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Gut Microbiota–Kidney Crosstalk
Distant organ crosstalk during AKI, first studiedmech-
anistically in the lung (1), is now known to play an
important role in disease outcomes. The relationship
between intestinal microbiota and AKI has also been
explored, resulting in exciting findings that are prom-
ising for future human therapeutics. In search of ways
to reduce kidney T cells by using “cleaner,” germfree
(GF) mice, it was unexpectedly found that GF mice not
only retained their kidney immune cells, but also had
a higher number of natural killer T (NKT) cells and
reduced IL-4 levels compared with normal wild-type
(WT) mice. Moreover, GF mice subjected to kidney
ischemia-reperfusion (IR) injury had increased CD8
T-cell trafficking and inflammatory cytokine media-
tors compared with normal WT mice (2). Induction of
ischemic AKI in GF mice led to a worse course of AKI,
in terms of both structure and function. Convention-
alizing GF mice with normal mouse stool led to nor-
malizing T-cell and NKT populations, and relative
protection from AKI, compared with GF mice (2). It
was subsequently observed that early exposure to gut
microbiota during development was associated with
long-term changes in NKT-cell function in nonrenal
tissues, and NKT cells in GF mice had a less mature
phenotype with diminished activation capacity upon
antigen encounter (3,4). To elucidate whether the
effects were bidirectional and AKI led to changes in
the gut microbiome, gut microbiota was evaluated in
C57BL/6 WT mice after ischemic or nephrotoxic (cis-
platin; CP) injury. DNA was isolated from the fecal
pellets (n54–5 per group) at baseline (D0) and at 3 days
(D3) post-IR. The V3–V5 region of the 16S ribosomal
RNA gene was amplified using the 357F/926R primer
set and sequenced using the Roche/454 platform. IR
and CP modified the relative abundance of specific
bacterial species belonging to the phyla Actinobacteria,
Bacteroidetes, Firmicutes, Tenericutes, and Verrucomi-
crobia (Figure 1A). Furthermore, differential abun-
dance testing and negative binomial testing showed
distinct alterations in microbial populations at the
family and genus level, respectively (Figure 1B). The
major bacterial families affected after CP injections
included Lachnospiraceae, Lactobacillaceae, Porphyr-
omonadaceae, and Ruminococcaceae; the families Ery-
sipelotrichaceae, Lachnospiraceae, Porphyromonadaceae,
and Ruminococcaceae were changed by IR. At the

genus level, Oscillibacter, Lactobacillus, Clostridium, and
Barnesiella changed after CP-induced AKI;Oscillibacter,
Eisenbergiella, and Barnesiella changed after IR-induced
AKI. Dimensional analysis by Brey non-metric multi-
dimensional scaling and a-diversity analysis using the
Shannon index revealed that the microbiome differen-
tiated over time, depending on treatment (Figure 1, C
and D). Further analysis showed a significant increase
in the percentage of Erysipelotrichaceae incertae sedis in
post-AKI (D3) samples compared with D0 samples
from mice treated with IR (P50.03) and CP (P50.007).
Conversely, the percentage of Lactobacillus decreased
significantly (P50.02) at D3 after CP treatment in com-
parison with D0 samples (Figure 1E).

Gut Microbiota, Amino Acids, Antibiotics, and
AKI
Further studies have elegantly examined AKI and

microbiome interactions. Worse outcome of AKI in GF
mice was confirmed in a study that associated AKI-
induced gut dysbiosis with reduced D-amino acid
oxidase activity and altered D-serine metabolism (5).
Oral administration of D-serine reduced F4/801 cells
in the kidneys and protected from tubular injury after
IR. However, antibiotic pretreatment of WT mice, per-
formed to deplete gut microbiota, protected from IR-
induced kidney injury (6). Antibiotic-treated mice
also had reduced F4/80 macrophage populations
and chemokine receptors CX3C chemokine receptor
1 and C-C chemokine receptor 2 in the F4/801 renal-
resident macrophages. Additionally, mRNA levels of
TNF-a, IL-6, monocyte chemoattractant protein-1, and
macrophage inflammatory protein-2a were signifi-
cantly reduced in antibiotic-treated mice (6). The reason
for the discrepancy between worsened AKI outcomes
in GF mice and improved AKI outcomes in antibiotic-
treated mice is unclear. It is possible that antibiotics
selectively depleted deleterious gut microbiota, with
subsequent enrichment of protective gut microbiota,
whereas there was altered maturation of kidney im-
mune cells and function in GF mice.

Role of Gut Microbiota in Immune-System
Development and Function
Gut microbiota has also been found to be instru-

mental in the development, induction, and function of
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T cells, with dysbiosis leading to imbalances in T-cell sub-
populations. These dysregulations in gut microbiota–
immune system interactions result in the development of
complex immune–mediated diseases, including inflamma-
tory bowel disease, rheumatoid arthritis, type 1 and 2
diabetes mellitus, asthma, and cancer. In addition to
established immune-mediated diseases, dysregulated gut
microbiota–immune cell interactions influence the outcome
of acute tissue injury in nonrenal organs, such as during
models of traumatic and ischemic brain injury, myocardial
infarction, and acute liver injury. One study demonstrated
that colonization of GF mice reduced stroke volume and
poststroke neuroinflammation by priming immune respon-
ses (7). They found that lymphocyte priming, particularly
of T cells by gut microbiota, was the key mechanism that
affected stroke outcome. They also observed an increase in

CD4, regulatory T, and T helper 17 cells in the poststroke
intestines, and an overall increased T-cell population in
ischemic brain of colonized mice. In an experimental cardiac
study, depletion of gut microbiota, using antibiotics before
injury, resulted in significant mortality in mice after induc-
ing myocardial infarction (8). This study found a significant
reduction in myeloid cells and neutrophils in the hearts of
antibiotic-treated mice before and after myocardial infarc-
tion, which was restored after microbiota reconstitution.
Additionally, CD41Foxp32 T cells, regulatory T cells, and
B cells were absent from the hearts of these mice after
antibiotic treatment. In a study on experimental acute liver
injury, there was enrichment of Lactobacillus that activated
IL-22 production by intestinal innate lymphoid cells, which
subsequently promoted IL-10 and TGFb production by
regulatory dendritic cells (9).
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Figure 1. | Renal ischemia-reperfusion injury (IRI) and cisplatin treatment change gut microbial populations. Under an approved animal
protocol, AKI was induced in male, 8- to 10-week-old, C57BL/6 mice by 30minutes of bilateral IRI or 30 mg/kg cisplatin (CP) injection. The gut
microbiota was then studied at baseline (D0) and 72 hours (D3) post-AKI using 16S sequencing. (A) IRI and CP affected relative abundance of
bacterial species belonging to the phyla Actinobacteria, Bacteroidetes, Firmicutes, Tenericutes, and Verrucomicrobia. (B) The vertical dot plots
represent differential abundance testing between sham and CP mice or sham and IRI mice (x axis, fold change; size, base mean), showing
distinct alterations in microbial populations at the family level. The genera identified on the y axis are those that were affected by AKI, using
negative binomial testing. There were no significant operational taxonomic units with species-level information. (C and D) Dimensional
analysis by Brey non-metric multidimensional scaling (NMDS) and a-diversity analysis using the Shannon index suggests the microbiome
differentiates itself over time, depending on treatment. (E) Percentage change in Erysipelotrichaceae incertae sedis and Lactobacillus pop-
ulations after IRI and CP-induced AKI. Timept, time point. NA, not available.
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Mechanism of Gut Microbiota–Immune System
Interactions
The mechanism by which gut microbiota interacts with

kidney immune cells is likely complex and unclear, but
short-chain fatty acids (SCFAs) appear to play important
roles (Figure 2) (10). Gut microbiota produce SCFAs—such
as acetate, propionate, and butyrate—as the fermentation
byproducts of dietary fibers. SCFA ligation and activation of
various G protein–coupled receptors (such as GPR109a, free
fatty acid receptor 2, free fatty acid receptor 3, and olfactory
receptor-78) are important mechanisms by which they mod-
ulate immune-cell function. SCFAs can further modulate the
activity of histone acetyltransferase and deacetylase and the
hypoxia-inducible factor. Exogenous administration of
SCFAs was found to improve kidney function during ex-
perimental AKI and contrast-induced nephropathy (10). It is
likely that dysregulation in gut microbiota andmicrobiome-
associated metabolites affect T-cell functions and antibody-
mediated humoral immunity. Acetate treatment amelio-
rated sepsis-induced AKI by inhibiting NADPH-oxidase
signaling in T cells, suggesting that SCFAs act through
immune-cell regulation (11). Furthermore, in vitro SCFA
treatment was found to modulate the inflammatory process
by decreasing dendritic-cell maturation and inhibiting CD4
and CD8 T-cell proliferation, and could be a potential mech-
anism through which gut microbiota interact and modulate
T-cell functions in vivo (10). Recent data demonstrated that
diet can induce post-translational modifications to the mi-
crobial proteome that, in turn, affect microbial metabolite
production and, ultimately, kidney function (12). The lack of
microbes in GF mice has also been shown to affect differ-
entiation of regulatory T cells due to the absence of SCFA
production (13).

Conclusions
The gut microbiota is an exciting frontier in medicine. The

metagenome of the microbiota can be changed through
dietary modifications and administration of pre-, pro-,
and postbiotics, providing unique opportunities to develop
novel therapeutics for AKI treatment. Furthermore, poten-
tial therapeutic effects of AKI-specific microbiota on sys-
temic immune dysfunction or distant organ damage in AKI
remain to be explored. Although promising, diet- and
SCFA-based AKI therapy should be investigated more care-
fully because of the evidence for potential deleterious
effects, such as immune-cell activation, T cell–mediated
ureteritis, and hydronephrosis (14). Diet-based, post-
translational modifications of the gut microbiota proteome
and metabolites should be further explored to understand
effects on AKI pathophysiology (12). Because reduced
diversity of gut microbiota occurs in recipients of kid-
ney transplants, elucidating the effect of gut microbiota
on AKI could also have significant implications for
allografts (15).

Disclosures
H. Rabb reports being a nephrology associate editor for the

Journal of Clinical Investigation. J. White reports being employed by
and having ownership interest in Resphera Biosciences. All
remaining authors have nothing to disclose.

Prebiotics

Probiotics

Gut microbiotaDietary fiber

Th2 cell

Treg
cell

M2
macrophage

SCFAs

NKT cell

DC

AKI
Injury

AKI
repair

A
ntiinflam

m
atory im

m
une responseP

ro
in

fla
m

m
at

or
y 

im
m

un
e 

re
sp

on
se

Th1 cell

N
orm

al gut flora

D
ys

bi
os

is

IgA

Figure 2. | An overview of gut microbiota–immune cell interactions
in the kidney affecting injury and repair processes after AKI. Gut
microbiota produce short-chain fatty acids (SCFAs), such as acetate,
propionate, and butyrate, that interact with multiple G protein–
coupled receptors on kidney epithelial cells. Similar interactions are
likely involved in immune cells that modulate their number, immune
function, and metabolism in the kidney. Normal gut microbiota
promote the anti-inflammatory milieu by increasing T helper 2 (Th2)
cell, regulatory T (Treg) cell, and M2 macrophage populations that
protect kidneys from AKI. However, AKI-induced dysbiosis and
translocation of bacterial products across the leaky intestine promote
a proinflammatory immune environment, such as increased Th1 cells,
M1 macrophages, and activated dendritic cells (DCs). Activated DCs
secrete proinflammatory cytokines, such as IL-12 and IL-6, and skew
the differentiation of naive CD4 T cells and maturation of B cells.
Th17-inducing bacteria may promote Th17 immunity via IL-17A/IL-
17F induction, which may involve signaling mediated by the Toll-like
receptor ligands. Additionally, IgA produced by plasma cells residing
in the gut epithelium modulates response to colonization by specific
commensal bacteria. SCFAs also regulate cytokine expression in
T cells and generation of Treg cells through histone deacetylase in-
hibition. Therapeutic and supplemental use of pre-, pro-, and post-
biotics could be helpful in normalizing bacterial composition in the
gut and in protecting the kidneys from AKI. NKT, natural killer T cell.
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