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Abstract

Pathology tissue slides are taken as the gold standard for the diagnosis of most cancer diseases. 

Automatic pathology slide diagnosis is still a challenging task for researchers because of the 

high-resolution, significant morphological variation, and ambiguity between malignant and benign 

regions in whole slide images (WSIs). In this study, we introduce a general framework to 

automatically diagnose different types of WSIs via unit stochastic selection and attention fusion. 

For example, a unit can denote a patch in a histopathology slide or a cell in a cytopathology 

slide. To be specific, we first train a unit-level convolutional neural network (CNN) to perform 

two tasks: constructing feature extractors for the units and for estimating a unit’s non-benign 

probability. Then we use our novel stochastic selection algorithm to choose a small subset of units 

that are most likely to be non-benign, referred to as the Units Of Interest (UOI), as determined 

by the CNN. Next, we use the attention mechanism to fuse the representations of the UOI to 

form a fixed-length descriptor for the WSI’s diagnosis. We evaluate the proposed framework 

on three datasets: histological thyroid frozen sections, histological colonoscopy tissue slides, 

and cytological cervical pap smear slides. The framework achieves diagnosis accuracies higher 

than 0.8 and AUC values higher than 0.85 in all three applications. Experiments demonstrate 

the generality and effectiveness of the proposed framework and its potentiality for clinical 

applications.
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1. Introduction

Many cancer diseases depend on the microscopic examination of the tissue slide for the 

definitive diagnosis [1, 2, 3]. Yet it is still a very challenging task to diagnose tissue 

slides even for professional pathologists. The difficulties for the tissue slide diagnosis 

mainly lie in the following aspects: 1) The dimension of the slide tissue is enormous. It is 

almost impossible for pathologists to carefully inspect the details of all regions under high-

resolution, thereby leading to missed diagnosis [4]. 2) The tissue morphology varies greatly. 

Meanwhile, some benign and malignant regions or cells appear very similar. Differentiation 

between benign and malignant regions can be difficult on many tissue samples [5]. 3) For 

some tissue diagnosis, there is no one uniform standard. Different hospitals and institutes 

have their own slide making and diagnosis criterion, thus leading to a large degree of inter- 

and intra-observer variation [6]. 4) Those tissues that are not well-processed would introduce 

severe artifacts [7]. 5) The labor- and time-intensive diagnosis also increases pathologists’ 

chance of error-making [8]. Computer-aided diagnosis (CAD) provides an alternative for 

the tissue slide diagnosis. Because of the computer’s tireless and objectiveness traits, the 

analysis results via CAD can boost the accuracy and robustness of the tissue slide diagnosis.

However, due to the limits on limitation of computation capability, CAD on tissue slides 

mostly focuses on the region of interests (ROIs) before 2015 [9, 10, 11]. These analyses are 

mainly devoted to cell-level tasks, such as cell detection, segmentation, and retrieval [12, 

13, 14, 15]. There are also a few studies on regarding patch-based classification diagnosis 

[16, 17, 18, 19]. Nevertheless, from the viewpoint of practical assistance, computer-aided 

analysis of the whole slide images (WSIs) would be more most beneficial to pathologists, 

as their routine work is to inspect WSIs. Since 2016, studies on pathology image analysis 

start to focus on the WSI [20, 21, 22, 23]. In this paper, we propose a framework to 

analyze whole tissue images and provide the automatic diagnosis we propose an automatic 

framework to diagnose whole slide tissue images.

Currently, most reported WSI analysis studies are focused on one particular tissue slide, 

such as breast, lung, and gastric tissue [24, 22, 25, 26, 27]. However, these methods are not 

validated on other tissue slides leading to a lack of generalization ability. In this study, we 

propose a general framework for different tissue types. This framework can not only work 

on histological tissue slides, but also be applied to cytological slides. Fig. 1 shows WSI 

examples belonging to three different tissue types evaluated in the experiments.

Because of the high-resolution characterization of the WSI, currently, it is almost impossible 

to process the WSI directly. The standard procedure to analyze WSI includes the following 

steps: 1) splitting a WSI into multiple units. 2) performing unit-level representation learning. 

3) fusion of the representations of units to form a fixed-length WSI descriptor. 4) WSI 

diagnosis based upon the WSI descriptor [21, 28, 29, 30]. Since 2012, the deep neural 

networks gain overwhelming success in the ImageNet recognition challenge [31, 32], and 

convolutional neural networks (CNNs) achieve state-of-the-art performance in numerous 

image analysis tasks [33, 34, 35, 36]. Besides natural image applications, the biomedical 

image domain also takes great advantage of CNN models, across X-ray, CT, MRI, as well 

as digital pathology slides [37, 38, 39, 40]. To make use of CNN model’s outstanding 
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representation learning capability, and to avoid the time-consuming hand-crafted feature 

engineering, we propose to use CNN model to learn the representation of the processing unit 

in digital pathology slides. In cytological slides, we take the cell as the basic processing unit 

and generate cell-based representation. Compared with analyzing histopathological slides, 

an extra step for cytological WSIs is to firstly detect the cells in the WSI before conducting 

unit representation learning. When we finish crop patches/cells in the WSIs, the following 

procedures are the same for analyzing both histological and cytological WSIs.

For most malignant cases, the malignant regions or the number of abnormal cells account 

only a small part. Directly fusing all units’ representation in the WSI is not an optimal 

solution [41]. The direct effect is that these few suspicious units’ representations would 

be overwhelmed by a large number of benign patches’ representations, thus causing 

great difficulty in differentiating malignant slides. There are studies introducing selection 

mechanisms to overcome this issue. For instance, Liao et al. propose to select the top five 

nodules based on the detection confidence for the automatic diagnosing lung cancer from 

Computed Tomography (CT) scans [42]. In this study, we propose to select a subset of 

the suspicious units in a stochastic manner for the WSI feature fusion to avoid the feature 

attenuation issue. We take advantage of the fine-tuned unit classification model, which can 

estimate units’ probabilities belonging to different categories. The unit selection is mainly 

based on each unit’s non-benign probability, namely the slide’s probability of not being 

benign. Those units with high non-benign probabilities are more likely to be chosen, and we 

denote these selected units as Units of Interest (UOI).

The attention model is one of the most popular concepts in the machine learning field in 

the last five years. It is widely used in speech recognition [43], natural language processing 

(NLP) [44, 45], and vision recognition [46, 47, 48]. The main functionality of the attention 

model is to capture the significance of different parts of the input sample, and thus enabling 

the model to focus on a few key parts of the input and ignore unrelated regions. As to 

the WSI classification, the attention model fits well with capturing the weights of different 

units for the final decision-making. For those most malignant units, we expect the attention 

model to acquire high weights, while for those benign ones, lower weights are expected to 

be assigned. Instead of directly applying the attention model on the units in the WSI, we 

propose to apply the attention model upon the unit’s representation extracted from the CNN 

model, aiming to learn the weights of these units for the WSI feature fusion to enhance the 

effects of those most suspicious units. In this study, we choose the self-attention mechanism, 

which has achieved great success in a variety of tasks [45, 46], to capture the weights of the 

units’ representations for the WSI representation fusion.

In this paper, we propose a general framework for the whole slide pathology image 

diagnosis using unit stochastic selection and attention fusion. Fig. 2 presents the flowchart of 

the proposed framework. The main contributions in this paper are:

1. We propose a general framework for the WSI analysis. This framework can be 

applied to both histological and cytological applications.
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2. We introduce a novel unit stochastic selection algorithm for the WSI model 

training, aiming to focus on suspicious units in the slide and improve the 

robustness of the WSI model.

3. We adopt the attention model to capture the weights of the selected Units Of 

Interest (UOI) to form more discriminating WSI representation.

4. Extensive experiments on three different types of pathology slides demonstrate 

the generality and effectiveness of the proposed framework via various fusion 

methods.

2. Methods

The proposed framework for the WSI diagnosis can be roughly divided into four parts: 1) 

Processing units cropping, 2) Unit feature learning, 3) Units Of Interest (UOI) selection, 

4) Attention-based WSI representation fusion. We will introduce these four parts in the 

following in detail.

2.1. Processing Units Cropping

The size of both histological and cytological slides is extremely large. Typically each WSI 

could have a full spatial resolution larger than 50, 000 × 50, 000 pixels at ×40 magnification. 

Currently, it is not feasible to directly take the gigapixel WSI as a whole and feed it into 

the deep neural network. The widely used manner is to split the WSI into multiple small 

units, individually process each unit, and then fuse units’ outcome for the final diagnosis. 

Adopting this manner, we need first to split the WSI into multiple processing units. In the 

histological WSI, patches are the basic processing units, while in the cytological WSI, cells 

are the basic processing units. Therefore, we need to use different manners to crop the units 

in cytological and histological WSIs, respectively.

2.1.1. Patch Cropping in Histological Slides—In a histopathology WSI, there 

usually exists a large part of background regions surrounding the tissue region. These 

background area does not carry any diagnostic relevant information. Additionally, they 

would increase the computation burden when taking them into account. To exclude the 

background area, we locate the tissue regions in the histopathology WSIs using the tissueloc 

package [49]. As can be seen in the bottom left image of Fig. 2, the tissue region is 

surrounded by the green contour, and only those region inside and intersected with the green 

contour would be used for the histopathology WSI analysis.

After locating the tissue regions, we split the whole WSI with a fixed length of stride in both 

vertical and horizontal directions. To reduce the computation cost in the WSI analysis, we 

choose the non-overlapping manner for units splitting. After the splitting process, the WSI 

would be divided into multiple units. We only keep those units that are either entirely inside 

the tissue regions or intersected with the tissue contour but with at least 75% of their pixels 

inside the tissue contour.

2.1.2. Cell Cropping in Cytological Slides—In cytological WSIs, the cells inside 

are the primary processing units. The prerequisite for any further analysis of cytological 
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WSIs is to detect cells inside the slide. Nevertheless, there are many variations in the cell’s 

size and appearance, especially for those malignant ones. Compared with healthy cells, 

abnormal cells, which are the leading cause of cervical cancer, would usually manifest more 

morphology variations [50]. There are two main reasons for performing cell cropping other 

than cell segmentation in our framework. Firstly, because of the substantial heterogeneity 

of cells, accurately segmenting the boundary of the cells is still a challenging task. 

Additionally, the cell segmentation task is much more time-consuming and error-prone than 

the cell center detection task.

We propose an approximation method to crop the processing unit in the cytopathology 

slide by detecting the center of each cell and setting a fixed size to crop all the cells 

instead of detecting cell boundaries. To conduct the detection of cell centers, we adapt the 

segmentation network U-Net and train the network by providing the mask of cell centers 

instead of the binary mask of cell regions. To boost the robustness of cell center detection in 

different image resolutions, we resize the images and their corresponding masks using a set 

of scaling ratios in the training phase.

For a test WSI, we first split the whole image using the non-overlapping splitting manner 

into multiple patches. Then for each patch, we predict the local maxima coordinates based 

on the U-Net and regard those coordinates as cell centers. Then, we crop the cell units from 

the WSI based on these predicted cell centers with a fixed size in the vertical and horizontal 

direction. The cytological WSI would be divided into multiple units after this cropping 

process.. Fig. 3 demonstrates a sample of cell center detection result.

2.2. Unit Feature Learning with CNN

After cropping the units, we take advantage of the CNN model to learn their representation. 

To train the CNN model, first we need to collect enormous labels for the units. The way to 

annotate WSIs is based on the specific pathology application. For the thyroid tissue slides, 

we make the annotation in a relatively coarse manner by drawing broad contours to cover 

regions of the same category. Then we crop the units from these drawn contour surrounded 

regions and give the units the same label as the contour’s. As for the colon tissue slides, 

pixel-wise annotation is provided because of its much smaller slide size. For the cervical 

WSIs, we give the same label to the cropped units as the cells.

Instead of training the CNN classifier from scratch, we train the WSI unit-level feature 

extractor based on the million-scale ImageNet pre-trained model, which can provide better 

parameter initialization and meanwhile speed the training process. With the fine-tuned CNN 

model, we apply it to all the cropped units in a WSI. For each unit, besides its feature 

representation, we can also obtain each unit’s probabilities belonging to different categories, 

which are the basis for the following unit selection.

2.3. UOI Selection

From a normal-sized WSI, we can obtain more than one thousand processing units. 

However, even for a malignant WSI, there exist large regions being benign. When fusing 

units’ features for a WSI, the features from benign units would weaken the overall WSI 

representation discrimination capability, especially when the benign region accounting the 
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majority area of the WSI. With the fine-tuned CNN model, we can estimate the probability 

of units belonging to different categories. For all pathology diagnoses, including binary and 

multi-classification, we can calculate the non-benign probability of each unit by summing 

its probabilities belonging to all the non-benign categories. We propose to select a subset of 

UOI from all the cropped units of the WSI based on the unit’s non-benign probability.

In order to strength the robustness of the WSI diagnosis, we propose to introduce 

stochasticity in the WSI UOI selection process. In the training stage, we first set a minimum 

unit selection Nmin and a maximum unit selection number Nmax. For each WSI, we 

randomly select a value k ∈ [Nmin, Nmax] as the WSI’s current unit selection number. 

In addition, we sort all units based on their non-benign probabilities in descending order. 

Next, we split the selection procedure into two sections. We would first select N1 processing 

units from the front N1+ units of the sorted sequence. Then we select k − N1 units from 

the remaining sorted units ranked after N1+. In both selections, the chance of each unit 

to be selected is based on its non-benign probability. After the selection, we would obtain 

k UOI from the WSI and units with higher non-benign probability are more likely to be 

selected. With this two-layer selection stochasticity, each WSI can have multiple different 

unit combinations. During the testing stage, we would just select (Nmin + Nmax)/2 units with 

highest non-benign probabilities from the WSI for the diagnosis to remove randomness. The 

UOI selection algorithm is described as in Algorithm 1.

2.4. Attention-based WSI Representation Fusion

According to the diagnostic experiences of expert pathologists, they would mainly focus 

on those suspicious regions, and their final diagnosis on a WSI is mainly based on a few 

suspicious small areas in a vast WSI. Instead of equally treating all selected UOI in the 

fusion process, we adopt the attention mechanism to learn different weights for the UOI, 

with the assumption that the unit with a higher weight tends to be more informative for the 

WSI diagnosis. The attention we adopt in this study is self-attention.

Suppose that there are k selected units used for the WSI representation, f1, … , fk represent 

features of these units, where fk ∈ ℝd, and the number of diagnosis categories is c. We set 

W ∈ ℝc × 1 and V ∈ ℝd × c as the attention model’s parameters.
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Algorithm 1: WSI UOI Stochastic Selection Algorithm

Input:All processing units {Pi}i = 1
n and their non‐benign

probabilities {pi}i = 1
n ,

Minimum units selection number Nmin,
Maximum units selection number Nmax,
Fixed selection units number N1,
First total selection units number N1 + ,

Output:Selected UOI {P(i)}i = 1
k

1 . Generate a random number k between Nmin and Nmax .
2 . Sort all processing units based on their non‐benign
probability in a descending order.
3 . Randomly select N1 units from the front N1 + sorted

units, and denoted as {P(i)}i = 1
N1 .

4 . Randomly select k − N1 units from the last n − N1 +

sorted units, and denoted as {P(i)}i = 1 + N1
k .

5 . Concatenate {P(i)}i = 1
N1 and {P(i)}i = 1 + N1

k together to form

the selected UOI {P(i)}i = 1
k .

Then the weight wi for each unit can be calculated by:

wi = exp{W T tanh(V Tfi)}
∑j = 1

k exp{W T tanh(V Tfj)}
, (1)

where the hyperbolic tangent function tanh(·) is used for the non-linearity transformation, 

and the usage of the softmax is to ensure the weights of all patches sum to 1.0. After we 

obtain each unit’s weight, the WSI’s representation can be calculated as:

fwsi = ∑
i = 1

k
wifi, (2)

After obtaining each WSI’s representation by Eq. 2, we adopt the multilayer perceptron 

(MLP) [51, 52] to carry out the diagnosis for each WSI. Note in the WSI classification 

model training process, the parameters in Eq. 1 and MLP are optimized together.

3. Experiments

To evaluate the performance of the proposed WSI diagnosis framework, we apply the 

framework on three different WSI applications: thyroid frozen section, colon tissue, and 

cervical pap smear. In this section, we will first introduce the common experimental setup. 
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Then we separately describe the detailed experimental settings as well as the result analysis 

on these three applications.

3.1. Common Experimental Setup

Fig. 2 illustrates the whole pipeline of the proposed framework. The parameters in this 

framework vary in different WSI applications. However, some parameters are the same on 

both cytological and histological slides. We will cover the common parameter settings in this 

section.

3.1.1. Unit Cropping—For the histopathology images with a large number of 

background tissues, the first step is to locate the tissue regions and then to split the tissue 

regions to image patches. The parameters of tissue localization, as well as the level and size 

of cropped units from the WSI, depend on the specific histopathology application. We will 

introduce the parameter setting in their diagnosis section.

For cytological slides, we would first apply the U-Net to detect the cell centers. During the 

U-Net training phase, we set the initial learning rate as 0.02, and the batch size as 32. We 

also set a scaling ratio list of [0.125, 0.130, 0.15, 0.18, 0.20] to resize the original image and 

its corresponding mask, to enhance the network’s robustness on the cell center detection.

3.1.2. Unit Feature Extraction—We choose two most widely used neural networks, 

VGG16bn [53] and ResNet50 [34], to train unit-based classification model for the feature 

extraction. We change the final fully-connected layer based on the number of diagnosis 

categories in the pathology application and fine-tune the ImageNet pre-trained model.

During the fine-tuning phase of the unit classification model, we adopt stochastic gradient 

descent (SGD) with a momentum of 0.9 and a weight decay of 5.0e-4. The initial learning 

rate is set as 0.01 and decay by 0.6 after every two epochs. We train the model for 10 

epochs using a batch size of 32. We evaluate the model on the validation set after each epoch 

and save the model with the highest accuracy for feature extraction. We adopt standard 

data augmentation techniques, including random rotation between 0° and 12°, horizontal 

flip, vertical flip, color jitter, and normalization through subtracting mean and dividing by 

standard deviation.

For a testing WSI, after we split it into multiple units, we apply the CNN model to these 

units and take the results of the CNN model’s penultimate layer as the feature representation 

for these units. Besides, we can obtain each unit’s probabilities belonging to all categories, 

by applying the Softmax to output logits of the CNN model.

3.1.3. UOI Selection—Because of the significant variations among the size of different 

pathology slides, and even for the slides from the same tissue, it is hard to propose a general 

strategy to set the parameters for the selection of UOI. Currently, we set the parameters in 

the UOI selection mainly based on the average number of units in the WSIs of a specific 

application. For the WSI with more than 3,000 units, we would choose around 300 to 500 

units. For those WSIs with a unit number between 1,000 to 3,000, the selected number of 
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UOI is set to be around 100 to 300. While for those WSIs with less than 1,000 units, we 

would usually select 1/3 to 1/4 of the average number of UOI for the WSI model.

3.1.4. WSI Unit Fusion—There are quite a few attention mechanisms proposed in 

the last few years. We mainly propose to validate the effectiveness of applying attention 

mechanisms for the WSI diagnosis. Based on this idea, we compare the average pooling 

fusion, which equally treats all selected UOI and average them to obtain the WSI descriptor, 

with the self-attention fusion in the experiments. In addition, we compare with the 

concatenation of pooling features with attention features, termed as “concat” fusion manner.

We train the WSI model using SGD with a batch size of 32 for 100 epochs. The initial 

learning rate is set as 1.0e-3, and the learning rate is decayed in an epoch-wise step-down 

manner until 0.0. We take the model with the best accuracy on the validation set to evaluate 

the performance on the testing set.

3.1.5. Cross Validation—Because of the hardship of collecting a large number of WSI 

samples, we propose to use cross-validation to run the experiments multiple times with 

different train/val splittings to avoid over-fitting and bias issues in the evaluation process.

3.2. Thyroid Frozen Section Diagnosis

3.2.1. Thyroid Dataset—We successively collect two batches of thyroid slides. The first 

collected slides contain 114 benign, 50 uncertain, and 181 malignant slides. The second 

collected slides include 83 benign, 7 uncertain, and 165 malignant slides. We take the first 

collected slides for training and the second collected slides for testing. We run the 5-fold 

cross-validation on the training slides and split the slides into train/val with a ratio of 4:1. 

The testing slides are kept the same for different cross-validations.

3.2.2. Unit Model Training—Because of the vast size of thyroid frozen sections, 

typically larger than 50, 000 × 50, 000, and some even larger than 100, 000 × 100, 000, 

it is time-consuming for fully pixel-wise annotation of the slide. We use a relatively coarse 

manner to annotate the thyroid frozen sections. We request the pathologists to annotate a few 

contours on each training slide but to make sure the tissue types inside each contour to be 

the same. With this annotation manner for the training slides, we only crop the unit from 

these annotated contours and set the type of the unit the same as the contour’s. While for the 

testing slides, we would use the unit cropping methods, as described in Section 2.1. Namely, 

we first locate the tissue regions via the “tissueloc” package with all default parameters and 

then split and keep only those units inside or intersected with the tissue region for the WSI 

diagnosis.

Considering the huge size of thyroid frozen sections as well as its pyramidal storage format, 

we crop unit with a size of 224 × 224 from level 3 of the slide, corresponding to the image 

size of 1792 × 1792 in level 0 of the slide. For an 80, 000 × 80, 000 WSI, the number 

of cropped units would be close to 2000. Considering the background region in the slide, 

the number of units cropped from a WSI is between 1,000 to 2,000. As for the unit-level 

CNN model training, the average number of unit numbers on five splittings for train/val 

for benign/uncertain/benign are as described below: the training has 20, 000 benign, 6, 000 
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uncertain, and 10, 000 malignant, and the validation has 5, 000 benign, 1, 500 uncertain, and 

2, 500 malignant units. We perform the unit-level classification with these cropped units and 

use the parameters mentioned in Section 3.1.2. The unit-level classification accuracy on the 

validation units on both VGG16bn and ResNet50 is around 0.78.

3.2.3. WSI Model Training—Based on the previous introduction, the average number 

of units cropped from the WSI is between 1,000 to 2,000. We choose the UOI selection 

parameters as follows: Nmin = 128, Nmax = 192, N1 = 40, N1+ = 60. For the diagnosis 

of thyroid frozen sections, we train the pooling-based, the attention-based, and the 

concatenation-based WSI models as described in Section 3.1.4.

3.2.4. WSI Diagnosis Performance—To evaluate the diagnosis performance of 

thyroid slides, we calculate precision and recall for all categories as well as the overall 

accuracy. Besides, we draw the ROC curve for three different categories in the thyroid 

diagnosis. We show the averaged results of 5-fold cross-validation in Table 1, and we draw 

five ROC curves for each cross-validation in Fig. 4. Based on the evaluation results from 

Table 1, we can see the self-attention fusion method can obtain better accuracy than other 

two unit feature fusion manners in the thyroid diagnosis on both VGG16bn and ResNet50 

feature extractor. Comparing the two different feature extractors, VGG16bn obtains superior 

accuracy over the ResNet50 model. In addition, we can see that the recall value of the 

uncertain category is close to 1.0. However, its precision is very low, which means uncertain 

samples would be accurately predicted as uncertain. However, slides of other categories 

would be predicted as uncertain. While for the malignant category, its precision value 

is higher than the recall value, which means malignant samples tend to be predicted as 

other categories instead of the reverse. For the diagnosis of the thyroid nodules, predicting 

malignant samples to uncertain is much safer than the reverse. Because the uncertain 

cases can still go through further examinations while it is irreversible if the misdiagnosed 

malignant sample has been resected.

In Fig. 5, we show two demos of the selected UOI and their weights overlayed on the 

original slides. Based on these high-lighted areas in the right images, we can see that the 

UOI selection algorithm can accurately pick up the suspicious units. Additionally, those 

units with a more heterogeneous appearance show higher weights, which demonstrate the 

effectiveness of the attention mechanism on learning the weights of units.

As for the time cost of the thyroid slide diagnosis, it mainly contains the time used on 

unit feature extractor and slide classifier (including UOI selection, unit feature fusion, and 

classification). On average, the unit feature extraction per thyroid slide takes 49.0923s, and 

a single slide classification takes 0.0024s. The average time consumption of diagnosing a 

thyroid slide is 49.0923s.

3.3. Colonoscopy Tissue Slide Diagnosis

3.3.1. Colon Dataset—The colonoscopy tissue slides are obtained from the “Digestive-

System Pathological Detection and Segmentation Challenge 2019”2. This challenge 

provides a total of 660 training tissue slides with an average size of 3000 × 3000, in which 

410 of them are diagnosed as negative, and the rest 250 are diagnosed as positive. The 
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testing set is not openly provided to the public. Based on this setting, we take the provided 

training slides as the whole dataset for WSI diagnosis framework evaluation. We carry out 

5-fold cross-validation on the available slides and split the train/val dataset with a ratio of 

4:1. Thus there would be 528 slides used for training and 132 slides used for validation.

3.3.2. Unit Model Training—The colon slide image has an average size of 3, 000 × 3, 

000, which is very different from most commonly seen WSI with the average size of 50, 

000×50, 000, and the format of the provided slides is the jpeg rather than the commonly 

used pyramid storage format. We choose a slightly different way to crop the units for the 

unit-level classification model training. Instead of using the “tissueloc” package to locate the 

tissue region as the first step, we omit this step in the colon slide analysis. Nevertheless, in 

the unit cropping process, we would add a checking procedure to determine if a cropped 

image is the background or the tissue. In this checking procedure, we first convert the 

cropped RGB image to a grayscale image. Then we calculate the average gray value of the 

image and compare it with a preset threshold value of 220. We take those cropped units with 

an average gray value of less than 220 as the tissue units and take them for the following 

analysis.

In addition to the slides, this dataset also provides positive tissue segmentation masks. We 

take advantage of the segmentation mask to separate the cropped units into positive and 

negative categories. We set the size of the cropped unit as 448×448 and splitting the units 

in a non-overlapping manner. As the segmentation mask has the same size as the slide, we 

crop the mask unit using the same manner. We take the unit as positive when the malignant 

area in its corresponding mask is larger than 5%, and the rest units are taken as negative. We 

would resize all the cropped images to 224 × 224 for the unit-model training.

In different cross-validation splitting, there is slight difference in the number of units in 

train/val and negative/positive categories. On average, the number of negative and positive 

patches in training is about 20, 000 and 10, 000, and the number of negative and positive 

patches in the validation is about 5, 000 and 2, 500, respectively. The colon unit-based 

classification model training is entirely in keeping with the settings mentioned in Section 

3.1.2. The unit-level classification accuracy on the validation units on both ResNet50 

and VGG16bn is around 0.90, and ResNet50 has slightly better accuracy compared with 

VGG16bn.

3.3.3. WSI Model Training—As the relatively small size of the colon tissue slide, with 

the non-overlapping cropping manner of patch size 448 × 448, the average number of 

patches in a WSI is around 50. The parameters for the UOI selection algorithm in Algorithm 

1 for the colon application are set as follows: Nmin = 10, Nmax = 18, N1 = 8, N1+ = 12. After 

the setting of UOI selection, the training of three different feature fusion manners for the 

WSI model are carried out as described in Section 3.1.4.

3.3.4. WSI Diagnosis Performance—We show the colon slides diagnosis results in 

Table. 2 and Fig. 6. Same as the thyroid evaluation, the values in Table. 2 are averaged on 

2 https://digestpath2019.grand-challenge.org/ 
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five splittings, and Fig. 6 has five ROC curves of three feature fusion manners. On the colon 

dataset, the results of using pooling and self-attention with both VGG16bn and ResNet50 as 

the feature extractor are very close to 97.4%. The concatenation manner obtains the accuracy 

of 97.9% and 98.3% using VGG16bn and ResNet50 as the feature extractor, respectively. 

These results are better than the pooling and selfatt fusion manners. We also calculate the 

mean AUC of the five ROC curves in Fig. 6 and obtain average value as high as 0.997, 

which demonstrate the accurate diagnosis of the proposed framework on colon slides.

Since the colon dataset is publicly released for the MICCAI2019 Grand Pathology 

Challenge, we make use of the proposed framework to attend the challenge. Fig. 7 shows 

our result (with team name chenpingjun) compared to other contestants. The proposed 

framework with selfatt fusion manner ranked third place on the Colonoscopy tissue 

classification track obtaining an AUC value of 0.997 on a private testing dataset. The 

released AUC in the challenge leaderboard is consistent with our results via the cross-

validation manner.

The self-attention mechanism does not show obvious superiority over pooling methods on 

the colon slides. Probably because there is no obvious weight difference of the units in 

colon slides for the diagnosis, which can be illustrated in Fig. 8. In Fig. 8, the left image 

is the input colon slide, and the middle one is the selected UOI with weights overlaying 

on the original colon slide, and the right one is the segmentation mask overlaying on 

the original colon slide. Comparing the middle and the right images, we can see that 

the selection algorithm can accurately pick up the malignant regions. As for the attention 

learned weights of these selected UOI, all the weights are nearly the same. However, the 

concatenation manner performs better than both pooling and selfatt manners in the colon 

tissue application. The reason could lie in the feature concatenation increases the colon WSI 

feature’s dimensionality and its discrimination capability, and thus to be more robust.

The average feature extraction per colonoscopy image is 7.6622s, and the classification per 

slide takes 0.0021s. The overall average time cost for diagnosing a colonoscopy image with 

the proposed framework takes 7.6643s.

3.4. Cervical Pap Smear Diagnosis

3.4.1. Cervical Dataset—The cervical pap smear dataset contains 264 positive slides 

and 108 negative slides in total. We perform 4-fold cross-validation to evaluate the 

performance of the proposed framework and split the slides into train/test with a ratio of 

3:1. Thus, we have 198 positive slides and 81 negative slides for training and 66 positive 

slides and 27 negative slides for testing.

3.4.2. Cell Center Detection—For the U-Net based cell center detection, we use a total 

of 1, 661 images cropped from multiple cervical slides. We annotate the cell centers of these 

images. The average number of cells in each image is around 15. We split all these images 

into training and validation with a ratio of 4:1, and then we obtain 1, 329 images for training 

and 332 images for validation.
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In the U-Net model training phase, we perform extensive data augmentations, including 

rotation in the range of [0°, 360°], horizontal flip, and vertical flip. As we will rescale both 

the image and corresponding mask by a series of ratios smaller than 0.2, we also set the 

smallest image size to 400 × 400 to avoid the too small resized image and mask. If the size 

of the rescaled image is smaller than 400 × 400, we pad the image on the right and bottom 

borders with a reflection of the image. Then, we randomly crop a sub-image with a size of 

256 × 256 from the padded image for the U-Net model training.

After we obtain each test image’s detection probability map using the trained U-Net model, 

we first set 0.14 as the threshold to assign all the pixels with lower values to 0.0. Then, we 

locate all the local maximal peaks and take them as the detected cell centers.

3.4.3. Unit Model Training—For cervical pap smear slides, we crop the cells based on 

the detected cell centers. To estimate the appropriate cropping size for cell-based patches, 

we calculate the mean and standard deviation of all labeled cells’ size. We get an average 

size of 71.97 for the height of positive cells and an average size of 71.15 for the height of 

negative cells at level 0 of the slide. Meanwhile, the average size for the width of positive 

cells is 120.94, a little higher than 118.51 for negative cells. The standard deviation is 

around 44 for both negative and positive cells. Therefore, we set the crop size of 224 × 224 

from level 1 of the slide for the unit-level classifier training and feature extraction.

In different cross-validation experiments, there exists a slight difference between each 

training and testing datasets. Based on the cell annotations, we split the dataset into seven 

classes: CCSM, Microorganism, Negative, Gland-abnormal, ASCUS, LSIL, and high-grade 

positive. CCSM includes the neck canal cells and squamous epithelium metaplasia cells. 

Microorganism stands for cervicovaginal microorganisms. Negative class is composed of 

all the other negative cell types. Gland-abnormal represents for the abnormalities for gland 

cells. ASCUS stands for atypical squamous cells of undetermined significance[54]. LSIL 

is short for low-grade squamous intraepithelial lesions, which means that the cervical cells 

show mildly abnormal changes. High-grade positive class includes all the other highly 

abnormal cells, including high-grade squamous intraepithelial lesion[55], squamouscell 

carcinoma[56] and the other positive cell types. The average number of units on train/val 

for different classes are as described below: the training dataset has 3,129 CCSM, 771 

Microorganism, 15,640 Negative, 1,584 Gland-abnormal, 9,755 ASCUS, 9,968 LSIL and 

13,537 Positive units, and the validation has 783 CCSM, 198 Microorganism, 3,912 

negative, 397 Gland-abnormal, 2,439 ASCUS, 2,492 LSIL and 3,385 positive units.

With these cropped units, we perform the cell level classification training based on the 

settings mentioned in Section 3.1.2. On the validation units, VGG16bn obtains classification 

accuracy of 77.8%, and ResNet50 obtains classification accuracy of 73.4%.

3.4.4. WSI Model Training—The average number of units detected in one cervical WSI 

is more than 10, 000. For cervical pap smear dataset, we set Nmin = 300, Nmax = 360, N1 = 

200 and N1+ = 240 in the UOI selection algorithm for the WSI model training. In the testing 

phase, we choose the top 330 units with high non-benign probabilities in all the processing 
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units. All the experimental settings for WSI training and testing are described in detail in 

Section 3.1.4.

3.4.5. WSI Diagnosis Performance—We show the diagnosis results of cervical slides 

in Table. 3. We use 4-fold cross-validation on the cervical dataset ,and four ROC curves are 

shown in Fig. 9 using three unit feature fusion manners. On the cervical dataset, we get 

better accuracy via ResNet50 than VGG16bn. We obtain the best accuracy of 83.0% using 

the concatenation fusion mechanism and ResNet50. The mean AUC calculated in Fig. 9 is 

0.847 for pooling and 0.851 for self-attention, and the AUC results shows that both pooling 

and self-attention achieve very similar performance in cervical pap smear classification. But 

the mean AUC of the concatenation feature fusion method obtains 0.900, which is much 

higher than both the pooling and self-attention manners.

The main reason that the self-attention mechanism performs similarly with the pooling in 

the cervical pap smear slides is that the weight difference in most processing units is not 

significant; thus, most units almost equally contribute to the representation fusion. From 

Fig.10, we can see that the color difference in all the chosen UOI differs slightly, which 

means that the weights overlaying on the selected UOI are similar. Same with the colon slide 

diagnosis, the concatenation fusion, which is the combination of pooling and self-attention, 

surpasses both of them. The concatenation manner increases the dimensionality of the WSI 

feature built upon pooled feature and attentive feature, which may help improve the WSI’s 

feature discrimination and increase its prediction accuracy.

The time cost for cytopathology slides via the proposed framework contains three aspects: 

cell detection, cell feature extraction, and slide classification. On the cervical slides, the 

average time cost of cell detection per slide is 30.5244s, cell feature extraction per slide 

takes 10.4159s, and slide classification per slide takes 0.0027s. The total time cost for 

diagnosing a cervical pap smear slide is 40.9430s.

4. Discussion

Framework Generalization:

The main highlight of this framework is its generalization capability in that it can apply 

to both histological and cytological diagnostic applications. We evaluate this framework 

on two histological applications and one cytological application to demonstrate this point. 

Besides, the two histological applications represent two very different kinds of WSIs with 

huge dimension variations. Among them, the thyroid slide has an average slide dimension 

of 80, 000 × 80, 000, and the colon slide has an average dimension of 3, 000 × 3, 000. 

On all the three diagnostic tasks, the best accuracy is higher than 0.80, and the AUC value 

is higher than 0.85. These results validate the effectiveness and robustness of the proposed 

framework. The framework can be applied to WSIs with a broad range of dimensions and 

also different pathology domains, thereby potentially being applied to other tissue types.

Cell Center Detection:

For cytological slide diagnosis, we propose to detect the cell centers rather than to detect 

their exact boundary. There are two main advantages of this approximation. First, it can 
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significantly decrease the prepossessing time and labeling work for pathologists. Compared 

with labeling the cell centers, annotating cell boundaries is more tedious and error-prone. 

Second, because of the different height and width for various cells, cell-based units may 

have different sizes. To feed them into the deep neural network, we need to resize all the 

units to the same size. However, this would affect the unit resolution, thus influence the 

performance of the unit-based classification model and further influence the unit extracted 

features. By detecting the cell centers, cropping cell-based units with a fixed size can avoid 

the resolution issue.

Unit Feature Learning Method:

In the current framework, we train the unit-level feature extractor using the fully-supervised 

scheme. Two CNN classification models, VGG16bn and ResNet50, are evaluated in the 

experiments. There is no noticeable performing difference between these two CNN models. 

The annotation manner is also different based on a specific pathology task. For instance, 

the thyroid application utilizes contour-based coarse annotation, the colon slide adopts pixel-

wise annotation, and the cervical slide uses the cell-based labeling. For the fully-supervised 

training, annotation is always a significant burden for biomedical image applications. The 

unit-level feature extractor is one replaceable component of the whole framework, and 

substituting it with other feature extraction methods will not affect the usability of the 

framework. Also, other learning manners, such as semi-supervised, self-supervised, and 

unsupervised training methods, can be introduced into this framework to substitute the 

fully-supervised scheme.

Patch Size Setting:

In the unit-based WSI diagnostic framework, the cropped size of the unit is always an issue 

to consider. As the input for most CNN model is 224 × 224, we always propose to crop the 

unit with this size but from different levels of WSI based on its pyramidal storage. In the 

thyroid task, we crop the unit from level 3, which means the size of the cropped thyroid unit 

corresponds to 1792×1792 in level 0 of the slide. In the colon application, we crop the unit 

with a size of 448 × 448 and then resize to 224, which corresponds to level 1 cropping, and 

the cervical unit is also cropped from level 1.

Cropping from a higher level would result in fewer units, which would decrease the 

computing consumption. However, the resolution of the cropped unit would be lower 

compared with those cropped from a lower level. While a unit cropped from a low level 

would have a small context window that may hinder the diagnosis. The principle we use 

in the setting of the patch size is primarily based on whether the pathologists can make 

the diagnosis on the cropped unit. When the chosen level is too high, the cropped unit 

cannot be recognized after being resized to 224 × 224 , we need to decrease the cropping 

level. Similarly, if the chosen level corresponded unit has too little context information that 

pathologists cannot diagnose, we need to increase the cropped level to enable the cropped 

unit to have more context information.
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Motivation on UOI Selection:

For large-size WSIs, like the thyroid and cervical applications, the number of the processing 

units would usually be more substantial than 1, 000. Nevertheless, the fact is that most of the 

units, even for malignant or positive WSIs, are benign and do not contain much diagnosis 

information. Adding these less informative units into the fusion process would weaken the 

differentiation capability of the WSI descriptor. Thus we propose to use the unit’s estimated 

non-benign probability to select a subset of UOI.

The advantages of the UOI selection mechanism mainly lie in the following three aspects. 

First, removing large amounts of benign units would increase the differentiating ability of 

the WSI descriptor. Second, this procedure can improve the robustness of the network. 

Each WSI would have multiple different UOI combinations with the stochasticity introduced 

in the selection algorithm, thereby strengthening the generalization ability of the WSI 

representation fusion. Third, we can reduce the computational costs by selecting a subset of 

all the units.

UOI Selection Parameter Settings:

Currently, we empirically set the parameters of the UOI selection algorithm, and we mainly 

follow the principle described in Section. 3.1.3. The main reference for the parameter setting 

is the average number of cropped units in the WSI of a particular application. For those 

WSIs with more than 1, 000 units, we would set the number of selected UOI to be around 

100-500. While for those WSIs with less than 1, 000 units, we propose to select UOI with 

a relatively larger ratio to increase the robustness. We propose the theoretical principle of 

setting UOI selection parameters as our future study.

5. Conclusion

In this study, we propose a fully automatic framework for the whole slide pathology image 

diagnosis based on unit stochastic selection and attention fusion. The main contribution 

of this work is the generality of the proposed WSI diagnostic framework. This framework 

can apply to both histological and cytological applications covering a broad range of slide 

dimensions. Additionally, the UOI selection algorithm and the attention fusion are proposed 

to extract the suspicious units in the WSI and capture the significance of the UOI for the 

final diagnosis. We achieve diagnosis accuracies higher than 0.8 and AUC values higher 

than 0.85 on all three applications. In future investigations, we will explore the unit feature 

extraction with a small amount of or no annotations, the UOI selection parameter setting, 

and other unit feature fusion manners.
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Figure 1: 
Experimental whole slide image examples of three different tissues. In this study, we 

apply the proposed framework to both histological and cytological applications. Histological 

applications include the thyroid frozen section and colonoscopy tissue slide on the left of 

the figure, in which patches of the slide are taken as the processing units. The cytological 

application deals with cervical pap smear and takes the cell inside the slide as the processing 

unit.
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Figure 2: 
The general framework of the whole slide pathology image diagnosis using unit stochastic 

selection and attention fusion. The first step conducts unit cropping, including patch 

cropping in histological slides and cell cropping in cytological slides. Then the CNN 

classifier is fine-tuned and used to infer all cropped units’ features and diagnosis 

probabilities. After that, we propose a stochastic selection algorithm to pick up a small 

subset of Units Of Interest (UOI), denoted as u1,…,uM, from all the units denoted as 

u1,…,uN, based on the estimation of their diagnosis probabilities, where N>>M. Next, we 

apply the attention mechanism to learn the significant weights, denoted as α1,…,αM, of UOI 

to fuse a descriptor for the WSI. Finally, the diagnosis of the WSI is performed based upon 

the fixed-length descriptor.
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Figure 3: 
Cell center detection results. The large image in the middle is the original slide, and the four 

ROIs displayed around show the results of cell center detection. From the sampled ROIs, 

almost all the cells are accurately detected.
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Figure 4: 
The receiver operating characteristic (ROC) curves of thyroid slides diagnosis on pooling, 

self-attention, and concatenation fusion manners using the VGG16bn model as the unit 

feature extractor. From top to bottom are the ROC curves of thyroid’s three diagnosis 

categories, including Benign, Uncertain, and Malignant. The self-attention fusion attains 

higher AUC values compared to other two fusion manners.
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Figure 5: 
Thyroid slides unit selection and attention weights visualization demos. The images shown 

on the left is the down-scaled thyroid slides, and the images shown on the right is the 

selected UOI with attention weights overlayed on the original slide. The selected UOI are 

mainly located in the malignant regions, and those most serious units have higher attention 

weights.
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Figure 6: 
The receiver operating characteristic (ROC) curves of colon tissue slides diagnosis on 

pooling, self-attention, and concatenation manner using the VGG16bn model as the unit 

feature extractor. Three different unit feature fusion methods show very similar curves for 

the colon application.
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Figure 7: 
Comparison of the top 10 contestants in Colonoscopy tissue classification challenge. The 

proposed method (chenpingjun), obtains AUC value of 0.997, and ranks th third place.
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Figure 8: 
Colon slides UOI selection and attention weights visualization demos. (A) and (B) are 

two demo colon slides. For each demo, from left to right, are the testing colon slide, the 

selected UOI with attention weights overlayed on the testing slide, and the expert annotated 

segmentation mask overlayed on the testing slide. Compared with the segmentation mask, 

the UOI selection algorithm can accurately select those positive regions. As we can see on 

the middle image, the weight values on these selected units are very close.
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Figure 9: 
The receiver operating characteristic (ROC) for cervical pap smear slides using pooling, 

self-attention, and concatenation fusion manners with the ResNet50 as the feature extractor. 

Both pooling and self-attention obtain AUC value close to 0.850. The concatenation fusion 

outperforms both pooling and self-attention fusion mechanisms and obtains AUC value of 

0.900.
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Figure 10: 
Cervical pap smear slides unit selection and attention weights visualization. The left image 

is the original slide, and the right image is the image with UOI attention weights overlayed 

on top of the original slide. Based on these two samples, the attention weights for selected 

UOI do not differ much, with few of them have a slightly darker color than the other units.
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