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Abstract

Sphingolipids are now considered not only as constitutional components of the cellular membrane but also as
essential bioactive factors regulating development and physiologic functions. Ceramide is a vital intermediate of
sphingolipid metabolism, synthesized by de novo and salvage pathways, producing multiple types of sphingolipids

534

and their metabolites. Although mutations in gene-encoding enzymes regulating sphingolipid synthesis and
metabolism cause distinct diseases, an abnormal sphingolipid metabolism contributes to various pathologic
conditions, including kidney diseases. Excessive accumulation of glycosphingolipids and promotion of the
ceramide salvage and sphingosine-1-phosphate (S1P) pathways are found in the damaged kidney. Acceleration of
the sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) axis plays a central role in deteriorating kidney
functions. The SphK/S1P/S1PR signaling impairment is also found during pregnancy complications, such as
preeclampsia and intrauterine growth restriction (IUGR). This mini-review discusses the current state of
knowledge regarding the role of sphingolipid metabolism on kidney diseases, and the possible involvement of

preeclampsia and IUGR conditions.
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Introduction

Over several decades, studies on bioactive lipids have
provided information concerning their cellular func-
tions beyond their structural and energy-storage roles.
Among a large number of bioactive lipids, sphingolipids
and their metabolites have been the focus of attention
(1,2). Sphingolipids are commonly distributed in the cell
membrane of the eukaryotic organism and contain an
18-carbon amino alcohol, called the sphingoid base,
with a fatty-acid tail or headgroup attached to the base
(3,4). Sphingosine is a major sphingoid base in mam-
mals and is often converted to a central intermediate
of sphingolipid metabolism, ceramide (5). Ceramide is
ester bonded with phosphatidylcholine and becomes
sphingomyelin, which comprises 5%-10% of the total
mammalian cell phospholipids (6). The addition of var-
ious hydrophilic headgroups to ceramide ultimately
produces more complex sphingolipids. Sphingolipid
variations diversify their biologic functions, and sphin-
golipids and their metabolites are now known to be
involved in cellular signaling, regulating cell survival,
growth, proliferation, differentiation, and cellular re-
sponses to inflammation by acting as cell-signaling
mediators. Their mechanisms include acting as second
messengers of intracellular signaling, supporting lipid-
raft composition, linking transmembrane domains of
the signaling protein, creating mitochondrial membrane
pores, and regulating enzymatic activation as cofactors
(1,7-9). Conversely, dysregulation of sphingolipid me-
tabolism results in pathologic states, such as cancer,

neurologic disease, osteoporosis, diabetes, and athero-
sclerosis (2,10-13).

Morbidity and mortality resulting from CKD are
increasing worldwide. Abnormal lipid metabolism,
including dyslipidemia and excessive accumulation
of sphingolipids, has been reported to play a critical
role in the pathogenesis and progression of CKD
(3,14,15). Previous studies suggest a positive correla-
tion between the onset of adult CKD and a prior his-
tory of intrauterine growth restriction (IUGR) induced
by pregnancy complications (16-18). Moreover, precise
sphingolipid metabolism is needed to maintain normal
pregnancy. This review summarizes the pathophysio-
logic roles of sphingolipid metabolism in CKD and its
possible role in preeclampsia and IUGR.

Sphingolipid Metabolism
De Novo Synthesis

Sphingolipid de novo synthesis occurs on the cyto-
plasmic side of the endoplasmic reticulum through
condensation of L-serine with palmitoyl CoA (Figure 1)
(19,20). The de novo sphingolipid biosynthesis is nor-
mally activated by metabolic overload of serine and/or
palmitoyl CoA and by a stress stimulus, such as heat,
oxidation, chemotherapeutics, cannabinoids, and TNF
(21). After biosynthesis of 3-ketosphingosine and dihy-
drosphingosine (sphinganine), ceramide, a precursor
and central molecule in sphingolipid biosynthesis, is
formed by desaturation of dihydroceramide at carbon
4—carbon 5 of the sphingoid base (22).
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Figure 1. | Sphingolopids are synthesized both by de novo and salvage pathways, producing various bioactive metabolites. De novo
biosynthesis pathway: After condensation, serine palmitoyl CoA transferase (SPT) catalyzes the production of 3-ketodihydrosphingosine, which
is a rate-limiting step in sphingolipid metabolism (114). SPT belongs to the a-axoamine synthase family and requires pyridoxal 5’ phosphate as
a cofactor (115). The 3-ketodihydrosphingosine reductase converts 3-ketodihydrosphingosine to sphinganine by reducing the keto group.
Sphinganine is then amino-acylated in microsomes by one of the six isoforms of dihydroceramide synthase to generate different species of
dihydroceramide, depending on the length of the fatty acyl added (8,116). Sphingomyelin pathway: Sphingomyelin is formed by the addition of
phosphocholine to the C1 hydroxyl group of ceramides by sphingomyelin synthase in the Golgi apparatus (117). The phosphocholine comes
from phosphatidylcholine, and diacylglycerol is released from the reaction. Glycolipids pathway: Glycosphingolipids contain sugar residues
attached to the C1 hydroxyl group of the sphingoid base. Another salvage pathway to produce ceramide is mediated by sphingomyelinase,
which degrades sphingomyelin (sphingomyelin pathway). Sphingosine-1-phosphate pathway: Ceramide biosynthesizes sphingosine-1-

phosphate by sphingosine kinase-mediated phosphorylation.

In mammalian cells, ceramide is then converted into
sphingomyelin or glucosylceramide, and glucosylceramide
further changes into more complex glycosphingolipids.
Major glycosphingolipids are glucosphingolipids and gal-
actosphingolipids, which are attached with glucose and
galactose, respectively. Glycosphingolipids are the largest
subclass of sphingolipids and are often distributed in lipid
rafts; they are present in the plasma membrane’s outer
leaflet and, when needed, they play roles in regulating
interactions between cells and protein activation (23,24).
Gangliosides are a minor class of glycosphingolipids con-
taining complex, attached sugar chains and are essential
components of plasma membranes. In some instances, gly-
cosphingolipids may contain complex sugar chains such
as N-acetylgalactosamine and N-glycolylneuraminic acid
(8,25). Gangliosides with one or more N-acetylneuraminic
acid linkages are labeled GM1, GM2, and GM3 (one N-
acetylneuraminic acid), or GDla, GD1b, GD2, GD3,
GT1b, and GQ1 (more than one N-acetylneuraminic
acid) (26).

Salvage Pathway

Ceramide is also synthesized by a salvage pathway (27).
In the presence of stress stimuli, sphingomyelin is broken
down to ceramide and phosphocholine. This reaction is
mediated by sphingomyelinase (28,29). Undesired, complex

sphingolipids—such as glycosphingolipids—may be bro-
ken down in the acidic environment of lysosomes or late
endosomes to ceramide (28). Complex glycosphingolipids
are degraded through sequential hydrolysis of terminal
hydrophilic moieties by hydrolases, where glucose or ga-
lactose is removed by B-glucosidases or galactosidase, re-
spectively, to produce ceramide.

Ceramide is hydrolyzed by ceramidase to a sphingosine
base and free fatty acid. These two products leave the
lysosomes or endosomes to become recycled substrates of
ceramide biosynthesis (29). Alternatively, biosynthesized
sphingosine may be phosphorylated by sphingosine kinase
(SphK) to form sphingosine-1-phosphate (S1P), an essen-
tial cellular signaling molecule (30). SIP can be degraded
to 2-trans-hexadecenal and phosphoethanolamine by S1P
lyase (31).

SphK/S1P/S1P Receptor Axis in the Kidney

Two SphK isoforms were identified: SphK1 and SphK2.
These isoforms are present in the cytosol and intracellular
compartments, respectively (32). SphK1 is reported to exert
antiapoptotic functions in renal mesangial cells by increas-
ing S1P levels, whereas cultured mesangial cells isolated
from SphK2-knockout mice are resistant to apoptosis (33-35).
In the human proximal tubular HK-2 cell line, SphK1 over-
expression protects against peroxidase-induced necrosis by
increasing S1P content (36).
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S1P can act as an extracellular ligand for cell-membrane
receptors and intracellular signaling molecules (37). Five
S1P receptors (S1PRs; SIPR1-S1PR5) were identified, SIPR1-
S1PR3 are detected in renal medulla and glomeruli
(38,39). The protein levels of S1IPR1 and S1PR2, but not
S1PR3-S1PR5, are abundantly expressed in rat preglomer-
ular microvessels (40). On the other hand, whole mouse
kidneys express S1PR1-S1PR4 mRNA (but not SIPR5
mRNA) with a rank order of SIPR1>S1PR3>S1PR2>S1PR4,
whereas cultured mesangial cells express all five receptors
(41,42).

Sphingolipids and Kidney Diseases

Dyslipidemia, which involves high levels of LDL choles-
terol and triglycerides in addition to low levels of HDL
cholesterol, is a major risk factor for atherosclerotic diseases,
including CKD. Alternatively, hypoalbuminemia, resulting
from proteinuria and a decline in renal function, may induce
the accumulation of atherogenic, triglyceride-rich lipopro-
teins. Recent studies have shown lipid-induced oxidation
and inflammation in the kidney, so-called lipotoxicity (43).

Some genetic disorders involving disruption of sphingolipid
metabolism exhibit renal damage, indicating the kidney is
sensitive to sphingolipid alterations. Fabry disease is caused
by a-galactosidase A mutations, which result in deficient
activity of a lysosomal hydrolase and excessive accumulation
of globotriaosylceramide (Gb3) in cells throughout the body,
particularly cells in the kidney, heart, nervous and gastroin-
testinal systems, and vasculature in the skin (44). The resulting
phenotype may include fatal, progressive kidney damage in
hemizygous males, whereas, in some individuals, milder
symptoms often appear later in life. Although the precise
mechanism has not been clarified, the potential action of
Gb3 has been investigated in podocytes, which accumulate
more Gb3 than other renal cell types. Knocking down the
a-galactosidase A gene, by RNA interference and lentiviral-
transduction techniques, upregulates LC3-II and downregu-
lates the activity of the mammalian target of rapamycin kinase
in podocytes, indicating dysregulation of autophagy (45,46).
The deacetylated bioactive form of Gb3 activates the NOTCH
signaling pathway, leading to a proinflammatory response,
dedifferentiation, and extracellular matrix accumulation via
NF-«B translocation (47).

Accumulation of sphingolipids contributes to renal dis-
orders. Although normal glomeruli express gangliosides
abundantly, renal levels of glycosphingolipids (such as
glucosylceramide, lactosylceramide, and ganglioside GM3)
are elevated in patients with diabetic nephropathy (48-53),
polycystic kidney disease, renal cell carcinoma, lupus ne-
phritis, age-related decreased kidney function, and their
experimental models (54-57). Conversely, in a model of
minimal change disease induced by puromycin aminonu-
cleoside, the amount of ganglioside GD3 and O-acetyl GD3
decreased in a time-dependent manner with the progression
of proteinuria (58). Because sialoglycoproteins contrib-
ute to the glomerular filtration barrier by retaining the
negative charge, decreases in gangliosides may alter glo-
merular permeability.

Diabetic nephropathy is characterized by albuminuria,
glomerular and tubulointerstitial fibrosis, and glomerulo-
sclerosis; this condition is a leading cause of ESKD. In

patients with diabetes, high plasma levels of sphingolipids,
including glycosphingolipids, ceramide, sphingosine, and
sphinganine, have been observed (3,59-61). Inhibition of
the formation of glucosylceramide suppresses pathologic
changes in diabetic rat kidneys, suggesting a pathogenic
role of glycosphingolipid (53). Sphingomyelinase phospho-
diesterase acid-like 3b (SMPDL3b) in the membrane lipid
raft activates the conversion of sphingomyelin to ceramide
and phosphorylcholine, purportedly by modulating acid
sphingomyelinase. Glomerular expression of this enzyme
is enhanced in both human and mouse diabetic nephrop-
athy. In db/db diabetic mice, ceramide levels in the renal
cortex are decreased, whereas glomerular mesangial and
tubular levels of sphingosine and S1P are enhanced (62-64).
Increased SMPDL3b action may induce the production of
other ceramide metabolites, such as glycosphingolipids and
S1P, by promoting sphingomyelin conversion to ceramide.
This hypothesis is also supported by AKI studies, demon-
strating that sphingomyelinase activity and ceramide con-
tent increase in proportion to the extent of injury to proximal
tubule cells (65-67). Moreover, a selective SIPR1 agonist,
SEW2871, attenuates proteinuria in early-stage diabetic ne-
phropathy in rats, suggesting a beneficial property of SIPR1
stimulation (68). In the pathogenesis of type 2 diabetes
mellitus, ceramide is reported to participate in islet S-cell
dysfunction and apoptosis (69). This report suggests that
abnormal sphingolipid metabolism deteriorates diabetic ne-
phropathy by direct effects on the kidney and glucose in-
tolerance. Obesity plays an essential role in the onset and
progression of type 2 diabetes mellitus by releasing path-
ogenic adipocytokines, including inflammatory cytokines.
Treatment with long-chain saturated free fatty acids pro-
motes ceramide and diacylglycerol accumulation and
blocks insulin signaling in C2C12 myotubes (70). Inhibition
of de novo sphingolipid synthesis suppresses inflammatory
cytokine release from murine 3T3-L1 cells (71).

Unlike the diabetic kidney, renal SMPDL3b levels are low
in patients with FSGS. This suggests that the accumulation
of sphingomyelin may participate in FSGS pathogenesis.
Fornoni et al. (72) found that serum from patients with FSGS
has decreased acid-sphingomyelinase activity —and
SMPDL3b levels, and FSGS is associated with increases in
actin cytoskeletal remodeling and apoptosis in podocytes.
FSGS is the most common cause of nephrotic syndrome and
results in progressive renal dysfunction (73). Soluble uro-
kinase plasminogen activator receptor (suPAR), which is
elevated in serum from patients with FSGS, activates aV33
integrin in podocytes, leading to a migratory phenotype.
Serum suPAR levels are also elevated in patients with di-
abetic nephropathy. In podocytes treated with serum from
patients with diabetic nephropathy, SMPDL3b interacts
with suPAR to cause the podocytes to change from a mi-
gratory to an apoptotic phenotype through increasing RhoA
activity (74). Taken together, regulation of sphingolipid
metabolism could be a therapeutic target for glomerular
diseases.

Inflammation induces the production and release of fibro-
genic cytokines and growth factors, leading to fibrosis, which
results in irreversible kidney dysfunction (75). S1P has been
considered to play an important role in both inflammation
and fibrosis. S1P, synthesized by SphK in the cytosol, is
transported to the extracellular space by transporters,
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including ATP-binding cassette transporters. Exported S1P
can bind to G protein—coupled receptors (S1PRs) on the
plasma membrane, in an autocrine fashion, or to different
cell types. S1P released from glomerular mesangial cells can
bind to SIPR2 and S1PR3 in the fibroblasts, activating the
TGF-B1/Smad pathway and triggering fibrogenic action and
SphK1 production (76). Extracellular S1P can bind to S1PRs
on immune cells, such as macrophages and lymphocytes,
leading to inflammation. This vicious cycle is called the
SphK1/S1P/S1PRs axis (15).

Furthermore, overexpression of SphK1 and S1P is found
in the diabetic kidney and high glucose-treated mesangial
cells (76). The activity of SphK and S1P levels are increased
in isolated glomeruli of diabetic rats (77). In the pathogen-
esis of diabetic nephropathy, differentiation of tubular ep-
ithelial cells and fibroblasts to myofibroblasts is thought to
be mediated by the SphK1/S1P/S1PRs axis, presumably via
S1PR2 and subsequent Rho-kinase activation (63,76,78,79).
SphK2-knockout mice exhibit less renal fibrosis than wild-
type and SphK1-knockout mice 14 days after AKI induced
by folic acid or unilateral ischemia reperfusion (80). Like-
wise, SIPR3 inhibition suppresses collagen deposition,
myofibroblast differentiation, proteinuria, and leukocyte
infiltration in the model of ureteral obstruction (81). FTY720,
an immunosuppressive SIPR ligand that functions as an
S1PR antagonist, prevents inflammatory alterations in ureteral-
obstruction and angiotensin-II treatment models (82,83).
However, the S1P effects are diverse, depending on receptor
subtypes and pathologic conditions (84,85). For instance, the
SphK1/S1P/S1PR1 axis in endothelial cells and proximal
tubular cells plays important roles in protecting against
renal ischemia-reperfusion injury (36,86,87). Bajwa et al. (88)
demonstrated the therapeutic effects of the transfer of
S1PR3-deficient, bone marrow—derived dendritic cells in
renal ischemia-reperfusion injury through the expansion of
splenic CD4(+)Foxp3(+) regulatory T cells.

Possible Role of Sphingolipids in Preeclampsia and
IUGR

Preeclampsia is a maternal, gestational disease character-
ized by kidney dysfunction (involving proteinuria and hy-
pertension after 20 weeks of gestation) and is a major cause of
maternal and fetal morbidity and mortality, including IUGR.
The origin of the preeclampsia pathology is believed to be
in the placenta, although preeclampsia shows a high degree
of heterogeneity in clinical features. Abnormal placentation
(characterized by insufficient cytotrophoblast invasion of
spinal arteries) and abnormal remodeling of decidual vessels
limit placental perfusion, leading to release of placental fac-
tors into the maternal circulation, including soluble fms-like
tyrosine kinase 1 (89-93). The soluble fms-like tyrosine kinase
is believed to inhibit vasodilation and induce maternal hy-
pertension by antagonizing the action of vascular endothelial
cell growth factor to produce nitric oxide (94).

In placentas from pregnancy complicated by IUGR with-
out preeclampsia, low ceramide and high sphingosine levels,
compared with age-matched controls, are observed (95).
Contrary to what is observed in IUGR pregnancy, acid
ceramidase expression/activity and ceramide content are
reported to increase in preeclampsia. In conjunction with
the increase in de novo synthesis, ceramide overload causes
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excessive autophagy in cultured human trophoblast cells and
in pregnant murine placentas, and necroptosis in human
choriocarcinoma JEG3 cells, primary isolated cytotropho-
blasts, and in human preeclamptic placentas (95-97). Pro-
gressive trophoblast cell death is a common feature of IUGR
pregnancy, with or without preeclampsia. Furthermore, dif-
ferences in sphingolipid metabolism may depend on tropho-
blast phenotypes, which are reported to be different between
IUGR and preeclampsia (98). The serine palmitoyltransferase
activity and the expression of sphingosine and sphingomye-
lin are high in chorionic arteries of the human preeclamptic
placenta (99). In placental arterial endothelial cells, SIP con-
tent is reduced by heightened S1P phosphatase and lyase
activity. Moreover, the equilibrium shift of SIPR expression/
activity toward SIPR2 and lower SIPR1 promotes endothelial
dysfunction in preeclampsia (99). The SphK/S1P/S1PR1 axis
plays a crucial role in placental angiogenesis and endothelial-
barrier function during pregnancy through downstream sig-
naling of extracellular signal-regulated protein kinases 1/2
and phospholipase C (100,101). FTY720 (nonspecific agonist
except for SIPR2) has been found to decrease the expression
of vascular endothelial cell growth factor in human decidual
natural killer (NK) cells, and to inhibit the migration and
angiogenesis of decidual NK cell-mediated extravillous
trophoblasts in vitro. Because S1PR5 is expressed predomi-
nantly in decidual NK cells, S1P signaling via SIPR5 may play
an essential role in the angiogenic function of decidual NK
cells and trophoblast migration during pregnancy (102).
The role of sphingolipids in hypertension and kidney dis-
eases in the offspring of patients with IUGR has not been
investigated, despite strong evidence that IUGR is known to
increase the risk of adult cardiovascular and renal diseases.
IUGR often results from placental insufficiency and is related
to an increase in perinatal morbidity and mortality. TUGR is
commonly defined as a fetal gap—the inability to reach
growth potential which is associated with a birth weight less
than the tenth percentile of the average gestational age
(103,104). Offspring of patients with [UGR have been shown
to have low nephron numbers (105), which causes a reduction
in filtration surface area, leading to systemic hypertension
and progressive renal insufficiency; sequelae becomes even
more severe with confounding factors such as excess dietary
sodium. Clinical and animal data regarding the maturation of
renal function in offspring resulting from IUGR show birth
weight is positively associated with GFR and negatively
associated with BP and serum creatinine (106,107). These
data suggest that offspring of those with IUGR are at risk of
developing hypertension and renal failure. The long-term
effects of S1P on BP may involve S1P-induced modulation of
renal blood flow and renal sodium handling. S1P mediates
natriuresis via the activation of SIPR1 in the renal medulla of
rats (108,109). s1p1 is a candidate gene that determines the
response to salt in spontaneously hypertensive, stroke-prone
rats (110). Given the essential role of sphingolipids on kidney
function and control of BP, which are impaired in IUGR, it is
possible that the sphingolipid pathway may play a role in the
pathophysiology of IUGR and requires further investigation.

Summary
Sphingolipids are synthesized and metabolized by multiple
pathways. Abnormal sphingolipid metabolism is implicated in
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Figure 2. | Roles of the SphK/ST1P/S1PRs axis in CKD and IUGR. Acceleration of the SphK/STP/S1PRs axis may induce inflammation and
fibrosis, leading to CKD. On the other hand, the physiologically controlled SphK/STP/STPRs axis may be essential in maintaining normal
pregnancy through angiogenesis, suppression of the immune response to embryos, and uterine cell differentiation and proliferation. [IUCR,
intrauterine growth restriction; S1P, sphingosine-1-phosphate; S1PRs, S1P receptors; SphK, sphingosine kinase.

various diseases, especially those involving the kidney. SIP is
the most active sphingolipid metabolite and causes kidney
inflammation and fibrosis through the SphK1/S1P/S1PRs
axis. On the other hand, in fetal development, the SphK/
S1P/S1PR1 axis mediates angiogenesis, suppresses the im-
mune response to the embryo, and is involved in uterine cell
differentiation and proliferation, which are essential processes
required to maintain proper placenta functions. Hence, inad-
equate S1P action causes IUGR, increasing the risk of adult-
onset diseases—such as obesity, diabetes, hypertension, and
cardiovascular and kidney diseases—and resulting in a high
susceptibility to kidney injury (Figure 2) (111,112). It is possible
that abnormal sphingolipid metabolism may be a result of
alterations caused by these diseases. However, studies using
pharmacologic inhibition and gene-deletion techniques raise
the notion that sphingolipid metabolism may be one of the
pivotal causes of kidney diseases. Controlling sphingolipid
metabolism from the fetal period into adulthood determines
our lifelong fate, including that of our kidney function. The
effects of SIP on the endothelial barrier and sensitivity to
vasoconstrictors also depend on its concentration (113). Further
studies to determine the extent and timing of SphK/S1P/
S1PRs inhibition/activation and the conditions that regulate
the effects of S1P will provide novel therapeutic targets against
kidney disease, in general, and specifically against kidney
disease induced by preeclampsia and IUGR.
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