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Abstract

Brain morphology has been shown to be highly heritable, yet only a small portion of the 

heritability is explained by the genetic variants discovered so far. Here we extended the 

Multivariate Omnibus Statistical Test (MOSTest) and applied it to genome-wide association 

studies (GWAS) of vertex-wise structural magnetic resonance imaging (MRI) cortical measures 

from N=35,657 participants in the UK Biobank. We identified 695 loci for cortical surface area 

and 539 for cortical thickness, in total 780 unique genetic loci associated with cortical morphology 

robustly replicated in 8,060 children of mixed ethnicity from the Adolescent Brain Cognitive 

Development (ABCD) Study®. This reflects more than 8-fold increase in genetic discovery at 

no cost to generalizability compared to the commonly used univariate GWAS methods applied 

to region of interest (ROI) data. Functional follow up including gene-based analyses implicated 

10% of all protein-coding genes and pointed towards pathways involved in neurogenesis and cell 

differentiation. Power analysis indicated that applying the MOSTest to vertex-wise structural MRI 

data triples the effective sample size compared to conventional univariate GWAS approaches. The 

large boost in power obtained with the vertex-wise MOSTest together with pronounced replication 

rates and highlighted biologically meaningful pathways underscores the advantage of multivariate 

approaches in the context of highly distributed polygenic architecture of the human brain.
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Introduction

Variability in brain morphology is highly heritable, with twin studies estimating heritability 

for global measures at 89% for total surface area and 81% for mean cortical thickness1 and 

regional measures (adjusting for whole brain measures) at up to 46% for cortical area and 

57% for thickness2. GWAS is a powerful tool for identifying genetic variants that shape the 

human cortex, but the full breadth of reported heritability estimates has yet to be uncovered. 

The most recent large-scale GWAS of brain MRI data (N=51,665) from the ENIGMA 

consortium identified 187 and 50 loci associated with global and regional cortical surface 

area and thickness, respectively3. The relatively low yield despite high heritabilities of brain 

morphology is likely due to high polygenicity and small effect size (discoverability) per 

locus4.

Both imaging genetics4 and gene expression studies5 suggest that genetic effects are 

distributed across cortical regions, such that variants influencing one cortical region are also 

likely to affect other cortical regions. Multivariate statistical methods are naturally tailored 
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to model distributed and pleiotropic genetic effects. We recently developed a Multivariate 

Omnibus Statistical Test (MOSTest)6 that aggregates effects across spatially distributed 

phenotypes, such as cortical thickness, boosting our ability to detect variant-phenotype 

associations. We showed that applying MOSTest to cortical morphology region of interest 

(ROI) measures in the UK Biobank substantially increased loci discovery6 compared to 

the commonly applied mass univariate approach used by the ENIGMA consortium3, here 

referred to as the min-P approach. For each genetic variant tested for association with 

multiple phenotypes, min-P considers only the most significant p-value and corrects it for 

the effective number of phenotypes analyzed, thus failing to exploit distributed polygenic 

architecture across brain regions. In contrast, MOSTest leverages the distributed nature 

of genetic influences across brain regions and allows detection of genetic variants with 

weak effects in multiple brain regions. We have shown that the discoverability of GWAS 

variants underlying regional cortical area and thickness depends on the specific parcellation 

of cortical regions used, and that parcellations based on genetic correlations from twin 

studies perform better than genetically un-informed schemes4. Here we further extend 

MOSTest method introducing regularization of covariance matrix which provides substantial 

increase of discovery yield as compared to unregularized version we introduced in the 

previous study6. Updated method is applied to vertex-wise measures of cortical morphology 

showing that the combined genetic yield (number of loci discovered) for cortical area 

and thickness can be boosted when using MOSTest (yielding a 4.2-fold and 4.1-fold 

increase relative to min-P for cortical area and thickness, respectively), and boosted further 

when moving from a region-based approach to a more fine-grained vertex-wise approach 

(additional 1.9-fold and 3.0-fold increase for cortical area and thickness, respectively) 

without sacrificing replicability of the findings in the independent sample. Uncovering the 

detailed genetic architecture of cortical area and thickness will provide insight into the 

underlying neurobiology of the human brain, and give a better understanding of brain-related 

human traits, such as cognition7, as well as neurological8 and psychiatric diseases9.

Materials and Methods

Samples

For the primary analysis genotypes, T1 MRI scans, demographic and clinical data were 

obtained from the UK Biobank under accession number 27412. We selected White 

British individuals (as derived from both self-declared ethnicity and principal component 

analysis10) who had undergone the neuroimaging protocol and had passed genetic quality 

control procedures described below. The resulting sample contained 35,657 individuals with 

a mean age of 64.4 years (standard deviation 7.5 years), 51.7% female.

For the replication analysis we used data from the Adolescent Brain Cognitive Development 

(ABCD) study, with complete genetic data and baseline T1 MRI scans from data release 

3.0 (NDA DOI:10.151.54/1519007) that passed the ABCD quality control procedures 

(N=8,060). These children had a mean age of 9.9 years (standard deviation 0.6 years), 

46.9% female.
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Data processing

Both for the primary and replication analyses T1-weighted structural MRI scans were 

processed with the FreeSurfer v5.3 standard “recon-all” processing pipeline11 to generate 

1284 non-smoothed vertex-wise measures (ico3 downsampling with the medial wall 

removed) summarizing cortical surface area and thickness. For the primary analysis we 

also generated 68 ROI cortical surface area and thickness measures (based on the Desikan-

Killiany parcellation). All measures were pre-residualized for age, sex, scanner site, a proxy 

of surface reconstruction quality (FreeSurfer’s Euler number12), the first twenty genetic 

principal components, and a global measure specific to each set of variables: total cortical 

surface area and mean cortical thickness for the regional area and thickness measurements 

correspondingly. Subsequently, a rank-based inverse normal transformation was applied to 

the residualized measures.

For discovery we used UK Biobank v3 imputed data that have undergone extensive quality 

control procedures as described by UK Biobank genetics team10 . In addition, we filtered out 

individuals with genotype missing rate >10%, variants with genotype missing rate >5%, and 

variants failing Hardy-Weinberg equilibrium at p=1E-9. We further removed variants with 

minor allele frequency below 0.5%, and imputation info score below 0.5, leaving 9 million 

variants.

For the replication we used ABCD genetic data that were part of data release 3.0. 

The data were genotyped on 646,247 genetic variants using the Affymetrix smokescreen 

array13. Successful genotype calls were determined based on the recommendation of 

Affymetrix Axiom Analysis Suite v5.0, with at least 98% call rates. Further pre-imputation 

quality controls included inbreeding check, sex concordance check, and cohort level 

missingness check. Imputation was performed using the Michigan Imputation Server14 with 

hrc.r1.1.2016 reference panel, Eagle v2.315 phasing and multiethnic imputation process. 

Best guess conversion at a threshold of 0.9 was used to convert dosage files to plink 

files using PLINK16. Post-imputation QC criteria were an imputation quality score greater 

than 0.9 and a Hardy-Weinberg threshold of 1E-6. This QC filtering was performed using 

PLINK16 and resulted in 13 million variants and 8060 individuals. Genetic ancestry was 

estimated using fastStructure17 with four ancestry factors, an individual was considered of 

European ancestry if its estimated posterior probability of being European was larger than 

0.8. This resulted in 5060 samples classified as Europeans. There is no overlap between 

discovery and replication samples.

Variants were tested for association with cortical surface area and cortical thickness at each 

vertex and each ROI separately using the standard univariate GWAS procedure. Resulting 

univariate p-values and effect sizes were further combined in the MOSTest and min-P 

analyses to identify area- and thickness-associated loci. Replication rates for MOSTest and 

min-P were assessed based on independent MOSTest and min-P runs in the ABCD dataset.

MOSTest analysis

Consider N variants and M (pre-residualized) phenotypes. Let zij be a z-score from 

the univariate association test between ith variant and jth (residualized) phenotype and 
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ziT = (zi1, …, ziM) be the row vector of z-scores of the ith variant across M phenotypes. Let Z 

= {zij} be the N × M matrix of z-scores with variants in rows and phenotypes in columns. 

For each variant consider a random permutation of its genotypes and let Z = {z ij} be the 

matrix of z-scores from the univariate association testing between variants with permuted 

genotypes and phenotypes. A given number of random permutations of genotypes are done 

for each variant and the resulting permuted genotype vectors are tested for association 

with all phenotypes, therefore preserving correlation structure between phenotypes. In our 

discovery analysis we perform 24 random permutations of genotypes (providing ~200M 

z-scores to estimate distribution under null) to ensure that genome-wide significance level 

(5E-8) is covered with non-parametric distribution.

Let R = ZTZ be the M × M covariance matrix of Z, and R = USV T  is its singular valued 

decomposition (U and V – orthogonal matrixes, S– diagonal matrix with singular values 

of R on the diagonal). Since R is symmetric, U = V, and singular valued decomposition 

of R can be written as R = V SV T . Consider the regularized version of the covariance 

matrix Rr = V SrV T , where Sr is obtained from S by keeping r largest singular values and 

replacing the remaining with rth largest. The MOSTest statistics for ith variant (scalar) is 

then estimated as xi = ziTRr
−1zi, where regularization parameter r is selected separately for 

cortical area and thickness to maximize the yield of genome-wide significant loci. In this 

study we observed the largest yield for cortical surface area with r=10; the optimal choice 

for cortical thickness was r=20 (Figure S4). The distribution of the test statistics under null 

(CDFnull
most) is approximated from the observed distribution of the test statistics with permuted 

genotypes, using the empirical distribution in the 99.99 percentile and Gamma distribution 

in the upper tail, where shape and scale parameters of Gamma distribution are fitted to the 

observed data. The p-value of the MOSTest test statistic for the ith variant is then obtained as 

pMOST = CDFnull
most(xi).

Of note, compared to the original version of the MOSTest6, regularization of the covariance 

matrix introduced in this study entails technical updates required for correct calibration of 

test statistics distribution under null. For example, analytical approximation of MOSTest 

test statistics distribution under null with Gamma distribution applied previously6 become 

invalid when covariance matrix is regularized. To handle it correctly here we use piecewise 

distribution with empirical distribution in the 99.99 percentile and Gamma distribution in the 

upper tail as described above.

While in this study the regularization parameter (r) is selected to maximize discovery yield, 

alternative criteria might be used. For example, r can be selected to maximize replication 

rate using nested cross-validation procedure. However, we expect this to have only marginal 

effect on the results since both discovery yield (Figure S4) and replication rate (Figure S5) 

remain similar in the broad range of regularization parameters.
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min-P analysis

Similar to the MOSTest analysis, consider N variants and M preresidualized phenotypes. 

Let zij be a z-score from the univariate association test between ith variant and jth 

(residualized) phenotype and ziT = (zi1, …, ziM) be the row vector of z-scores of the ith 

variant across M phenotypes. The min-P statistics for the ith variant is then estimated as 

yi = 2Φ − max
j = 1…M

( ∣ zij ∣ ) , where Φ is a cumulative distribution function of the standard 

normal distribution. The distribution of the min-P test statistics under null (CDFnull
min − P) is 

approximated from the observed distribution of the test statistics with permuted genotypes, 

using the empirical distribution in the 99.99th percentile and Beta distribution in the upper 

tail, where shape parameters of Beta distribution (α and β) are fitted to the observed 

data. The p-value of the min-P test statistic for the ith variant is then obtained as 

pmin − P = CDFnull
min − P(yi). It is worth noting that the permutation-based method used here 

for multiple testing correction of the min-P results essentially represents an exact version 

of commonly applied approach using matrix spectral decomposition18; 19. The latter is not 

applicable to the MOSTest. Therefore, to provide more direct comparison of MOSTest with 

min-P, we use permutation-based approach for both methods.

Locus definition

Genetic loci were defined based on association summary statistics produced with MOSTest 

and min-P following the protocol implemented in FUMA20 with default parameters. The 

protocol can be summarized as the following:

1. Independent significant genetic variants are identified as variants with p-

value<5E-8 and linkage disequilibrium (LD) r2<0.6 with each other.

2. A subset of these independent significant variants with LD r2<0.1 are then 

selected as lead variants.

3. For each independent significant variant all candidate variants are identified as 

variants with LD r2≥0.6 with the independent significant variant.

4. For a given lead variant the borders of the genomic locus are defined as min/max 

positional coordinates over all corresponding candidate variants.

5. Loci are then merged if they are separated by less than 250kb.

Alternatively, to facilitate comparison with the current largest brain morphology GWAS3, we 

also counted genetic loci applying locus definition similar to that used by ENIGMA. Briefly, 

the association summary statistics produced with either MOSTest or min-P were clumped 

with PLINK16 using p-value threshold of 5E-8 (--clump-p1) and linkage disequilibrium 

cutoffs of 1 Mb (--clump-kb) and r2 < 0.2 (--clump-r2). Obtained clumps of variants were 

considered as independent genome-wide significant genetic loci.

MiXeR analysis

MOSTest and min-P p-values were analyzed with the MiXeR tool21 to estimate the 

proportion of additive genetic variance explained by genome-wide significant SNPs as a 
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function of sample size. Right censoring (MiXeR option: --z1max 5.45) was applied to 

mitigate extreme effects which may lead to biased estimates.

Gene-level analysis

We carried out MAGMA-based gene analyses using default settings, which entail the 

application of a SNP-wide mean model to GWAS summary statistics, with the use of the 

1000 Genomes Phase 3 EUR reference panel. Gene-set analyses were done in a similar 

manner, restricting the sets under investigation to those that are part of the Gene Ontology 

biological processes subset (N=7343), as listed in the Molecular Signatures Database 

(MsigdB) v7.0. In addition, lead SNPs identified in the vertex-wise MOSTest analysis 

were parsed with gene-set enrichment analysis as implemented in FUMA GENE2FUNC20. 

In contrast to MAGMA analysis where genes are prioritized based on proximity, in this 

analysis genes were selected combining positional and eQTL (based on GTEx v8 data) 

mapping.

Replication criterion

Lead variants identified in discovery vertex-wise MOSTest and min-P analyses were tested 

for replication in the ABCD sample. Only variants which present in both discovery and 

replication data were used, resulting in 633 variants tested for cortical surface area and 

487 variants for cortical thickness. The variant was considered as replicated if its nominal 

one-tailed p-value for association in replication cohort was < 0.05.

Results

Genetic loci discovery

Using the vertex-wise MOSTest6, we performed a multivariate GWAS of cortical 

morphology, such that the significance of each locus was estimated after aggregating its 

effects across all vertices (1284 data points each for thickness and area). This was conducted 

separately for cortical surface area and thickness in 35,657 individuals from UK Biobank. 

Measurements from left and right hemispheres were included separately (not averaged). We 

identified 695 and 539 loci, respectively, equating to 780 unique loci associated with cortical 

morphology. Prior to performing the vertex-wise MOSTest analysis, individual cortical area 

and thickness measures were residualized for age, sex, scanner site, Euler number (proxy 

of surface reconstruction quality), the first twenty genetic principal components, and a 

participant-specific global measure (either total area or average thickness). Measurements 

from left and right hemispheres were not merged. For comparison, we repeated this 

procedure aggregating over 68 ROIs from the Desikan-Killiany parcellation. This resulted 

in the discovery of 370 loci for cortical surface area and 181 loci for cortical thickness, 

such that the vertex-wise MOSTest analysis provided a 1.9-fold and 3.0-fold increase in 

yield over the region-based MOSTest analysis, respectively. Applying the min-P approach 

to Desikan-Killiany ROIs resulted in further reduction in the number of loci discovered 

(88 for cortical surface area; 44 for cortical thickness). This represents a 4.2-fold and 

4.1-fold decrease compared to the MOSTest ROI-based analysis, and a 7.9-fold and 12.3-

fold decrease compared to vertex-wise MOSTest analysis, respectively. Manhattan plots are 

presented in Figure 1, with corresponding Q-Q plots in Figure S1.
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Additionally, we applied min-P approach to vertex-wise data resulting 93 loci for cortical 

surface area and 63 loci for cortical thickness. Numbers of loci discovered with different 

approaches are shown in Table S1. Specific loci discovered in each analysis are listed in 

Tables S2 - S9.To compare the vertex-wise MOSTest results with the most recent ENIGMA 

GWAS3, we also applied the ENIGMA-based definition of genetic locus. This resulted in 

1598 and 1054 unique loci for cortical area and thickness respectively, and a total of 1735 

unique loci for cortical morphology identified in the vertex-wise MOSTest analysis (Tables 

S10 and S11).

Replication analysis

Generalizability of vertex-wise MOSTest and min-P findings was assessed in replication 

analysis using data on 8,060 participants from the Adolescent Brain Cognitive Development 

(ABCD) Study as described in the Methods. This analysis revealed comparable replication 

rates for loci discovered with vertex-wise MOSTest and min-P both for cortical surface 

area (43% and 55% replicated for vertex-wise MOSTest and min-P, respectively) and 

cortical thickness (vertex-wise MOSTest 30%, min-P 37%). Therefore, absolute numbers 

of replicated loci both for cortical surface area and thickness were substantially higher for 

vertex-wise MOSTest than for min-P (Tables S3, S4, S6 and S7).

Substantial differences in age and ancestry between discovery and replication cohorts might 

reduce replication rates because genetic association analyses likely capture some ancestry- 

and age-specific factors. For example, it’s unlikely to capture genetic variants affecting 

degree of age-related cortical atrophy in the ABCD cohort. These factors might have 

different effect for MOSTest and min-P and thus distort comparison of replication rates. 

To alleviate differences between discovery and replication analyses and make comparison of 

replication performance more unbiased, we performed replication analysis restricting ABCD 

cohort to individuals of European ethnicity (N=5,060). The obtained replication rates for 

cortical area were 50% and 54% for MOSTest and min-P, respectively, for cortical thickness 

replication rates were 51% and 34% for MOSTest and min-P, respectively. Additionally, we 

estimated replication rates for a given number of top lead variants (N=25, 50, 80) identified 

in discovery phase. These results for both mixed- and European-based replication analyses 

are presented in Table S13.

Power analysis

To estimate the proportion of additive genetic variance explained by genome-wide 

significant SNPs identified by either vertex-wise MOSTest or min-P as a function of sample 

size, we used the MiXeR tool21 (Figure 2). The horizontal shift of the curve indicates 

that the effective sample size of vertex-wise MOSTest is around 3.0-fold that of min-P. 

We estimate that with the current UK Biobank sample (N=35,657), 11.6% and 7.0% of 

the additive genetic variance in cortical surface area and thickness, respectively, can be 

explained by genome-wide significant loci from the vertex-wise MOSTest analysis. (Figure 

2). In contrast, the min-P approach identifies 1.3% and 0.2% of the explained additive 

genetic variance for area and thickness, respectively (Figure 2). The power-analysis indicates 

that 32.2% and 24.0% of the additive genetic variance in cortical surface area and thickness, 

respectively, will be discovered in the full UK Biobank sample of N=100,000 using the 
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MOSTest vertex-wise approach (Figure 2). Further, the proportion of explained variance 

with the min-P approach in the full UK Biobank sample is estimated to be lower than the 

yield of vertex-wise MOSTest in the present sample size (Figure 2).

Gene-level analysis

Through gene-level analyses of the vertex-wise MOSTest GWAS using MAGMA22, 

we found that 1647 and 1412 genes, out of a total of 19036 protein-coding genes, 

were significantly associated with area and thickness, respectively (Table S12). We 

also performed competitive gene-set analyses restricted to the Gene Ontology biological 

processes category (containing 7343 pathways). This resulted in 204 and 184 significant 

(p<0.05/7343) gene sets associated with area and thickness, respectively. The most 

significantly associated pathways were related to neuronal development and cell 

differentiation, with the top 10 shown in Figure 3. Remarkably similar pathways were 

highlighted in gene-set enrichment analyses using FUMA GENE2FUNC. Both for cortical 

area and cortical thickness, out of top 10 gene sets identified in MAGMA analysis 

(Figure 3) 5 gene sets are also within top 10 gene sets identified in corresponding FUMA 

GENE2FUNC analysis (Table S14, Table S15).

For comparison, we also performed the same analyses on the ROI-based MOSTest and 

min-P GWAS summary statistics, resulting in 198 area and 66 thickness gene sets for 

ROI-based MOSTest and 60 area and 4 thickness gene sets for min-P. As shown in Figures 

S2 and S3, the vertex-wise MOSTest approach led to much greater significance for nearly 

all pathways identified. Interestingly, the most significant pathways identified by vertex-wise 

MOSTest are tightly connected with critical neurobiological processes implicated in brain 

development while top findings in the min-P analysis are less specific. The distributed 

effects of identified variants across different brain regions are also illustrated by brain maps, 

highlighting the mixture of effects across the cortex (Figure 4).

The strongest association signals identified in our discovery MOSTest analyses both for 

cortical surface area (lead variant: rs34680120, p<1E-300) and cortical thickness (lead 

variant: rs8033007, p<1E-300) are located on chromosome 15 at 15q14. Univariate vertex-

wise association signals of the lead variants are presented in Figure 4. These lead variants 

are in strong linkage disequilibrium with each other (r2=0.33) and with rs1080066 (r2=0.50 

and r2=0.30 for rs34680120 and rs8033007 respectively), which was reported as the 

strongest association with cortical surface area in large recent GWAS on brain morphology 

by ENIGMA consortium3. Regional association patterns of our strongest genetic signals 

both for cortical area and thickness (Figure 4) highlight cortex region around the central 

sulcus. The region encompasses areas responsible for all motor and sensory functions and 

has rapidly evolved in course of primate evolution, presumably reflecting the increasing 

importance of somatosensory and motor integration of hand functions23. There is also 

evidence that this region is strongly involved in higher cognitive functions24 and may 

contribute to different psychiatric disorders25; 26. Taking together this may suggest an active 

ongoing fine-tuning of this brain region in the human species which in turn is reflected in 

observed strong genetic associations altering brain morphology of the region.
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Discussion

Applying the vertex-wise MOSTest method, we identified 695 loci for cortical surface area 

and 539 for cortical thickness, in total 780 unique genetic loci associated with cortical 

morphology, greatly replicated in independent sample with substantially different ethnical 

and age composition. This reflects an approximate 8-fold increase in discovery with no 

penalty on replication rate compared to the commonly applied univariate GWAS methods. 

Our study highlights the greatly improved yield obtained with the vertex-wise multivariate 

approach compared to conventional region-based univariate GWAS approach, which stems 

from highly distributed nature of brain morphology phenotypes, representing continuous 

maps per individual. The present results support the hypothesis that the genetic determinants 

of variability in brain morphology are extensively shared across multiple regions6. Our 

findings further underscore the complex molecular mechanisms shaping the human brain, 

which we show are largely related to neurodevelopmental processes.

Our gene-level analyses indicated that, with the current sample size, 10% of all protein-

coding genes were significantly associated with brain morphology (either cortical area 

or thickness). Gene-set analyses for both area and thickness confirmed involvement 

of pathways recently reported by ENIGMA3, but with greater statistical significance. 

We additionally found strong evidence for the involvement of several genetic pathways 

regulating neuronal development and differentiation that were not identified by the min-P 

approach, implicating key biological processes regulating human surface area expansion and 

increases in thickness. This also corroborates the strong statistical signals and suggests that 

we are capturing true biological mechanisms that were missed by previous methodologies. 

These novel findings of neurobiological underpinnings associated with brain morphology 

provide a framework for follow-up experimental studies to identify the complex polygenic 

mechanisms involved in human brain development27. Further, the findings implicating 

neuronal development and cell differentiation can facilitate experimental studies to gain 

better insight into the pathobiological mechanisms of brain-related diseases including 

psychiatric disorders28, where we need to understand the role of polygenic mechanisms29.

Twin studies have suggested the largely independent nature of cortical surface area and 

thickness1. The genetic correlation between them estimated using linkage disequilibrium 

score regression (LDSR) is rg=−0.32 (p=6.5E-12)3. Here we identify the specific loci 

involved and show that these cortical phenotypes share a large proportion of genomic 

loci. Out of a total of 695 loci for cortical area and 539 loci for cortical thickness, 454 

loci (58.2% of the total number of unique loci) were overlapping. These findings illustrate 

how measures of genetic correlation fail to fully capture the extent to which the genetic 

influences of two phenotypes are interrelated. LDSR and twin analyses depend on the 

consistency of effect directions across phenotypes. In contrast, the analysis performed 

here consider non-null loci as overlapping if they are both significant and in linkage 

disequilibrium, regardless of effect directions. Overlapping genetic architecture across brain 

regions despite the absence of strong genetic correlations are therefore plausible due to 

common molecular toolkits involved in neurodevelopment across brain regions30. This is 

in line with Allen Brain Atlas maps of the adult human brain31, showing regions with 

high similarity in gene expression between cortical structures consistent with the notion 
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that the basic architecture across the entire cortex is similar or “canonical”32. This may 

also explain the shared genetic architecture observed for many brain-related traits and 

disorders33-35. Accounting for the distributed signal across the cortex (Figure 4) in a 

multivariate framework allowed us to boost power for discovery compared to traditional 

univariate approaches, such as min-P.

Compared to the current largest brain morphology GWAS (N=51,665)3, analyzing 

parcellation-free, vertex-wise data with MOSTest increased the yield of significant loci 

4-fold for cortical surface area and 11-fold for cortical thickness, despite the lower sample 

size in our study (N=35K). Of note, while being generally consistent, our protocol differs 

in a few aspects from the previous GWAS3, where global measures were included in the 

principal analysis, data for cortical regions were averaged across right and left hemispheres, 

and the definition of genetic loci was less conservative. Using the Desikan-Killiany 

parcellation approximately 2.0 times more variants were identified for cortical surface area 

than for cortical thickness both with the min-P and the MOSTest (Table S1). In contrast, 

there were 1.3 times more loci for area compared to thickness when using the MOSTest for 

parcellation-free vertex-wise data. (Table S1). The observed difference in loci yield may be 

due to differing degrees of mismatch between parcellation schemes and actual architecture 

of the phenotypes. This seems to be particularly relevant for thickness, where variant 

effects obtained from an ROI parcellation scheme may be underestimated compared to the 

vertex-wise approach. This result may explain why parcellation schemes better reflecting the 

genetic architecture of the cortex improve detectability in imaging genetics studies4. It is 

also worth noting that smoothing of the vertex-wise data results in substantial decrease of 

loci yield (Figure S4). This might indicate that there is valid information in the fine spatial 

structure, which is getting removed when smoothing is applied. It’s therefore tempting to 

apply the method to the data with higher resolution (up to voxel-wise). The latter might 

become feasible with more advanced implementation of the method, which we currently 

work on.

The boost in statistical power using the multivariate vertex-wise approach is equivalent to a 

more than three-fold increase in effective sample size for both area and thickness (Figure 2). 

Our analysis suggests that the substantial gain in power provided by vertex-wise MOSTest 

is projected to explain approximately 32.2% and 24.0% of the additive genetic variance for 

cortical surface area and thickness, respectively, upon completion of UK Biobank’s target 

neuroimaging sample (N=100,000)36 (Figure 2). It is possible that multivariate approaches 

will also boost discovery of genetic associations with other human phenotypes that exhibit 

shared signal between traits.

To conclude, by deploying new vertex-wise MOSTest approach we have identified 780 

unique loci associated with human brain morphology, highlighting its distributed polygenic 

architecture, and providing the foundation for functional follow-up experiments. The 

code implementing vertex-vise MOSTest approach is made freely available on GitHub. 

While our primary analysis is focused on UK Biobank, pronounced replication rates 

in demographically distinct ABCD cohort suggest high potential for generalizability 

of presented statistical framework. Flexibility of this approach allows its seamless 
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incorporation into large-scale meta-analyses like ENIGMA37, offering unique opportunities 

for major advances in our understanding of the genetic determinants of brain morphology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Genetic variants affecting one cortical region often affect other cortical 

regions.

• Standard mass-univariate methods ignore the distributed nature of genetic 

effects.

• Multivariate MOSTest method exploits distributed effects boosting genetic 

discovery.

• Considering fine-grained vertex-wise measures improves genetic discovery 

further.

• Obtained increase in discovery does not come at a cost of poorer 

generalizability.
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Figure 1. Manhattan plots for cortical surface area and cortical thickness.
(A) Area, MOSTest, vertex-wise: N=695 loci. (B) Area, MOSTest, ROI: N=370 loci. (C) 

Area, min-P, ROI: N=88 loci. (D) Thickness, MOSTest, vertex-wise: N=539 loci. (E) 

Thickness, MOSTest, ROI: N=181 loci. (F) Thickness, min-P, ROI: N=44 loci. Black dotted 

horizontal lines show genome-wide significance threshold (P=5E-8). Loci; independent 

genome-wide significant (P<5E-8). Y-axes are truncated at −log10(P)=17.2 to highlight the 

region around genome-wide significance threshold. ROI = region of interest.
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Figure 2. Estimated percent of additive genetic variance explained by genome-wide significant 
SNPs as a function of sample size.
Percentages of genetic variance explained by identified SNPs (p<5E-8) from multivariate 

GWAS (MOSTest VW) of area (A) and thickness (B) with current sample size (N=35,657, 

vertical dotted line) are shown in parentheses, with MOSTest ROI and min-P ROI for 

comparison. VW = vertex-wise. ROI = region of interest.
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Figure 3. Gene-set analyses with MAGMA.
Results from the gene-set analysis based on multivariate GWAS on area (A) and thickness 

(B). Ten most significant Gene Ontology sets (N=7,343) in the vertex-wise MOSTest 

analysis are listed on the y-axis, in comparison with MOSTest ROI and min-P ROI. 

Corresponding uncorrected −log10(p-values) are shown on the x-axis. P-values were 

obtained using MAGMA analysis as implemented in FUMA. Vertical dotted line shows 

Bonferroni correction threshold (p=0.05/7343). VW = vertex-wise. ROI = region of interest.
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Figure 4. Lateral view of the cortex, depicting the color-coded vertex-wise z-values for the top 
genetic loci identified in the discovery vertex-wise MOSTest analysis.
(A): top lead variant (rs34680120, chr15:39664000, effect direction of C allele is shown, 

frequency of C allele = 0.94) associated with cortical surface area in discovery (top) and 

replication (bottom) samples. (B): top lead variant (rs8033007, chr15:39619661, effect 

direction of G allele is shown, frequency of G allele = 0.91) associated with cortical 

thickness in discovery (top) and replication (bottom) samples.
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