Table 5.
ALS models for C9orf72, SOD1, TARDBP and FUS mutations using hiPSC technology
Mutation | Cell types | Purpose and application |
Key findings/take home messages |
Reference |
---|---|---|---|---|
SOD1 | MNs | Defining phenotypes directly linked to SOD1A4V mutation |
|
(Kiskinis et al., 2014) |
SOD1 | MNs | Studying role of protein inclusions |
|
(Chen et al., 2014) |
SOD1; C9orf72; FUS | MNs | Electrophysiological properties of MNs |
|
(Wainger et al., 2014) |
SOD1; FUS | MNs | Determining whether divergent causal mutations exhibit common dysfunctional pathways |
|
(Bhinge et al., 2017) |
SOD1; TARDBP; C9orf72 | MNs | Screen to repurpose existing drugs for ALS |
|
(Imamura et al., 2017) |
C9orf72 | MNs | Studying mechanisms of C9 HRE pathology |
|
(Sareen et al., 2013) |
C9orf72 (FTD) | Neurons | Understanding C9orf72 pathology in FTD |
|
(Almeida et al., 2013) |
C9orf72 | MNs | Studying the toxic gain-of-function role of C9orf72 in ALS |
|
(Donnelly et al., 2013) |
C9orf72 | Neurons | Investigating HRE RNA-induced toxicity |
|
(Zhang et al., 2015a) |
C9orf72 | Neurons | Studying RAN mediated toxicity |
|
(Freibaum et al., 2015) |
C9orf72; TARDBP | MNs | Characterization of electrophysiological properties of ALS MNs |
|
(Devlin et al., 2015) |
C9orf72 | Cortical neurons, MNs | Phenotypic characterization of cortical and spinal MNs |
|
(Dafinca et al., 2016) |
C9orf72 | MNs; Neurons | Understanding C9ORF72 HRE-mediated toxicity |
|
(Lopez-Gonzalez et al., 2016) |
C9orf72; sALS | Astrocytes, MNs | Investigating mechanisms of impaired proteostasis in MNs |
|
(Madill et al., 2017) |
C9orf72 | Astrocytes, MNs | Role of astrocytes in humanized system |
|
(Zhao et al., 2020) |
C9orf72 | Astrocytes, MNs | Studying astrocyte-mediated toxicity |
|
(Birger et al., 2019) |
C9orf72 | MNs | Investigating proteins with altered nucleocytoplasmic distribution in C9ORF72 HRE-ALS |
|
(Ortega et al., 2020) |
C9orf72; SOD1; sALS | MNs | Cross comparison of multiOMIC datasets in hiPSC-MNs and patient tissues |
|
(Wong and Venkatachalam, 2019) |
TARDBP | MNs, neurons | Investigating cell-autonomous mechanisms of TARDBP pathology |
|
(Bilican et al., 2012) |
TARDBP | MNs | Developing platform for disease modeling and screening |
|
(Egawa et al., 2012) |
TARDBP | astrocytes, MNs | Investigating non-cell autonomous contribution to TARDBP ALS |
|
(Serio et al., 2013) |
TARDBP | MNs | Investigate composition and role of TDP-43 aggregates in ALS |
|
(Chou et al., 2018) |
TARDBP | MNs | Studying mechanisms of TARDBP pathology |
|
(Kreiter et al., 2018) |
TARDBP | MNs | Comparing calcium dysregulation in C9orf72 and TDP-43 iPS-derived MNs |
|
(Dafinca et al., 2020) |
TARDBP | MNs | Gaining insights into the role of SGs in pathophysiology |
|
(Fang et al., 2019) |
FUS | MNs | Studying FUS-induced pathology |
|
(Higelin et al., 2016) |
FUS | MNs | Mechanisms of FUS pathology |
|
(Ichiyanagi et al., 2016) |
FUS | MNs | Mechanisms of FUS pathology |
|
(Guo et al., 2017b) |
FUS | MNs; Neurons | Investigating the role of stress granules in ALS |
|
(Marrone et al., 2018) |
FUS | hiPSCs; MNs | Understanding nuclear-cytoplasmic transport defects due to FUS mutations |
|
(Naumann et al., 2018) |
FUS | MNs | Understanding the effect of FUS mutations on neuromuscular junction |
|
(Picchiarelli et al., 2019) |
sALS | MNs | Modeling sALS |
|
(Burkhardt et al., 2013) |
sALS | astrocytes, MNs | Investigating astrocyte-mediated toxicity to MNs in human system |
|
(Re et al., 2014) |
sALS | MNs | Studying non-genetic forms of ALS |
|
(Alves et al., 2015) |
sALS | MN; SkM | Developing platform for NMJ studies |
|
(Osaki et al., 2018) |
sALS; FUS; TARDBP; SOD1 | MNs | Develop multi-phenotypic screen to cluster heterogeneous sALS lines |
|
(Fujimori et al., 2018) |