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Abstract
Background We developed a machine learning (ML) model that predicts the risk of a patient on hemodialysis
(HD) having an undetected SARS-CoV-2 infection that is identified after the following $3 days.

MethodsAs part of a healthcare operations effort, we used patient data from a national network of dialysis clinics
(February–September 2020) to develop an MLmodel (XGBoost) that uses 81 variables to predict the likelihood of
an adult patient on HD having an undetected SARS-CoV-2 infection that is identified in the subsequent$3 days.
We used a 60%:20%:20% randomized split of COVID-19–positive samples for the training, validation, and testing
datasets.

Results We used a select cohort of 40,490 patients on HD to build the ML model (11,166 patients who were
COVID-19 positive and 29,324 patients who were unaffected controls). The prevalence of COVID-19 in the cohort
(28% COVID-19 positive) was by design higher than the HD population. The prevalence of COVID-19 was set to
10% in the testing dataset to estimate the prevalence observed in the national HD population. The threshold for
classifying observations as positive or negative was set at 0.80 to minimize false positives. Precision for the model
was 0.52, the recall was 0.07, and the lift was 5.3 in the testing dataset. Area under the receiver operating
characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) for the model was 0.68 and 0.24
in the testing dataset, respectively. Top predictors of a patient on HD having a SARS-CoV-2 infection were the
change in interdialytic weight gain from the previous month, mean pre-HD body temperature in the prior week,
and the change in post-HD heart rate from the previous month.

Conclusions The developedMLmodel appears suitable for predicting patients on HD at risk of having COVID-19
at least 3 days before there would be a clinical suspicion of the disease.
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Key Points

c We developed a machine learning predictive model
to detect patients on dialysis with a SARS-CoV-2 in-
fection 3 days before symptom onset.

c Changes in physiologicmarkers were subtle independently;
model appeared to detect important combinations for
each patient’s prediction.

c We proposed a conceptual workflow for application
of model-directed mitigation and testing within the
standard practices of a provider.

Introduction
The coronavirus disease 2019 (COVID-19) pandemic

is challenging theworld’s health care systems, including

bringing complexities to the maintenance of dialysis in
people with ESKD (1–5). In the United States, most
patients with ESKD are treated by outpatient hemodi-
alysis (HD), where social distancing can be difficult and
heightened infection control measures are required
(e.g., temperature screenings, universal masking, isolation
treatments/shifts/clinics) (1–5). Patients with ESKD
are typically older and have multiple comorbidities,
placing the population at higher risk for requiring in-
tensive care and dying if affected by COVID-19 (6–12).
Early reports from the United States show an 11%

COVID-19 mortality in ESKD (13), which is higher than
the 3% COVID-19 mortality shown in the national pop-
ulation (14,15). This is not unexpected,with reports from
Asia and Europe suggesting a 16% to 23% COVID-19
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mortality in ESKD (16–19). Despite the highmortality rate, an
impaired immune response may render patients on dialysis
more frequently asymptomatic when infected by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (16,17). In
both the general and ESKD populations, the most prevalent
symptoms of COVID-19 at presentation are fever (11%–66%
in dialysis; 82% in the general population) and cough
(37%–57% in dialysis; 62% in the general population) (16,20–22).
The less frequent occurrence of signs and symptoms in-
dicative of COVID-19 in patients on dialysis could be
making the outbreak even more challenging to manage.
Dialysis providers routinely capture patient/clinical data

during care. The robust data collected during HD treat-
ments (generally thrice weekly) provide unique opportuni-
ties to leverage artificial intelligence (AI) in predicting
COVID-19 outcomes. AI modeling helped identify the onset
of the outbreak in China (23,24), and is being used to help
with early detection of areas and individuals in the general
population at risk for COVID-19 (25–27).
As part of a health care operations effort in response to the

COVID-19 outbreak, an integrated kidney disease health
care company aimed to develop a machine learning (ML)
prediction model that identifies the risk of patients on HD
having an undetected SARS-CoV-2 infection. We analyzed
the model performance to determine the possible utility for
testing in the HD population.

Materials and Methods
General
An integrated kidney disease health care company (Fre-

senius Medical Care, Waltham, MA) used retrospective real
world data from its national network of dialysis clinics to
develop aMLmodel that predicts the risk of an adult patient
on HD having an undetected SARS-CoV-2 infection that is
identified after the following $3 days.
This analysis was performed in adherence with the Dec-

laration of Helsinki under an initial and revised protocol
reviewed by the New England Independent Review Board
(NEIRB). This retrospective analysis was determined to be
exempt and did not require patient consent (Protocol ver-
sion 1.0 NEIRB#1–17–1302368–1; Protocol revision version
1.1 NEIRB#17–1348994–1; Needham Heights, MA).

COVID-19 Mitigation and Testing Practices
The national network of dialysis clinics (Fresenius Kidney

Care, Waltham, MA) started implementing modified infec-
tion control measures in late February 2020, in response to
the COVID-19 outbreak in the general population. Univer-
sal mitigation efforts at the provider included screening
patients and staff before entry into the dialysis facility for
high body temperature, signs or symptoms of flu-like ill-
ness, exposure to others with COVID-19, or a known in-
fection diagnosed elsewhere (28). Patients and staff were
required to thoroughly wash their hands on entering and
leaving the facility. Patients were provided surgical masks
and were required to wear them when in any area of the
facility. Staff were required to wear enhanced personal pro-
tective equipment, including masks, face shields, gowns,
and gloves, when in the proximity of patients in any area.
The first patients on dialysis (n52) at the provider were
identified as COVID-19 positive on March 3, 2020.

All patients and staff with an elevated body temperature
or symptoms of a flu-like illness were considered under
investigation, and had RT-PCR laboratory testing for SARS-
CoV-2 performed at a laboratory contracted by the dialy-
sis provider. Patients under laboratory investigation for
a SARS-CoV-2 infection were treated in dedicated isolation
areas (rooms, shifts, or clinics) for patients who were sus-
pected of being infected, until confirmed negative by two
RT-PCR tests that were more than 24 hours apart. Patients
who had been exposed to others with COVID-19 were
moved to unique isolation areas for patients who had been
exposed under investigation for 14 days, and received RT-
PCR testing if they presented with signs or symptoms of
a flu-like illness. Patients with RT-PCR–confirmed COVID-
19 were treated in dedicated isolation areas for patients who
were infected until two negative RT-PCR tests more than
24 hours apart were documented.

Population and Outcome
We considered data from adult (age $18 years) patients on

HD treated throughout the national network for development
of a model to predict individuals with an undetected SARS-
CoV-2 infection. The observation period started on February 27,
2020. The positive arm includeddata frompatientswhohad$1
confirmed positive RT-PCR COVID-19 test at of the end of the
observation period (September 8, 2020, n511,166). The negative
arm included data from patients who: (1) were found COVID-
19 negative (n57959), or (2) were randomly sampled from all
active patients at the dialysis provider without a reported
suspicion of COVID-19 as of the end of the observation period
(n521,365). The random sampling was performed using the
“sample” function from the “pandas” Python package.
We defined the index date of a patient on HD having

a SARS-CoV-2 infection as the date of the COVID-19–positive
test. In patientswhowere the controlwith a negative COVID-
19 test result, the test date was used as the index date. In
controlswithout a test, the index datewas randomly sampled
from the positive patients’ index dates occurring before Au-
gust 25, 2020, 2 weeks before the end of the observation
period. This cutoff was chosen to minimize the possibility
that patients in the control were infected, but had not dis-
played signs or symptoms leading to testing before the end of
the observation period. We included data from patients with
(1) $1 hemoglobin sample collected both 1–14 days and
31–60 days before the individual’s prediction date (3 days
before the index date, further defined below), and (2)$1 HD
treatment both 1–7 days and 31–60 days preceding the pre-
diction date. This was done to ensure we included only
patientswhowere active as hemoglobin draws are conducted
weekly for in-center HD (typically thrice-weekly treatments).
We excluded data from patients suspected to have COVID-19
who were pending laboratory testing, or were classified as
a person under investigationwhere no laboratory testing was
performed or documented.

AI Model Development
Software and ML Model Logic
We used Python version 3.7.7 (Python Software Founda-

tion, Delaware) to build theMLmodel utilizing the XGBoost
package (29). The XGBoost Python package used input var-
iables from the training dataset to construct multiple decision
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trees, giving each a random sample, and established a series
of thresholds that split variables to maximize the information
gain. Decision trees were constructed iteratively, and new
decision treeswere added to predict prior errors. The decision
trees made by the XGBoost ML model are inherently able to
handlemissing valueswithout imputation, by including their
presence when determining the splits (e.g., splitting observa-
tions with temperatures $98.0°F ($36.7°C) from tempera-
tures ,98.0°F (,36.7°C), or missing temperatures). After no
further improvements in performance were achieved using
the validation dataset (also used for hyperparameter tuning),
the ensemble of decision trees produced the final ML model
that was assessed with the testing dataset.

Undetected SARS-CoV-2 Prediction Model
We used 81 a priori selected treatment/laboratory variables

up to the individually defined prediction date (3 days before
the index date defined above) to predict the risk of a SARS-
CoV-2 infection being identified in the following $3 days
(Figure 1). This is intended to yield individual predictions at
least 3 days in advance of symptoms that warranted testing.
We used a 60%:20%:20% randomized split of COVID-
19–positive samples for the training, validation, and testing
datasets, and added the same number of patients who were
COVID-19 negative to only the training and validation data-
sets. The testing dataset used to evaluate final model perfor-
mance had a higher number of COVID-19–negative samples
added to more closely match the prevalence observed in the
overall national HD population (30,31).

Statistical Methods
Descriptive Statistics
Descriptive statistics for patients on HD were tabulated

for demographics and variables at the time of the prediction

for an undetected SARS-CoV-2 infection. Data are stratified
by patients on HD who did, or did not, have laboratory
confirmation of COVID-19 after the date of prediction.

Analysis of ML Model Feature Importance
Shapley values (32,33) were calculated using the SHAP

Python package to determine the influence of each variable
on the predictions (34,35). SHAP values are calculated for
each variable and each observation, representing a measure
of effect (positive or negative value) of the observed value
on each individual prediction. SHAPmethods withhold and
include individual inputs in all possible combinations, and
compare differences between withheld and included data,
to compute the mean value of all possible differences for
attributing the feature importance. SHAP values are output
as log odds (i.e., the logarithm of the odds ratio), meaning
they are additive explanations of feature importance. SHAP
values for each variable are summed for each set of obser-
vations (in this case, for each patient), and converted from
log odds to probability, which is then output by the model
as the prediction. Thus, the more positive SHAP values
increase the predicted probability, whereas more negative
SHAP values decrease it. Overall feature importance for
individual variables in the model were calculated from the
SHAP values using the mean absolute values for each vari-
able across all observations.

Analysis of ML Model Performance
Performance of the ML model was measured by the area

under the receiver operating characteristic curve (AUROC)
in the training, validation, and testing datasets, and the
recall, precision, and lift in the testing datasets. Addition-
ally, we evaluated the area under the precision-recall curve
(AUPRC) in the testing dataset.

SARS-CoV-2
infection identified
in standard clinical

practice

30-day mean values of laboratory variables

30-day mean values of HD treatment variables

† 7-day mean
values of HD

treatment
variables

◊ 14-day mean values of
laboratory variables

Ascertainment period of data
to make prediction

Prediction
period

3-day window before
predicted outcome

P
rediction date

Index date

‡ Difference in mean
values

-60 -31 -17 -10 -3 0 +14-4
Days to Index Date 

○ Difference in mean
values

Figure 1. | Prediction timeline for data ascertainment and prediction of patients on hemodialysis (HD) with and without severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection identified in the subsequent ‡3 days. Machine learning (ML) model used HD
treatment variables (†mean values 1–7 days before the prediction date; ‡difference in mean values 31–60 days to 1–7 days before the prediction
date) and laboratory variables (◊mean values 1–14 days before the prediction date;○difference in mean values 31–60 days to 1–14 days before
the prediction date) for prediction of SARS-CoV-2 infection.
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AUROC measures the rate of true and false positives
classified by the prediction model across probability thresh-
olds. The definition of true/false positives and negatives is
shown in Table 1.
Recall (sensitivity) measures the rate of true positives

classified by the model at a specified threshold and is
calculated as follows:

Recall 5 number of true positives classified by model =
ðnumber of true positives classified by model 1
number of false negatives classified by modelÞ

Precision measures the positive predictive value for the
model at a specified threshold and is calculated as follows:

Precision 5 number of true positives classified by model

= ðnumber of true positives classified by model 1
number of false positives classified by modelÞ

Lift measures the effectiveness of the model compared with
random sampling and is calculated as follows:

Lift 5 model precision =
proportion of positives in dataset

AUPRC measures the ratio of precision for corresponding
recall values across probability thresholds (36).
AUROC, AUPRC, recall, and precision metrics yield

scores on a scale of 0 (lowest) to 1 (highest). A model
performing at chance would yield an AUROC of 0.5, an
AUPRC equal to the proportion of positives in the dataset,
and a lift value of 1. The cutoff threshold for classifying
predictions were selected to optimize recall, precision, and
lift according to the use case.

Results
Patient Characteristics
We identified data from a select cohort of 40,490 patients

on HDmeeting eligibility criteria (11,166 patients who were
COVID-19 positive and 29,324 who were unaffected and
served as the control group). The prevalence of COVID-19 in

the cohort (28% COVID-19 positive) was by design higher
than the HD population. The prevalence of patients who
were COVID-19 positive (about 50% COVID-19 positive) in
the training and validation datasets was balanced by design
for model building purposes. For the testing dataset used to
evaluate final model performance, there was a 10% preva-
lence of patients who were COVID-19 positive on the basis
of the designed data split that was made to estimate the
prevalence observed in the national HD population (30,31).
In the cohort, there was a higher proportion of patients on

HD with a SARS-CoV-2 infection who were of Black race,
Hispanic ethnicity, and had diabetes (Table 2). Mean values
for the 81 treatment and laboratory variables before a SARS-
CoV-2 infection being identified in the subsequent $3 days
(or concurrent index date in controls) are shown in Tables 3
and 4.
Patients on HD who contracted COVID-19 had only sub-

tle, clinically unremarkable distinctions in treatment and
laboratory characteristics before being suspected to have
a SARS-CoV-2 infection, compared with patients who were
unaffected. Mean pre-/post-HD body temperatures (Ta-
ble 3) and inflammatory markers (white blood cell count
and differentials) (Table 4) before a SARS-CoV-2 infection
being identified did not show a clinically relevant difference
between groups. Patients on HD who had a SARS-CoV-2
infection identified in the following 3 days did appear to
have somewhat higher ferritin levels compared with patients
who were unaffected.

Prediction Model Feature Importance
Calculation of variable feature importance with SHAP

values found the top three predictors of patients on HD
having a SARS-CoV-2 infection were the change in inter-
dialytic weight gain from the previousmonth, mean pre-HD
body temperature in the prior week, and the change in post-
HD pulse from the previous month (Figure 2A).
The SHAP value plot in Figure 2B further shows the

degree of positive or negative effect of each individual
measurement for each individual prediction. Each dot cor-
responds to an individual patient, where the dot’s position
on the x-axis represents that feature’s effect on the model
prediction; in addition, the color indicates how high or low

Table 1. Definition of true/false positive and negative predictions classified by themodel in the assessment of performance in the testing
dataset

Classification Group

True positives Patients classified as COVID-19
positive by the model who were in
the COVID-19–positive group

False positives Patients classified as COVID-19
positive by the model who were in
the COVID-19–negative group

True negatives Patients classified as COVID-19
negative by the model who were in
the COVID-19–negative group

False negatives Patients classified as COVID-19
negative by the model who were in
the COVID-19–positive group

COVID-19, coronavirus disease 2019.
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that feature’s value was. Features with missing values are
indicated in gray.
For the top predictor of the change in interdialytic

weight gain in the week before compared with the month
before a SARS-CoV-2 infection, smaller (negative) values
(cooler colors) were associated with a positive SHAP value,
whereas larger values (warmer colors) were associated with
a negative SHAP value. These results showed for each
individual prediction, the model generally considered
decreases in interdialytic weight gain from the previous
month to be associated with a greater probability of an
undetected SARS-CoV-2 infection, and an increase in inter-
dialytic weight gain to be associated with a lower likelihood
of an undetected SARS-CoV-2 infection. In other words,
patients who do not gain as much weight as usual in
between dialysis treatments are deemed more likely to have
an undetected SARS-CoV-2 infection by the model.
Along with highlighting directional effects as previously

stated, Figure 2B also highlights different distributions of
effects that might not be apparent when viewing the mean
absolute values as in Figure 2A. For example, the eighth
most important variable, change in monocytes from the
previous month, produces the largest (most positive) SHAP
values out of all of the variables shown. This long, rightward
tail along the x-axis indicates that, despite having a lower
mean absolute value in comparison to other variables, for
some individuals this is very important. Specifically, the
model assessed that patients with increasedmonocyte levels
from the previous month are deemed more likely to have
a SARS-CoV-2 infection, whereas the SHAP values for those
with similar or lower levels of monocytes do not signifi-
cantly decrease the prediction.

Prediction Model Performance
TheMLmodel had adequate performance in prediction of

the 3-day risk for having an undetected SARS-CoV-2 in-
fection. TheMLmodel had anAUROC of 0.77, 0.67, and 0.68
in the training, validation, and testing datasets respectively
(Figure 3). The ML model had an AUPRC of 0.24 in the
testing dataset (Figure 4).

Setting the threshold for classifying observations as pos-
itive or negative at 0.80 to minimize false positives, the
precision for the ML model in the testing dataset was 0.52,
showing 52% of patients predicted to have a SARS-CoV-2
infection actually had symptoms in the subsequent$3 days
and were confirmed to have COVID-19. Given the high
threshold, recall was 0.07, showing the model correctly
predicted true positives for a SARS-CoV-2 infection in 7%
of patients on HD who were positive. The lift was 5.3,
suggesting model use is 5.3 times more effective in predict-
ing a patient on HD who contracts COVID-19, compared
with not having a model (Figure 5).

Discussion
We successfully developed anML prediction model using

retrospective data, which appears to have suitable perfor-
mance in identifying patients on HD at risk of having an
undetected SARS-CoV-2 infection that is identified in the
following $3 days. The top predictors of a patient having
a SARS-CoV-2 infection were the change in interdialytic
weight gain from the previous month, mean pre-HD body
temperature in the prior week, and the change in post-HD
pulse from the previous month.
Although some top predictors are not surprising, the

observed distinctions were subtle. Without insights from
the model considering an array of variables, it would not be
clear where one should classify a higher or lower risk for an
individual patient that is meaningful. For instance, assessing
for a decrease in weekly interdialytic weight gain of about
0.3 kg alone may not be considered actionable, and the same
is true for assessing for an increase of about 0.2°F (0.1°C) in
weekly pre-HD body temperature, or an increase in pulse of
about 1 beat per minute. Notably, the average pre-HD body
temperature was 97.6°F (36.4°C) (primarily oral measure-
ments) in our analysis and has been previously reported as
98.2°F (36.7°C) (37). Given 98.6°F (37°C) is the expected
average in healthy populations, the lower body temperature
of patients on HD is of importance with the rather low
incidence of fever presenting in patients on dialysis with

Table 2. Demographics and comorbidities of patients on hemodialysis with and without an undetected severe acute respiratory
syndrome coronavirus 2 infection identified in the subsequent ‡3 d

Variable Unaffected Patients Coronavirus Disease 20191

Number of patients on HD 29,324 11,166
Age (yr), mean6SD 62.66614.25 62.62613.92
Male, n (%) 16,614 (567) 6149 (55)
White race, n (%) 12,021 (41) 4338 (39)
Black race, n (%) 7838 (27) 3354 (30)
Other race, n (%) 1223 (4) 372 (3)
Unknown race, n (%) 8242 (28) 3102 (28)
Hispanic ethnicity, n (%) 2849 (14) 1831 (23)
BMI (kg/m2) mean6SD 29.2667.71 29.4567.83
Dialysis vintage (yr) mean6SD 3.7564.11 3.9664.09
Diabetes, n (%) 19,186 (66) 8085 (73)
CHF, n (%) 6710 (23) 2595 (23)
Ischemic heart disease, n (%) 7647 (26) 2830 (26)
Central venous catheter access, n (%) 6799 (23) 2738 (25)

Age, sex, and catheter access variables were included in theML predictionmodel to classify the risk of an individual HD patient having
a SARS-CoV-2 infection being identified in the following$3 d. HD, hemodialysis; BMI, bodymass index; CHF, congestive heart failure;
ML, machine learning; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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Table 3. Clinical and treatment characteristics of patients on hemodialysis with andwithout an undetected severe acute respiratory syndrome coronavirus 2 infection identified in the subsequent
‡3 d

Variable Unaffected Patients, Mean6SD; N Coronavirus Disease 20191 Patients, Mean6SD; N

Number of patients on HD 29,324 11,166
Pre-HD sitting SBP (mm Hg)a 148.31622.83; 29,324 146.03623.03; 11,166
Change in pre-HD sitting SBP (mm Hg)b 20.40615.78; 29,324 21.95616.72; 11,166
Pre-HD sitting DBP (mm Hg)a 76.87613.86; 29,322 75.44613.58; 11,166
Change in pre-HD sitting DBP (mm Hg)b 20.3269.03; 29,322 20.8869.48; 11,166
Pre-HD weight (kg)a 85.71624.51; 29,323 85.09624.51; 11,165
Change in pre-HD weight (kg)b 20.1762.24; 29,323 20.6662.73; 11,165
Pre-HD body temperature (°F)a 97.5660.61; 29,324 97.7660.66; 11,166
Change in pre-HD body temperature (°F)b 0.0760.56; 29,324 0.2260.65; 11,166
Post-HD sitting SBP (mm Hg)a 140.40621.60; 29,321 144.44621.62; 11,166
Change in post-HD sitting SBP (mm Hg)b 0.43614.98; 29,320 1.55615.74; 11,166
Post-HD sitting DBP (mm Hg)a 73.91612.58; 29,319 73.56612.33; 11,166
Change in post-HD sitting DBP (mm Hg)b 0.1568.49; 29,318 0.4168.79; 11,166
Post-HD body temperature (°F)a 97.5860.56; 29,318 97.7060.62; 11,166
Change in post-HD body temperature (°F)b 0.0360.50; 29,317 0.1460.57; 11,165
Pre-HD respirations per mina 17.6461.16; 29,324 17.7261.15; 11,166
Change in pre-HD respirations per minb 20.00160.97; 29,324 0.0161.02; 11,166
Pre-HD pulse (BPM)a 79.00612.11; 29,324 79.02611.90; 11,166
Change in pre-HD pulse (BPM)b 0.1167.26; 29,324 1.0667.56, 11,166
Post-HD respirations per mina 17.5661.15; 29,320 17.6561.13; 11,165
Change in post-HD respirations per minb 20.00760.95; 29,319 0.000460.99; 11,165
Post-HD pulse (BPM)a 75.80611.23; 29,321 77.23611.16; 11,166
Change in post-HD pulse (BPM)b 20.3267.16; 29,320 1.3067.87; 11,166
IDWG (kg)a 2.2461.21; 29,083 1.9561.29; 11,039
Change in IDWG (kg)b 0.0160.90; 29,004 20.2661.09; 10,991
Post-HD weight loss (kg)a 22.2661.07; 29,317 22.0661.07; 11,160
Change in post-HD weight loss (kg)b 20.0160.68; 29,316 0.1860.77; 11,159
Post-HD body temperature changea 0.0160.66; 29,318 20.0660.70; 11,165
Change in post-HD body temperature changeb 20.0460.66; 29,317 20.0760.71; 11,165
Post-HD respirations per min changea 20.0860.97; 29,320 20.0760.97; 11,165
Change in post-HD respirations per min changeb 20.0161.04; 29,319 20.0161.07; 11,165
Post-HD pulse change (BPM)a 23.2068.86; 29,321 21.7968.77; 11,166
Change in post-HD pulse change (BPM)b 20.4367.75; 29,320 0.2468.06; 11,166
% HD treatments with nasal oxygen administereda 5.23618.52; 29,324 5.67619.16; 11,166
Change in % HD treatments with nasal oxygen administeredb 0.37613.40; 29,324 0.72614.12; 11,166

All variables were included in the ML prediction model to classify the risk of an individual HD patient having a SARS-CoV-2 infection being identified in the following$3 d. (100°F232) 35/
9537.8°C. HD, hemodialysis; SBP, systolic blood pressure; DBP, diastolic blood pressure; BPM, beats per minute; IDWG, interdialytic weight gain; post-HDweight loss, post-HDminus pre-HD
weight (kg); ML, machine learning; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
aMean values of HD treatment variables 1–7 d before the prediction date (i.e., 3 d before suspicion of SARS-CoV-2 infection in standard clinical practice).
bMean values of the difference in HD treatment variables 31–60 d to 1–7 d before the prediction date.
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COVID-19 (11%–66% with fever [16,20,22]). Overall, the
small changes observed for each individual variable suggest
any one parameter alone has minimal value for detecting
a patient’s risk of having COVID-19, especially because
every affected patient will not have every symptom of
COVID-19 consistently. However, the combinations of mi-
nor changes appear to be meaningful in the individualized
MLmodel we developed, with each small change being one
piece of the puzzle for each patient’s unique prediction.
Individual predictions can be further used to identify the

risk level for dialysis clinics through the proportion of

patients classified with an undetected SARS-CoV-2 infec-
tion. We anticipate using a combination of individual pre-
dictions along with reporting of the percent of patients at
risk in each clinic may yield the greatest early insights on: (1)
what otherwise asymptomatic patients on HD might be
most appropriate for enhanced screening, COVID-19 test-
ing, and triage to an isolation area, and (2) where providers
can focus additional resource allocations to combat COVID-
19. Furthermore, flagging patients as potentially infectious
may cut through some of the “COVID fatigue” occurring
during this prolonged pandemic. By adding this additional

Table 4. Laboratory characteristics of patients on hemodialysis with and without an undetected severe acute respiratory syndrome
coronavirus 2 infection identified in the subsequent ‡3 d

Variable Unaffected Patients, Mean6SD, N Coronavirus Disease 20191, Patients,
Mean6SD, N

Number of patients on HD 29,324 11,166
Albumin (g/dl)a 3.7960.40; 13,723 3.6960.46; 5252
Change in albumin (g/dl)b 20.00260.25; 13,139 20.0360.27; 5012
Creatinine (mg/dl)a 8.4263.06; 13,323 8.4163.14; 5113
Change in creatinine (mg/dl)b 0.0861.40; 12,711 0.1661.52; 4860
Bicarbonate (mmol/L)a 24.2463.05; 13,395 24.2263.22; 5137
Change in bicarbonate (mmol/L)b 0.0262.97; 12,772 20.1663.12; 4864
BUN (mg/dl)a 56.21618.53; 14,941 56.17619.27; 5631
Change in BUN (mg/dl)b 20.21615.50; 14,400 20.13616.55; 5416
URRa 74.9266.52; 14,273 75.0566.61; 5348
Change in URRb 0.0965.89; 13,548 0.0766.08; 5054
Sodium (mmol/L)a 137.5063.37; 13,139 137.0863.52; 5046
Change in sodium (mmol/L)b 20.1062.83; 29,324 20.2563.10; 4772
Potassium (mmol/L)a 4.8060.68; 16,051 4.7860.70; 6217
Change in potassium (mmol/L)b 0.0160.60; 15,499 20.0160.63; 6003
Phosphate (mg/dl)a 5.5561.74; 15,489 5.3761.71; 5913
Change in phosphate (mg/dl)b 0.0161.48; 14,918 20.0361.46; 5692
Chloride (meq/L)a 98.6664.14; 12,602 98.3364.13, 4702
Change in chloride (meq/L)b 20.1963.35; 11,708 20.2463.50; 4450
Calcium (mg/dl)a 8.8960.69; 15,420 8.7860.73; 5878
Change in calcium (mg/dl)b 0.0260.58; 14,882 20.0760.60; 5659
Corrected calcium (mg/dl)a 9.0660.66; 12,865 9.0460.71; 4903
Change in corrected calcium (mg/dl)b 0.0160.54; 12,148 20.0360.59; 4608
iPTH (pg/ml)a 489.466454.13; 10,090 497.226490.12; 3801
Change in iPTH (pg/ml)b 221.396280.41; 7245 221.846296.17; 2734
Ferritin (ng/ml)a 1029.946576.07; 8229 1197.326900.22; 3138
Change in ferritin (ng/ml)b 52.906505.99; 4400 142.006739.89; 1589
TSAT (%)a 33.07614.10; 13,051 31.29614.42; 5008
Change in TSAT (%)b 0.17615.33; 12,310 21.59616.54; 4689
Hgb (g/dl)a 10.7661.24; 29,324 10.6161.26; 11,166
Change in Hgb (g/dl)b 0.0561.07; 29,324 0.0161.13; 11,166
Platelet count (3109/L)a 195.49672.47; 11,378 192.35677.10; 4293
Change in platelet count (3109/L)b 21.93649.23; 10,595 27.82655.06; 3963
WBC count (3109/L)a 6.9362.36; 13,043 6.5562.39; 5027
Change in WBC count (3109/L)b 0.0361.76; 12,344 20.3661.93; 4733
% of neutrophilsa 66.1169.50; 17,215 66.5969.53; 6941
Change in % of neutrophilsb 0.0666.72; 14,931 0.4767.37; 5997
% of lymphocytesa 20.2267.98; 17,215 19.7667.96; 6941
Change in % of lymphocytesb 20.0464.99; 14,931 20.5365.57; 5997
% of monocytesa 6.3861.90; 17,215 6.6962.14; 6941
Change in % of monocytesb 0.0261.48; 14,931 0.3761.82; 5997
% of eosinophilsa 4.2962.88; 17,212 3.9562.84; 6939
Change in % of eosinophilsb 20.1062.03; 14,927 20.4062.28; 5995
% of basophilsa 0.7560.47; 17,206 0.7360.45; 6934
Change in % of basophilsb 0.0560.54; 14,917 0.0360.52; 5988

All variables were included in the ML prediction model to classify the risk of an individual HD patient having a SARS-CoV-2 infection
being identified in the following$3 d. HD, hemodialysis; Hgb, hemoglobin; WBC, white blood cell; TSAT, transferrin saturation; URR,
urea reduction ratio; iPTH, intact parathyroid hormone; ML, machine learning; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2.
aMean values of laboratory variables 1–14 d before the prediction date (i.e., 3 d before suspicion of SARS-CoV-2 infection in standard
clinical practice).
bMean values of the difference in laboratory variables 31–60 d to 1–14 d before the prediction date.
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novelty and warning, the hope is additional care may be
given in identifying of potential symptoms during screen-
ing. Prospective evaluation of ML model–directed mitiga-
tion is being piloted at the national network of dialysis
clinics.
The authors propose a conceptual workflow for the ap-

plication of the ML model predictions to assist with direct-
ing care to individual patients and with directing resource
allocations to clinics (Figure 6). Themodel was trained using
a target date of 3 days before patients presented with
COVID-19 symptoms to alert clinicians at least one dialysis
treatment earlier. Given this timeline, we believe it is pru-
dent to run the prediction model on a per-treatment basis.
The delivery of reports on individual patient predictions to

clinic staff would optimally be delivered on interdialytic
days, to provide the care team time to prepare for a more
comprehensive screening by an advanced clinician at the
next encounter and potential isolation of subsequent HD
treatments. The delivery of reports on the percent of patients
in each clinic at risk can be performed on a weekly basis to
allow leadership and regional managers to meet with clin-
ical managers and prepare for allocation of resources in-
cluding additional staff, protective equipment, and isolation
areas. We propose categorizing clinic-level reports to detail
facilities withmore than 5% of patients at risk for undetected
SARS-CoV-2 infection.
Mitigation efforts at the national dialysis network include

universal RT-PCR testing of patients with symptoms of
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Figure 2. | SHAP value plots for the machine learning (ML) model showing the extent each predictor contributes (positively or negatively) to
each individual prediction. (A) Bar plot of the mean absolute SHAP values for the top 10 predictors in descending order. (B) SHAP value plot for
the degree of the positive or negative effect of each individual measurement on the prediction (x-axis), with warmer colors representing higher
observed values for that measurement, cooler colors indicating lower values for that measurement, and gray representing amissing value for that
measurement. HD, hemodialysis.
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a flu-like illness, along with distinct isolation areas (rooms,
shifts, clinics) for patients who are suspected to be infected
and under investigation, and patients who are COVID-19
positive. We propose patients predicted to be at risk receive
a comprehensive screening for signs and symptoms of a flu-
like illness by an advanced practitioner (e.g., physician,
physician assistant, nurse practitioner, experienced dialysis
nurse) because there is a possibility of false positives. How-
ever, the comprehensive assessments should consider any
minor sign or symptoms of a flu-like illness that may other-
wise be considered normal on the basis of the patient’s
uremia and medical history (38,39) to be a reason for sus-
picion of COVID-19. In addition to the prediction itself, the
top reasons increasing the risk score can be provided by
calculating the SHAP values (Figure 2B). This may help to
provide additional insight into what the what a more com-
prehensive screening assessment should focus on for each
individual patient. For example, if a patient is classified by
the model at risk, with the top reason related to a decrease in
interdialytic weight gain, the next screening before entry to
the clinic could include assessment of any change in appetite

or fluid intake. Patients who are high risk and suspected
with any mild sign of a flu-like illness could be triaged to
unique isolation areas for patients under investigation and
receive RT-PCR testing. HDwould be continued in a distinct
isolation area until diagnosis of COVID-19 or not (deter-
mined by two negative RT-PCR tests .24 hours apart),
whereby patients who are laboratory positive would be
triaged to unique isolation areas for COVID-19, and patients
who are negative would return to be treated with the
general HD population (Figure 6), which is consistent with
the providers’ practices without the model. Patients diag-
nosed with COVID-19 at the provider are treated in distinct
isolation areas until they have two negative RT-PCR tests
.24 hours apart, after which patients who have recovered
are transferred back to receive HD with the unaffected HD
population.
The developed model has the potential to provide a data-

driven way for providers to identify individuals with un-
detected SARS-CoV-2 infections. The conceptual workflow
provides a hypothetical strategy that can be adapted within
the practice patterns of other providers, which may not
include universal testing and require periods of isolation.
Different strategies could utilize different thresholds for
flagging patients, depending on the intervention and impli-
cations of false positives and false negatives. Considering
the possibility of prolonged viral shedding observed in the
general and dialysis populations (40–42), the optimal period
for isolation of patients on dialysis affected by COVID-19
appears to be longer than 14 days (42). In countries or areas
with testing limitations, especially those with a high posi-
tive-to-negative testing ratio (e.g.,.25% positive test rate), it
may be reasonable to consider having separate isolation
areas for patients predicted at risk, in addition to isolation
areas for patients with symptoms of a flu-like illness. In this
scenario, the 14-day timeframe for isolation of patients
predicted to be at risk is anticipated to be appropriate if
no signs or symptoms of a flu-like illness arise.
As more data are captured in the COVID-19 outbreak,

further prediction models that can classify the risk of mor-
bid/mortal outcomes in patients on dialysis affected by
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Figure 3. | Area under the receiver operating characteristic curve
(AUROC) plot for the machine learning (ML) model, showing the
rate of true and false positives classified by the prediction model
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COVID-19 need to be developed. The potential applications
of AI for COVID-19 have been previously detailed (43); the
first priority was suggested as “early detection and diag-
nosis of the infection.” The robustness of data and an a priori
selection of variables to be included in our ML model bring
value through assessment of feature importance; this allows
for interpretation of meaningfulness of predictors, although
it does not determine causality. The selection of input var-
iables was focused on biologic changes reflected in clinical
presentations and biomarkers, allowing the model to be
generalizable to all individual patients on HD in the overall
population, and not specific to the characteristics of out-
breaks or the local population where patients reside. Al-
though this approach yields more generalizability for the
model to be used in the HD populations worldwide, exter-
nal factors such as local incidence rates or social determi-
nants of health are anticipated to affect the likelihood of
a patient contracting COVID-19 and can be considered as
appropriate. Ultimately, this strategy has the potential to
allow for COVID-19 to be detected sooner than patients on
HD show symptoms, and for a localized HD population,
earlier than it would be reported by national authorities.
A systematic review identified several models developed

using data from China for early detection of COVID-19 in
suspected individuals in the general population (27). One is
an externally validated ML model that predicts COVID-19
in suspected asymptomatic patients (AUROC validation
0.872). Another effort used a prediction model (AUROC
validation 0.966) to develop logic for an eight-variable
COVID-19 risk chart. A further model with an AUROC
of 0.938 was created to detect COVID-19 pneumonia in

patients admitting to a fever clinic (44). Other models used
genomic/computed tomography data to diagnose COVID-
19 (27). An effort using data from China not included in
prior reviews developed various ML models to predict
(AUROC testing 0.87–0.95) and identify features indicative
of COVID-19 status across age categories among people in
the general population presenting to a clinic/hospital (45).
This model found themost important features for prediction
of COVID-19 at presentation were lung infection, cough,
and pneumonia. Consistent variables used across models
for predictions included age, body temperature, and flu-like
illness symptoms (27,45). Another distinct effort reported
in the literature included the development of ML and tra-
ditional models using only full blood count data to predict
the likelihood of a COVID-19 among people in the gen-
eral population presenting to the emergency department
(AUROC training 0.80–0.86) of, or patients admitted at
(AUROC training 0.94–0.95), a large hospital in Brazil. Al-
though these models were all reported to have suitable
performance, all were subject to bias due to nongeneraliz-
able sampling of controls without COVID-19 and possible
overfitting.We cannot rule out that ourMLmodel may have
similar bias, although it included a large sample and the
testing dataset had relatively generalizable sampling for the
dialysis population with respect to positives and negatives
(30,31). Also, because we randomly selected a subset of
patients for the negative arm who never had symptoms
of COVID-19 and did not receive PCR testing, it is possible
we might have unintentionally included a small number of
patients who were asymptomatic. However, this would
have required patients to have had an asymptomatic
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SARS-CoV-2 infection that aligned with the randomly sam-
pled time window. Given the balanced class design of the
training and validation data splits, it is unlikely this in-
troduced a remarkable bias in the model during training
and validation. Yet, there is a possiblility this could have
introduced a minimal bias in evaluation of performance in
the testing data because there were fewer patients whowere
positive to identify to offset any impact of a patient incor-
rectly labeled negative when positive. Additionally, the
reported model performance may be on the conservative
side when considering the constraints of the “ground truth”
labels, because they relate to how patients who are positive
are identified by conventional screening. The extent of this
depends on how well the model identifies individuals not
included in the training sample but might show similar
patterns, and also depends on the intervention design. In
any case, our model is unique in its ability to identify the risk
of SARS-CoV-2 infection in patients without any suspicion
of being affected with the disease.
The developed model holds promise to help providers

through the COVID-19 pandemic and subsequent wave(s)
of outbreak (44,45). We recommend model use as augmen-
tation and not replacement of symptom screening, as AI
modeling is never 100% accurate and model risk classifica-
tions need to be interpreted within the extent of the model’s
performance. The developed AI model showed a clinically
meaningful performance in prediction of individual patients
on HD at risk of having an undetected SARS-CoV-2 in-
fection $3 days before there would be any suspicion of the
disease. Prospective testing is needed and underway at the
national network of dialysis clinics. We proposed a concep-
tual workflow for application of ML model–directed miti-
gation and testing. These efforts should provide key insights
for consideration by health care providers.
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