflect the variability of MN differentiations or even be a product of CRISPR/Cas9 off-target 

effects, which remain poorly characterized and difficult to detect (Zhang et al., 2015b). 

Furthermore, there is increasing appreciation of deleterious on-target effects after CRISPR/

Cas9 editing, for instance mono-allelic deletions or loss of heterozygosity (Weisheit et al., 

2020) . Improvements are continuously taking place in the development of this technology 

and better tools are already available (i.e. CRISPR/Cpf1, Hi-Fi Cas9) to circumvent some 

of the previous problems in terms of targeting accuracy and efficiency of homology-directed 

repair.

In the context of isogenic lines, the NIH Intramural Center for Alzheimer’s and Related 

Dementias recently initiated the largest iPSC genome engineering project to date, termed 

“iPSC Neurodegenerative Disease Initiative” (iNDI) (Ramos et al., 2021). This project will 

generate a large series of iPSC lines by engineering a number of disease-causing mutations 

into deeply characterized parental lines derived from control individuals to model AD, 

dementia with Lewy bodies/Parkinson’s disease dementia (DLB/PDD), ALS and FTD, and 

other adult-onset neurodegenerative disorders.

Overcoming sources of variability in hiPSC differentiation

In addition to intrinsic differences between parent lines due to genetics, the differentiation 

process gives rise to heterogeneous cell populations which differ in both number and 

composition, with significant amounts of interneurons and microglia reported in culture 

in some studies (Ho et al., 2021; Thiry et al., 2020). Although the identity of MNs in 

culture typically corresponds to hindbrain and rostral cord, the relative composition of bulk 

cultures may also obscure important differences in the relative maturity and subtype of 

cell populations. Single cell characterization (using transcriptomics and cell sorting) will 

become an essential technique to dissect MN biology in heterogenous monocultures, and, 

importantly, will enable appraisal of co-cultures and multicellular model systems, both in 2D 

and 3D. Sorting of hiPSC-derived cells based on their expressed markers (Haenseler et al., 

2017) or exogenously introduced transgenic markers (Kiskinis et al., 2014; Shi et al., 2018), 

while allowing an assessment of overall subtype composition in bulk cultures, introduces 

stress through a necessary dissociation step, with cells exhibiting significant rate of cell 

death, which may bias analysis and subsequent culture.

Another purification technique, which may complement the search for cell specific 

outputs from hiPSC-derived monocultures and co-cultures, is translating ribosome affinity 

purification (TRAP), which uses tagged ribosomal proteins under cell-type-specific 

promoters and which has been successfully applied to capture translated RNA from cell 

populations of interest in mouse brains. The feasibility of this technique in hiPSC-derived 

cortical neurons has recently been established, although this experiment was performed 

using a ubiquitous promoter requiring enrichment using MACS (Rodrigues et al., 2020).
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The significant variation in protocols for the differentiation of hiPSC-derived cells with 

critical roles in ALS argues for harmonization of the criteria used to obtain and characterize 

the differentiated cell types. An example of such an approach, which might be applied 

to other cell types relevant to ALS, has recently helped to clarify reactive astrocyte 

nomenclature, phenotype and markers with the goal to reduce astrocyte heterogeneity and 

promote the development of universal astrocyte-based biomarkers and therapies (Escartin et 

al., 2021).

Overcoming immaturity of hiPSC derivatives

ALS is an age-related neurodegenerative disorder. Because hiPSC derivatives more closely 

resemble a fetal than an adult stage, the biological landscape of these cells may reflect 

developmental pathways or the pre-symptomatic phase of ALS and may fail to capture ALS 

disease phenotypes (reviewed in (Guo et al., 2017a)). A detailed overview on promoting 

aging in hiPSC models of ALS can be found elsewhere (Ziff and Patani, 2019); therefore, 

we focus on key principles here. Electrical stimulation, including using optogenetics and 

chemogenetics, metabolic stimulation and multicellular and 3D culture approaches, may all 

promote maturation. Promoting aging through overexpression of progerin, a truncated form 

of lamin A associated with premature aging, has been shown to augment disease phenotypes 

in a model of PD (Miller et al., 2013). However, whether this approach is physiologically 

relevant to mimic ‘normal’ aging in an iPSC-derived model is uncertain.

Because cellular rejuvenation occurs during hiPSC reprogramming, potentially repairing the 

macromolecular damage that could contribute to neurodegenerative phenotypes (Studer et 

al., 2015), another strategy is to bypass the PSC stage by direct conversion of fibroblasts 

into neurons or glia (Hautbergue et al., 2017; Mertens et al., 2015; Meyer et al., 2014; 

Varcianna et al., 2019). Directly reprogrammed i-astrocytes (iNPC- As), for example, retain 

the age-related features of the donor fibroblasts and thus have the potential to capture 

more relevant disease phenotypes (Gatto et al., 2021). Epigenetic changes are reset during 

reprogramming, which may reduce the utility of hiPSC-derived cells to model responses 

to environmental stimuli relevant to ALS, while direct lineage reprogramming approaches 

more faithfully preserve epigenetic memory (Meyer et al., 2014). However, the cell fate 

stability of directly reprogrammed cells is unclear, and because fibroblasts have limited 

self-renewal, reprogrammed cells are often non expandable (Chambers and Studer, 2011).

Overcoming ALS heterogeneity with multiplexed, pooled approaches and genetic screens

The variable penetrance of some ALS-determining mutations and the complex genetic 

contribution to sporadic ALS, based on a combination of common variants of small effect 

and rarer variants of stronger effect, suggests that there remain many genetic factors to 

be uncovered. Multiplexed or novel pooled approaches have the potential to identify ALS-

relevant mechanisms that are masked in conventional smaller scale experimental setups. 

One possible approach is the usage of high-content image-based assays, which have been 

successfully used to distinguish fibroblasts derived from 12 spinal muscular atrophy (SMA) 

patients and 12 healthy control individuals based on high-throughput imaging and machine 

learning analysis of morphological criteria (Yang et al., 2019). A complimentary technique, 

PRobe-based Imaging for Sequential Multiplexing (PRISM) (Tomov et al., 2021), which 
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permits the simultaneous imaging of 10 or more molecular targets using fluorescent DNA-

conjugated antibody probes, has been applied to evaluate cell identity and population 

composition of iPSC-derived cortical neuron and MN cultures. The combined application 

of these or similar multiplexed techniques to ALS-relevant cell types has the potential to 

characterize disease signals and multiple contributing gene and protein targets at large-scale.

A different option is pooled technology, such as a ‘village-in-a-dish’ in which cells from 

up to 100 donors are mixed together, fed, passaged, stimulated in a shared environment and 

scored for phenotypes (Mitchell et al., 2020). After sorting or selecting for the phenotype of 

interest, the genomic DNA is sequenced in the resulting village, and computational analysis 

reveals the proportion of cells from each donor contributing to phenotypic variation which 

can then be mapped back to genomic variation. This permits hypothesis-driven testing of 

multiple disease phenotypes across many disease-associated mutations, allowing for the 

simultaneous increase in throughput in both the number of genotypes and phenotypes that 

can be studied and decreasing inter-line assay variability. Pooled approaches could be 

employed to uncover phenotypes across large sALS cohorts or to compare pathomechanisms 

in cells differentiated from individuals carrying ALS-causing mutations in different genes.

A novel approach to studying the role of genetic factors in ALS is to use CRISPR-

interference (CRISPR-i)-based platforms for genetic screens combined with single-cell 

RNA-sequencing technologies, as shown by Tian and colleagues (Tian et al., 2019). 

CRISPR-i uses a catalytic version of Cas9 (dCas9) which has no DNA cutting activity 

but is fused to a transcriptional repressor domain that suppresses the expression of human 

genes. Tian et al. implemented this technique in hiPSCs and hiPSC-derived neurons to 

reveal neuron-specific genes that are essential for neurons but not for hiPSCs by single-cell 

RNA-sequencing. The identification of genes which selectively promote neuronal survival in 

hiPSC-derived neurons may give important insights into neurodegenerative diseases such as 

ALS.

Translation of promising drug candidates from hiPSC models into human 

ALS in current clinical trials

Despite the challenges that remain to be overcome, hiPSC modeling approaches have 

the potential to accelerate translation of drugs into clinical trials by demonstrating target 

engagement, notably with ASO treatment, and by providing a screening platform for ALS-

relevant phenotypes. In vitro disease modeling using hiPSC technology has led to at least 

three clinical trials of drug candidates for ALS.

In SOD1 and C9orf72 hiPSC models, ezogabine, a potassium Kv7 channel activator 

approved by the US Food and Drug Administration for epilepsy, reduced neuronal 

excitability (Wainger et al., 2014). Based on the in vitro data, the investigators moved 

directly from hiPSC modeling into a multicenter phase 2 randomized clinical trial of 2 doses 

of ezogabine in patients with ALS and found that ezogabine decreased cortical and spinal 

MN excitability, though the study was not powered to detect an effect on disease progression 

(Wainger et al., 2021). Of note, ezogabine has been previously used in humans and has an 
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established safety profile, which made it substantially more straightforward to move directly 

into phase 2 studies based on the hiPSC-related work from (Wainger et al., 2014).

Imamura et al. identified src/c-Abl inhibitors as therapeutic targets in a high throughput 

screen assessing survival of SOD1 hiPSC-MNs. The most promising src/c-Abl inhibitor 

bosutinib further rescued viability of hiPSC-MNs derived from patients with TDP43 and 

C9orf72 mutations and two of three people with sALS, suggesting a common target across 

fALS genotypes and between fALS and sALS. Furthermore, a 3D neuromuscular junction 

(NMJ) organ-on-a-chip model using hiPSC-MNs derived from an sALS patient co-cultured 

with muscle skeletal bundles verified that bosutinib co-treated with rapamycin rescued the 

reduced muscle contractions in sALS cultures (Osaki et al., 2018). Bosutinib is currently in 

clinical trials to test efficacy in ALS patients.

Ropinirole, a non-ergoline dopamine agonist used to treat the symptoms of PD, showed 

positive effects on suppression of neurite retraction and cell death in hiPSC-MNs from 

patients with TARDBP or FUS mutations, and notably also on cells from patients with 

sALS. Putative mechanisms of action of ropinirole are 1) suppression of oxidative stress; 

2) inhibition of TDP-43 and FUS aggregation; 3) improvement of mitochondrial function, 

(Okano et al., 2020). A randomized, double-blind, placebo-controlled, single-center, and 

open-label continuation phase I/IIa clinical trial, was designed to explore the safety, 

tolerability and efficacy of ropinirole hydrochloride as an ALS treatment (Morimoto et al., 

2019).

In further developing iPSCs as validation tool for disease modelling and drug discovery 

it will be crucial to demonstrate that drugs which successfully rescue phenotypes in iPSC-

derived models predict therapeutic efficacy in patients.

Conclusion

hiPSC technology permits the generation of ALS-relevant cell types, both in the CNS and 

PNS, allowing for the creation of highly relevant disease models that capture the specific 

genetic signature of a given patient. Using hiPSC -MNs, a variety of cell-autonomous 

mechanisms have been elucidated, which are thought to be shared between fALS and 

sALS, such as the dysfunction of nucleocytoplasmic transport, stress granule processing, 

and autophagy. hiPSC -derived astrocytes from ALS patients have been used to investigate 

the role of these cells in ALS pathophysiology through their effect on MNs. Differentiation 

protocols for hiPSC-derived microglia have also recently become available, but research on 

their role in ALS is still emerging. More complex, multicellular and 3D cultures systems 

can be used to investigate cell-cell interactions in vitro that were not previously feasible 

in monotypic cell configurations. Protocols to differentiate hiPSCs into other cell types 

potentially contributing to the disease pathogenesis such as skeletal muscle, or cells that are 

relatively resistant to degeneration in ALS, such as oculomotor neurons, will additionally 

increase the battery of tools to investigate ALS.

Several technical caveats of hiPSC-derived models remain to be resolved. The variety of 

differentiation protocols in use for the different ALS relevant cell types, with resultant 
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inconsistency between the identity of differentiated cells as well as the results obtained by 

different laboratories, may be overcome by the use of isogenic controls and enrichment of 

pure cell fractions. Additional important aspects of hiPSC biology require investigation to 

clarify their utility for the study of an age-related neurodegenerative disease like ALS. The 

relative immaturity of hiPSC-derived cells may require more sophisticated approaches to 

in vitro maturation to reveal how the cellular tolerance to genetic mutations present from 

conception breaks down with aging.

While many important questions remain, clinical trials based on hiPSC-disease modeling 

studies are now emerging. The ability of hiPSC models to reflect unique aspects of disease 

can also be expected to contribute to more informed patient stratification in trials, and to the 

identification of which cell type is most likely to be the target of treatments.
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Figure 1. Physiological interactions between neurons, microglia and astrocytes in the brain and 
spinal cord:
Neuronal and glial cells interact through various contact-dependent and -independent 

mechanisms under homeostatic conditions.
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Figure 2. Challenges and possible solutions in modeling ALS using hiPSC technology.
Several challenges, such as weak technical reproducibility and lack of modelling inter-

cellular crosstalk, remain to be resolved to improve disease modelling with hiPSC models. 

Amongst others, possible solutions include cell purification strategies and the development 

of more complex, multicellular and three-dimensional culture systems.
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Figure 3. Overcoming biological variability through isogenic controls and cell purification 
strategies.
hiPSCs are typically generated by reprogramming skin biopsy-derived fibroblasts into 

pluripotency. Reprogramming-induced variability between different hiPSC clones can be 

reduced by generating isogenic control lines, where the mutant allele is corrected through 

gene-editing. Variability acquired during differentiation can be reduced by cell purification 

and ribosome affinity purification strategies.
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Table 1:

Spinal MN differentiation protocols used in ALS studies

Reference

Induction compounds

Protocol
length
(days)

Culture Purity
(%)SMAD inhibition Patterning

Chir LDN SB Compound
C

RA SHH SAG HB9 Tuj1 ChAT

(Dimos et al., 2008) ✓ ✓ 45 20 - -

(Hu and Zhang, 2009) ✓ ✓ 56 >40 30-40 -

(Karumbayaram et al., 2009) ✓ ✓ 90-95 - - -

(Patani et al., 2011) ✓ 55 - - -

(Amoroso et al., 2013) ✓ ✓ ✓ ✓ 35 - - -

(Sareen et al., 2013) ✓ 75 - - -

(Maury et al., 2015) ✓ ✓ ✓ ✓ ✓ 35 - - -

(Qu et al., 2014) ✓ ✓ 30 - 70 -

(Kiskinis et al., 2014) ✓ ✓ ✓ ✓ 55 - - -

(Devlin et al., 2015) ✓ ✓ ✓ 130 44 81 -

(Du et al., 2015) ✓ ✓ ✓ 28 - - -

(Calder et al., 2015) ✓ ✓ ✓ 20 40 - -

(Bursch et al., 2019) ✓ ✓ ✓ ✓ ✓ >42 - 89 27

(Dafinca et al., 2020) ✓ ✓ ✓ ✓ 30 - 90 90

(Ababneh et al., 2020) ✓ ✓ ✓ ✓ 30 35 80 80

(Mehta et al., 2021) ✓ ✓ ✓ ✓ ✓ 35 - - -
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Table 2:

Cortical neuron differentiation protocols used in C9orf72-ALS/FTD studies

Reference Induction compounds Expansion
phase

Final maturation
factors

Protocol
length
(days)

(Shi et al., 2012) Used later in (Dafinca et al., 2016) Dorsomorphin (10 uM) SB (10 
uM) N2, B27

Neurospheres - 80

(Almeida et al., 2013) Used later in (Lopez-Gonzalez et 
al., 2016; Lopez-Gonzalez et al., 2019; Maor-Nof et al., 
2021)

bFGF, N2, B27 Neurospheres BDNF, GDNF 72

(Bilican et al., 2012) (Livesey et al., 2014) Used later in 
(Selvaraj et al., 2018)

N2, B27, Forskolin (10 μM) Monolayer BDNF, GDNF 56
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Table 3.
Existing astrocyte differentiation protocols from hiPSCs.

Protocols used in non-ALS studies are indicated in black, while protocols in ALS studies are indicated in blue.

Study Critical factors for
terminal differentiation

Length Presence of serum 
in
terminal
differentiation 
media

(Hu et al., 2010) cAMP (1 uM) > 3 months No

(Krencik and Zhang, 2011) CNTF (10 ng/ml) > 3 months No

(Emdad et al., 2012) CNTF (20 ng/ml) ~ 5 weeks No

(Juopperi et al., 2012) Chemically not defined commercial media 
(ScienCell)

> 3 months Yes

(Lafaille et al., 2012) 5% FBS 2–3 months Yes

(Serio et al., 2013) (Birger et al., 
2019) (Zhao et al., 2020)

CNTF (10 ug/ml) ~ 2 months No

(Shaltouki et al., 2013) CNTF (5ng/ml)
BMP (10ng/ml)
FGF2 (8ng/ml)
1% FBS
Activin A (10ng/ml)
Heregulin1b (10ng/ml)
IGFI analog (200ng/ml)

~ 5 weeks from the NSC 
stage

Yes

(Roybon et al., 2013) hrFGF1 (0.1 to 100ng/ml, then 50ng/ml)
hrFGF2 (0.1 to 100ng/ml, then 50ng/ml)

> 80 days Yes

(Sareen et al., 2014) EGF (100ng/ml)
FGF2 (100ng/ml)
CNTF (−)

> 2 months No

(Mormone et al., 2014) CNTF (20 ng/ml) 28-35 days No

(Meyer et al., 2014) (Hautbergue et 
al., 2017) (Varcianna et al., 2019)

10% FBS > 7 days from induced 
NPCs (iNPCs)

Yes

(Holmqvist et al., 2015) FGF2 (20 ng/ml)
EGF (100 ng/ml)

~ 45 days No

(Pasca et al., 2015; Sloan et al., 
2017)

- From day 100 No

(Du et al., 2015) (Madill et al., 
2017) (NB: Based on (Krencik and 
Zhang, 2011))

10% FBS > 3 months Yes

(Zhou et al., 2016) Ascorbic Acid (0.2mM) > 28 days No

(Yasui et al., 2017) LIF (1/1.000, Wako)
1% and 5% FBS

~ 28 days from hNPCs Yes

(Tew et al., 2017) and (Soubannier 
et al., 2020)

Chemically not defined commercial media 
(ScienCell)

~ 30 days from hNPCs Yes

(Hall et al., 2017) (Smethurst et 
al.,2020)

BMP4 (10 ng/ml)
LIF (10 ng/ml)

~ 3 months No

(Perriot et al., 2018) CNTF (20 ng/ml) 2–3 months No

(Canals et al., 2018) dbcAMP (500 mg/ml)
heparin-binding EGF-like growth factor (5 
ng/ml)
BMP4 (10 ng/ml)
CNTF (10 ng/ml)

< 28 days No

(Lundin et al., 2018) FGF2 (8 ng/mL)
heregulin 1β (10 ng/mL)

> 28 days No
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Study Critical factors for
terminal differentiation

Length Presence of serum 
in
terminal
differentiation 
media

IGF1 (200 ng/mL)
ActivinA (10 ng/mL)

(Li et al., 2018) BMP4 (10 ng/mL)
CNTF (10 ng/mL)

4-7 weeks No

(Rosati et al., 2018) 2% FBS > 5 weeks from 
neurospheres

Yes

(Tchieu et al., 2019) HB-EGF (10ng/ml)
CNTF (10 ng/mL)
LIF: 10ng/ml

> 4 weeks No

(Bradley et al., 2019) BMP4 (10 ng/ml)
CNTF (10 ng/ml

~ 3 months No

(Raman et al., 2020) BMP4 (10 ng/mL)
heregulin-β (10 ng/mL)
CNTF (10 ng/mL)

> 50 days No

(Barbar et al., 2020) T3 (60ng/mL)
cAMP (1 μM)
Ascorbic Acid (20 μg/mL)

> 2 months No

(Leventoux et al., 2020) BDNF (10 ng/ml)
GDNF (10 ng/ml)

From day 48 No

(Peteri et al., 2021) CNTF (20 ng/mL) > 75 days No
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Table 4.
Existing microglia differentiation protocols from hiPSCs.

Protocols used in non-ALS studies are indicated in black. One protocol used in ALS studies is indicated in 

blue.

Study Critical factors
for terminal
differentiation

Length Compatibility with other cell
types demonstrated?

Presence of
serum in
terminal
media

(Muffat et al., 2016) M-CSF (5 ng/mL)
IL-34 (100 ng/mL)

~74 d hiPSC-derived neuroglial 
cultures (2D and 3D)

no

(Haenseler et al., 2017) IL-34 (100 ng/mL) optional GM-CSF (10 ng/mL) ~45 d hiPSC-derived cortical 
neurons

no

(Abud et al., 2017) M-CSF (25 ng/mL)
IL-34 (100 ng/mL)
TGFβ-1 (50 ng/mL)
CD200 (100 ng/mL)
CX3CL1 (100 ng/mL)

~38 d rat hippocampal neurons, 
hiPSC-derived brain organoids 
(3D); transplantation into the 
cortex of MITRG mice and the 
hippocampi of AD mice

no

(Douvaras et al., 2017) IL-34 (100 ng/mL)
GM-CSF (10 ng/mL)

~45-60 d no no

(Pandya et al., 2017) dependent on co-culture with human astrocytes
IL-3 (20 ng/mL)
GM-CSF (20 ng/mL)
M-CSF (20 ng/mL)
FBS (10%)

~29 d only for murine iPSC-derived 
microglia differentiated using 
this protocol

yes

(Takata et al., 2017) M-CSF (50 ng/mL) ~46 d co-culture with hiPSC-derived 
neurons

no

(Amos et al., 2017) ScienCell Research Microglia Medium 
(undefined) mixed 1:1 with media containing
M-CSF (10 ng/mL)
GM-CSF (10 ng/mL)
IL-34 (10 ng/mL)
TGFβ-1 (2 ng/mL)
FBS (1%)

~40 d no yes

(McQuade et al., 2018) 
(NB: simplified protocol 
based on (Abud et al., 
2017); used in (Lorenzini 
et al., 2020))

M-CSF (25 ng/mL)
IL-34 (100 ng/mL)
TGFβ-1 (50 ng/mL)
CD200 (100 ng/mL)
CX3CL1 (100 ng/mL)

~38 d transplantation into the cortex 
and hippocampi of MITRG 
mice

no

(Brownjohn et al., 2018) 
(NB: based on (Haenseler 
et al., 2017))

IL-34 (100 ng/mL)
GM-CSF (10 ng/mL)
FBS (10%)

~24-39 d hiPSC-derived brain organoids 
(3D)

yes

(Konttinen et al., 2019) M-CSF (10 or 5 ng/mL)
IL-34 (10 or 100 ng/mL)
FBS (10%)

~24-42 d hiPSC-derived neurons (3D) 
and cerebral brain organoids

yes

(Xu et al., 2019) (NB: 
based on (Abud et al., 
2017))

ScienCell Research Microglia Medium 
(undefined)
M-CSF (25 ng/mL)
GM-CSF (25 ng/mL)
IL-34 (50 ng/mL)
TGF~-1 (50 ng/mL)
IGF-1 (25 ng/mL)

~37 d no yes

(Guttikonda et al., 2021) IL-34 (100 ng/mL)
M-CSF (20 ng/mL)
FBS (10%)

~24 d tri-culture with hiPSC-derived 
astrocytes and cortical neurons

yes

(Reich et al., 2020) (NB: 
based on (Haenseler et al., 
2017))

IL-34 (100 ng/mL)
M-CSF (25 ng/mL)
TGFβ-1 (50 ng/mL)

~28-32 d hiPSC-derived neurons no
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Table 5.

ALS models for C9orf72, SOD1, TARDBP and FUS mutations using hiPSC technology

Mutation Cell types Purpose and
application

Key findings/take home
messages

Reference

SOD1 MNs Defining phenotypes 
directly linked to 
SOD1A4V mutation

• SOD1A4V hiPSC-MNs exhibit decreased 
cell survival that is rescued by gene 
correction

• SOD1A4V MNs show mitochondrial 
dysfunction and evidence of oxidative and 
ER stress

(Kiskinis et al., 
2014)

SOD1 MNs Studying role of protein 
inclusions

• SOD1 hiPSC-MNs display neurofilament 
aggregation followed by neurite 
degeneration in the absence of glia

• Mutant SOD1 binds to 3'UTR of NF-L 
mRNA and changes proportion of NF 
subunitsn

(Chen et al., 2014)

SOD1; 
C9orf72; 
FUS

MNs Electrophysiological 
properties of MNs

• Hyperexcitabilty of ALS hiPSC-MNs (Wainger et al., 
2014)

SOD1; 
FUS

MNs Determining whether 
divergent causal mutations 
exhibit common 
dysfunctional pathways

• SOD1 induces degeneration via ERK and 
JNK signaling in hiPSC-MNs, which is 
reverted by gene correction

• FUS hiPSC-MNs exhibit activated p38 and 
ERK indicating overlapping pathway

(Bhinge et al., 
2017)

SOD1; 
TARDBP; 
C9orf72

MNs Screen to repurpose 
existing drugs for ALS

• Src/c-Abl inhibition increased survival of 
ALS MNs

• One inhibitor (Bosutinib) increased 
autophagy and decreased misfolded SOD1 
load

(Imamura et al., 
2017)

C9orf72 MNs Studying mechanisms of 
C9 HRE pathology

• C9orf72 hiPSC-MNs exhibit RNA foci, 
differential expression of genes-related to 
membrane excitability, and decreased firing 
capacity that were reversed by antisense 
oligonucleotides targeting C9orf72

(Sareen et al., 
2013)

C9orf72 
(FTD)

Neurons Understanding C9orf72 
pathology in FTD

• C9orf72 hiPSC-neurons display RNA foci 
and RAN protein expression as well as 
sensitivity towards autophagy inhibition

(Almeida et al., 
2013)

C9orf72 MNs Studying the toxic gain-of-
function role of C9orf72 in 
ALS

• C9orf72 hiPSC MNs show RNA foci and 
repeat RNA sequesters ADARB2

• C9orf72 hiPSC-MNs have increased 
susceptibility to excitotoxic stress

(Donnelly et al., 
2013)

C9orf72 Neurons Investigating HRE RNA-
induced toxicity

• RanGAP1 interacts with HRE RNA and 
suppresses neurodegeneration

• C9orf72 hiPSC neurons show RanGAP1 
mislocalization and impaired nuclear 
import

(Zhang et al., 
2015a)

C9orf72 Neurons Studying RAN mediated 
toxicity

• C9orf72 hiPSC neurons display 
dysfunctional RNA export out of nucleus

(Freibaum et al., 
2015)
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Mutation Cell types Purpose and
application

Key findings/take home
messages

Reference

C9orf72; 
TARDBP

MNs Characterization of 
electrophysiological 
properties of ALS MNs

• Comparison of electrophysiological 
properties of hiPSC MNs shows a 
transition from initial hyperexcitability to 
hypoexcitability after prolonged culture

(Devlin et al., 
2015)

C9orf72 Cortical 
neurons, 
MNs

Phenotypic 
characterization of cortical 
and spinal MNs

• Both C9orf72 hiPSC cortical neurons and 
MNs exhibit stress granule formation and 
abnormal protein aggregation

• Decreased survival of C9orf72 hiPSC-MNs 
is associated with Ca2+ dysregulation and 
ER stress

(Dafinca et al., 
2016)

C9orf72 MNs; 
Neurons

Understanding C9ORF72 
HRE-mediated toxicity

• C9orf72 hiPSC-MNs and hiPSC neurons 
ectopically expressing dipeptide repeat 
(DPR) protein (GR)80 have increased 
oxidative stress and DNA damage

• GR(80) preferentially binds to 
mitochondrial ribosomal proteins and 
induces mitochondrial dysfunction

(Lopez-Gonzalez 
et al., 2016)

C9orf72; 
sALS

Astrocytes, 
MNs

Investigating mechanisms 
of impaired proteostasis in 
MNs

• ALS hiPSC astrocytes impair autophagy in 
MNs via soluble factors

(Madill et al., 
2017)

C9orf72 Astrocytes, 
MNs

Role of astrocytes in 
humanized system

• hiPSC C9orf72 astrocytes show RNA foci 
and poly-GP DPRs

• Co-culture with MNs reduces MN 
functional output

(Zhao et al., 2020)

C9orf72 Astrocytes, 
MNs

Studying astrocyte-
mediated toxicity

• C9orf72 hiPSCs display toxicity to MNs 
via soluble factor

• Astrocyte conditioned media induces 
oxidative stress in MNs

(Birger et al., 
2019)

C9orf72 MNs Investigating proteins with 
altered nucleocytoplasmic 
distribution in C9ORF72 
HRE-ALS

• C9orf72 hiPSC-MNs show redistribution of 
eRF1 in nuclear invaginations

• C9orf72 hiPSC-MNs show reduced 
translation and hyperactive nonsense-
mediated decay

(Ortega et al., 
2020)

C9orf72; 
SOD1; 
sALS

MNs Cross comparison of 
multiOMIC datasets in 
hiPSC-MNs and patient 
tissues

• Transcriptomic and proteomic signatures of 
C9orf72 hiPSC-MNs corroborated in MNs 
from C9orf72 and sALS patients

• SOD1 hiPSC-MNs have different 
transcriptomic signature

(Wong and 
Venkatachalam, 
2019)

TARDBP MNs, 
neurons

Investigating cell-
autonomous mechanisms 
of TARDBP pathology

• TARDBP hiPSC-MNs show increased 
soluble and detergent-resistant TDP-43 and 
selective degeneration over time that can be 
reversed by PI3K inhibition

(Bilican et al., 
2012)

TARDBP MNs Developing platform for 
disease modeling and 
screening

• TARDBP hiPSC-MNs display cytosolic 
TDP-43 aggregates and fewer neurites

• TDP-43 in detergent insoluble fraction 
interacts with SNRPB2

• Histone acetyltransferase inhibitor 
anacardic acid reversed the phenotype

(Egawa et al., 
2012)

Cell Stem Cell. Author manuscript; available in PMC 2023 January 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Giacomelli et al. Page 46

Mutation Cell types Purpose and
application

Key findings/take home
messages

Reference

TARDBP astrocytes, 
MNs

Investigating non-cell 
autonomous contribution 
to TARDBP ALS

• TARDBP hiPSC-astrocytes have increased 
TARDBP expression and TDP-43 
aggregation and decreased cell survival

• Co-culture with MNs does not induce MN 
cell death

(Serio et al., 2013)

TARDBP MNs Investigate composition 
and role of TDP-43 
aggregates in ALS

• TDP-43 aggregates sequester nuclear pore 
proteins and affect nucleocytoplasmic 
transport

(Chou et al., 2018)

TARDBP MNs Studying mechanisms of 
TARDBP pathology

• TARDBP hiPSC-MNs display 
neurofilament abnormalities along with 
mitochondrial and lysosomal dysfunction 
and neuron loss independent of TDP-43 
mislocalization or aggregation

(Kreiter et al., 
2018)

TARDBP MNs Comparing calcium 
dysregulation in C9orf72 
and TDP-43 iPS-derived 
MNs

• Glutamate stimulation leads to high 
recovery times of normal cytosolic calcium 
levels in TDP-43 MNs

• Calcium-permeable receptors are 
upregulated in TDP-43 MNs

• Reduced mitochondrial calcium uptake is 
observed in TDP-43 MNs

• TDP-43 MNs have low ER calcium release 
and high levels of Bcl-2

(Dafinca et al., 
2020)

TARDBP MNs Gaining insights into 
the role of SGs in 
pathophysiology

• 20 planar compounds decreased stress 
granule formation by preventing TDP-43 
from entering the stress granules

• Generated MNs from TARDBP ALS 
patients and control family members.

• After stimulating MNs with toxins, stress 
granule formation increased and TDP-43 
entered the stress granules

• TDP-43 formed more permanent clumps in 
TARDBP MNs compared to controls.

• Planar compounds reduced the formation of 
TDP-43 permanent clumps and increased 
TARDBP MN survival

(Fang et al., 2019)

FUS MNs Studying FUS-induced 
pathology

• Compared mild and severe FUS mutations 
at baseline or under stress conditions

• Under stress conditions, FUS hiPSC-MNs 
show FUS mislocalization to cytoplasm and 
larger FUS+ stress granules

• At baseline, FUS hiPSC-MNs show DNA 
damage

• Degree of FUS mislocalization correlated 
with disease onset

(Higelin et al., 
2016)

FUS MNs Mechanisms of FUS 
pathology

• Mutant FUS hiPSC-MNs exhibit increased 
FUS mislocalization to cytoplasm and in 
stress granules under stress conditions 
compared to isogenic counterparts

• MN precursor cells display differential 
splicing and gene expression

(Ichiyanagi et al., 
2016)
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Mutation Cell types Purpose and
application

Key findings/take home
messages

Reference

FUS MNs Mechanisms of FUS 
pathology

• Mutant FUS hiPSC-MNs show FUS 
mislocalization, hypoexcitability, and 
axonal transport deficits

• Treatment of FUS hiPSC-MNs with 
HDAC6 inhibitors and ASOs rescues 
axonal transport deficits

(Guo et al., 2017b)

FUS MNs; 
Neurons

Investigating the role of 
stress granules in ALS

• Generated wild type- and P525L-FUS-GFP 
isogenic hiPSC lines

• P525L mutation alters dynamics of FUS-
GFP incorporation in stress granules

• Screen reveals inhibition of PI3K/AKT/
mTOR promotes autophagy and reduces 
P525L-FUS recruitment to stress granules

(Marrone et al., 
2018)

FUS hiPSCs; 
MNs

Understanding nuclear-
cytoplasmic transport 
defects due to FUS 
mutations

• In hiPSC-MNs, FUS mutations in 
the nuclear localization sequence 
cause dysfunction of poly(ADP-ribose) 
polymerase (PARP)-dependent DNA 
damage response (DDR) signaling This 
causes FUS mislocalization and subsequent 
FUS aggregation and cell death

(Naumann et al., 
2018)

FUS MNs Understanding the effect 
of FUS mutations on 
neuromuscular junction

• Co-cultures of FUS patient-derived hiPSC-
MNs and myotubes show endplate 
maturation defects

(Picchiarelli et al., 
2019)

sALS MNs Modeling sALS • sALS hiPSC MNs exhibit TDP-43 
aggregation

• Identified Digoxin modulates TDP-43 
aggregation in high content chemical screen

(Burkhardt et al., 
2013)

sALS astrocytes, 
MNs

Investigating astrocyte-
mediated toxicity to MNs 
in human system

• sALS patient postmortem-derived 
astrocytes induce death of hiPSC-MNs via 
necroptosis

(Re et al., 2014)

sALS MNs Studying non-genetic 
forms of ALS

• sALS hiPSC-MNs gene expression 
signature reveals mitochondrial dysfunction 
and degeneration

(Alves et al., 2015)

sALS MN; SkM Developing platform for 
NMJ studies

• Developed 3D skeletal muscle/MN "ALS-
on-a-chip technology"

• ALS motor unit showed fewer SkM 
contractions, MN degeneration, and SkM 
apoptosis

(Osaki et al., 2018)

sALS; 
FUS; 
TARDBP; 
SOD1

MNs Develop multi-phenotypic 
screen to cluster 
heterogeneous sALS lines

• Stratified sALS hiPSC-MNs Identified 
ropinirole as therapeutic target for non-
SOD1 ALS

(Fujimori et al., 
2018)
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