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Abstract

Agent-based models of ‘flocking’ and ‘schooling’ have shown that a weighted average of 

neighbor velocities, with weights that decay gradually with distance, yields emergent collective 

motion. Weighted averaging thus offers a potential mechanism of self-organization that recruits 

an increasing, but self-limiting, number of individuals into collective motion. Previously, we 

identified and modeled such a ‘soft metric’ neighborhood of interaction in human crowds that 

decays exponentially to zero at a distance of 4–5m. Here we investigate the limits of weighted 

averaging in humans and find that it is surprisingly robust: pedestrians align with the mean 

heading direction in their neighborhood, despite high levels of noise and diverging motions in 

the crowd, as predicted by the model. In three Virtual Reality experiments, participants were 

immersed in a crowd of virtual humans in a mobile head-mounted display and were instructed 

to walk with the crowd. By perturbing the heading (walking direction) of virtual neighbors and 

measuring the participant’s trajectory, we probed the limits of weighted averaging. (1) In the 

‘Noisy Neighbors’ experiment, the neighbor headings were randomized (range 0–90°) about the 

crowd’s mean direction (±10° or ±20°, left or right); (2) in the ‘Splitting Crowd’ experiment, the 

crowd split into two groups (heading difference = 10–40°) and the proportion of the crowd in one 

group was varied (50–84%); (3) in the ‘Coherent Subgroup’ experiment, a perturbed subgroup 

varied in its coherence (heading SD = 0–2°) about a mean direction (±10° or ±20°) within a noisy 

crowd (heading range = 180°), and the proportion of the crowd in the subgroup was varied. In 

each scenario, the results were predicted by the weighted averaging model, and attraction strength 

(turning rate) increased with the participant’s deviation from the mean heading direction, not with 

group coherence. However, the results indicate that humans ignore highly discrepant headings 

(45–90°). These findings reveal that weighted averaging in humans is highly robust and generates 

a common heading direction that acts as a positive feedback to recruit more individuals into 

collective motion, in a self-reinforcing cascade. Therefore, this ‘soft’ metric neighborhood serves 

as a mechanism of self-organization in human crowds.
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Contribution to the Field Statement

In human crowds, like many other animal groups, ‘flocking’ behavior emerges from local 

interactions between individuals, through a process of self-organization. Mathematical models 

have shown that collective motion results if each individual aligns with the weighted average of 

the velocities of their neighbors, where the weights decay with neighbor distance. In this paper, we 

show how weighted averaging provides a mechanism of self-organization by recruiting individuals 

to align with their neighbors. In three experiments in Virtual Reality, we investigate the limits of 

weighted averaging in humans and find that it is surprisingly robust. Participants were immersed 

in a virtual crowd in a mobile head-mounted display, and were asked to “walk with the crowd”. 

We find that pedestrians align with the mean heading direction in their neighborhood, despite 

high levels of crowd noise, a crowd that splits into two groups, or a subgroup that diverges 

from the crowd. The results were closely predicted by a weighted-averaging model. Because 

each individual aligns with the mean heading in their neighborhood, weighted averaging provides 

a positive feedback that recruits more individuals into alignment, generating collective motion. 

Weighted averaging thus serves as a mechanism of self-organization in human crowds.

Keywords

collective behavior; self-organization; crowd dynamics; pedestrian dynamics; agent-based models

1 Introduction

Much like schools of herring and murmurations of starlings, groups of humans exhibit 

collective motion, whether a group of friends walking together down a sidewalk or large 

crowds in a shopping plaza or a mass protest. It is generally believed that such patterns of 

collective motion emerge via similar processes of self-organization, where local interactions 

between individuals give rise to patterns of global behavior [1, 2]. An understanding of these 

local interactions has two aspects: first, identifying the rules of engagement that govern 

how an individual responds to a neighbor, and second, characterizing the neighborhood of 
interaction over which these rules operate and how neighbor influences are combined.

Despite the similarity of collective motion across many species, this behavior has been 

treated separately in humans and other animals. For flocks, schools, and herds, the main 

approach has been the attraction-repulsion-alignment framework [3–6], in which three local 

interaction rules or hypothetical forces apply over different ranges: (i) repulsion from near 

neighbors to avoid collisions, (ii) alignment with the velocities of intermediate neighbors to 

generate common motion, and (iii) attraction to far neighbors to maintain group cohesion. 

The influences of multiple neighbors are combined by averaging over the neighborhood. 

Pedestrian models, in contrast, have mainly focused on collision avoidance based on 

repulsion and attraction forces [7–9], although they can also generate collective motion 

under certain boundary conditions [10, 11]. We focus instead on the alignment of velocity 

direction or heading, which is sufficient to generate collective motion [12, 13].

Cucker and Smale [14] showed numerically that a weighted average of neighbor velocities, 

with weights that decay gradually with distance, yields emergent collective motion. This 
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result demonstrated that distance-weighted averaging over a spatial neighborhood offers a 

potential mechanism of self-organization: a self-limiting positive feedback that recruits an 

increasing number of individuals into collective motion until all individuals are aligned. 

Rio, Dachner and Warren [15] empirically identified a similar ‘soft metric’ neighborhood of 

interaction in human crowds, in which neighbor influence decays exponentially to zero at a 

distance of 4–5m.

Rio, et al. [15] modeled this soft metric neighborhood using a weighted-averaging model. 
Because people have a ~180° horizontal field of view and tend to face in the walking 

direction [16], the neighborhood is a semi-circular region with an eccentricity of −90° to 

+90° about the current heading direction, and neighbor influence is largely unidirectional. 

When following a crowd, a pedestrian steers by reducing the mean difference between their 

current heading direction (ϕi) and the heading direction of each neighbor (ϕp), weighted by 

distance. Specifically, pedestrian p’s angular acceleration (change in heading direction) is 

proportional to the weighted average of the heading deviations of each neighbor,

ϕ̈p = − k
n ∑i = 1

n wisin ϕi − ϕp (1a)

wi = a
eωdi + a (1b)

where n is the number of neighbors within a 5m radius and a 180° field of view, and k=3.15 

is the stiffness or gain, fit to data on pedestrian following [17]. The weight of each neighbor 

(wi) decreases exponentially with distance (di), where ω=1.3 is the decay rate and a=9.2 

is a scaling constant, fit to motion-capture data on real crowds [15]. Thus, neighbors that 

are closer to the pedestrian or have larger heading deviations (up to ±90°) exert a greater 

influence, such that the pedestrian turns to align with the weighted mean heading in the 

neighborhood. An analogous equation for linear acceleration controls a pedestrian’s walking 

speed [15]. In terms of the system’s dynamics, the proximity and average deviation of 

neighbors determine the strength of attraction to the mean heading in the neighborhood, and 

hence the turning rate and the relaxation time of the alignment response. It is interesting 

to note that Eq. 1a is a version of the Kuramoto model of synchronization in systems of 

phase-coupled oscillators [18,19] with second-order dynamics, which converges to a small 

cluster of phases analogous to a small distribution of heading directions.

This weighted-averaging model closely simulates individual trajectories in human 

experiments with virtual and real crowds [15], and generates robust collective motion in 

multi-agent simulations [20]. So far, however, only groups of aligned virtual humans with 

small heading differences (10°) have been tested experimentally [15]. Here we investigate 

whether weighted averaging is sufficient to recruit pedestrians into collective motion in 

a wider range of crowd scenarios. Clearly, people can perform a variety of locomotor 

behaviors under intentional constraints, such as walking to a goal, following another 

pedestrian, and so on [21]. Thus, although collective motion can arise spontaneously, we 

study its formation under the intention to walk with a crowd.
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To probe the limits of weighted averaging in humans, we performed three experiments in 

which the participant was asked to walk with a virtual crowd, allowing us to manipulate 

the motions of virtual humans (neighbors). Using virtual – as opposed to real – crowds 

enables precise experimental control, while still yielding meaningful insight into real-world 

behavior, as tests of virtual reality as a method have demonstrated [22, 23]. In each 

experiment, we perturbed the heading (walking) direction of neighbors in the crowd and 

measured the participant’s heading response, the time series of their heading direction. In 

Experiment 1 (Noisy Neighbors), the heading directions of neighbors were randomized 

about the mean direction of the crowd, with a range up to 90°. The model closely predicts 

the human data, indicating that weighted averaging is highly robust. In Experiment 2 

(Splitting Crowd), the virtual crowd diverged into two groups, with an angle up to 40° 

between them, and the proportion of the crowd in the each group was varied. Surprisingly, 

participants head between the two groups, just as predicted by the weighted averaging 

model. In Experiment 3 (Coherent Subgroup), the coherence of a perturbed subgroup was 

manipulated (heading Standard Deviation (SD) from 0° to 20°) within a noisy crowd 

(heading range 180°), and the proportion of the crowd in the subgroup was varied. Once 

again, heading responses were predicted by weighted averaging.

In each case, we find that participants align their heading with the weighted mean of the 

neighborhood, consistent with Rio, et al’s [15] model. Moreover, as a larger proportion of 

neighbors turns, the mean heading deviation increases, and the strength of attraction to the 

neighborhood mean increases. Weighted averaging in humans is thus highly robust to crowd 

noise and diverging groups. The results show that individuals are not attracted to more 

coherent neighbors, but to the mean heading in their neighborhood. A common heading 

direction thus propagates across neighborhoods, providing a positive feedback that recruits 

more individuals into emerging collective motion.

2 General Method

2.1 Participants

Participants (10 in Experiment 1, 12 in Experiment 2, 12 in Experiment 3) were 

recruited at Brown University, had normal or corrected-to-normal vision, reported no motor 

impairments, and had not participated in any other virtual crowd experiments. Informed 

consent was obtained from all participants, who were compensated for their time. The 

research protocol was approved by Brown University’s Institutional Review Board, in 

accordance with the principles expressed in the Declaration of Helsinki.

2.2 Equipment

Experiments were conducted in the Virtual Environment Navigation Lab (VENLab) at 

Brown University. Participants walked freely in a 12m × 14m tracking area, while viewing 

a virtual environment in a stereoscopic head mounted display (HMD). The HMD’s inter-

ocular distance was adjusted for each participant. In Experiments 1 and 2, the HMD was 

an Oculus Rift CV1 (Irvine CA; 94°H × 93°V field of view, 1080 × 1200 pixels per 

eye, 90 Hz refresh rate); stereoscopic displays were generated on a Dell XPS workstation 

and transmitted wirelessly to the HMD using two HDTV transmitters at a frame rate of 
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30–60 fps. Head position and orientation were recorded with an IS-900 inertial/ultrasonic 

tracking system (Intersense, Billerica, MA) at a sampling rate of 60 Hz, with a total 

latency of 50–67ms. In Experiment 3, the HMD was a Samsung Odyssey (Seoul, S. Korea; 

101°H × 105°V field of view, 1440 H × 1600 V pixels per eye, 90 Hz refresh rate), and 

stereoscopic displays were generated on a backpack computer (MSi VR-One, New Taipei 

City, Taiwan) at a frame rate of 45–90 fps. Head position and orientation were recorded 

with the Odyssey’s inside-out tracking system, consisting of two cameras and an inertial 

measurement unit (90 Hz sampling rate, downsampled to 45 Hz), with a total latency of 

about 11ms.

2.3 Displays

The virtual environment was created in Vizard (Worldviz, Santa Barbara, CA) and consisted 

of a ground plane with a grayscale granite texture and a blue sky. A green start pole and a 

red orienting pole (radius 0.2m, height 3m) appeared 12.73 m apart. The crowd consisted 

of animated virtual humans (WorldViz Complete Characters) with 36 unique appearances, 

equal numbers of men and women, and diverse races and ethnicities. In Experiment 1, 24 of 

the appearances were randomly chosen and used for all trials. In Experiments 2 & 3, more 

than 36 virtual humans were presented, so some appearances were duplicated. Each of the 

human models was animated with a walking gait with randomly varied phase.

2.4 Procedure

Participants were instructed to “walk with the crowd” and to “treat the virtual humans as 

though they were real people”. Two practice trials were used to familiarize participants with 

walking in the virtual environment, followed by a series of test trials. On each trial, the 

participant walked to the start pole and turned to face the orienting pole. After 2 s, the poles 

disappeared and the virtual crowd appeared; 1 s later, the virtual crowd began walking and 

a verbal command (“Begin”) was played through headphones. The display continued until 

the participant either walked for 10.4s or came within 1.5m of the room walls, whereupon 

the end of the trial was signaled by a verbal command (“End”). A new start pole then 

appeared, and the next trial began. Trials were presented in a randomized order unique to 

each participant.

2.5 Data Processing and Analysis

For each trial, the time series of head position in the horizontal (X–Y) plane was filtered 

using a forward and backward fourth-order low-pass Butterworth filter to reduce oscillations 

due to the step cycle and occasional tracker error. Time series of heading direction and 

walking speed were then computed from the filtered position data. A 0.6 Hz cut-off was 

used when filtering the data for computing heading to reduce lateral oscillations on each 

stride, while a 1.0 Hz cutoff was used for computing speed to reduce anterior–posterior 

oscillations on each step. The first and last second of the time series were then truncated to 

eliminate “edge effects” due to filtering. Because the virtual crowd turned right (+ angles) 

or left (− angles) on an equal number of trials (where 0° is straight ahead), the data were 

left/right collapsed by multiplying the heading angle on left turn trials by −1.
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To investigate possible effects of practice or fatigue, we performed a Pearson correlation 

between trial number and the mean final heading of all participants. In all three experiments, 

there was a near zero correlation between trial number and final heading. We thus combined 

trials regardless of order when computing the mean heading in each condition.

A mean time series was calculated for each participant in each experimental condition (see 

3.2 Design) by computing the mean value of heading at each time step. This averaging 

further reduced the noise due to gait oscillations, as well as any random variation between 

trials. The final heading on each trial was calculated as the average heading during the 

last two seconds of the time series, and the mean final heading was computed for each 

participant in each condition. To account for variation between trials within a condition, the 

variable error in final heading was calculated for each subject (the within-subject standard 

deviation (SD) of final heading).

The heading data were statistically analyzed using linear mixed effects (LME) regression 

(Matlab fitlme function, MathWorks, Natick, MA), with fixed effects corresponding to the 

experimental factors and their interactions, and a maximal random effects structure with 

a unique intercept for every participant, to account for between-subject differences. The 

main effects and interactions were tested by comparing statistical models in a step-down 

procedure that removes the tested term from the full model, using likelihood ratio chi-

squared tests. The final model included only the statistically significant effects.

2.6 Simulation Procedure

Simulations of the weighted averaging model (Eq. 1) with fixed parameter values were 

performed using the Runge-Kutta method (Matlab ode45 function). For each trial, the 

participant’s initial position and heading were taken as the initial conditions, and the 

positions and velocities of virtual humans on that trial were treated as input. Because we 

only manipulated heading, the model’s speed was determined by the time series of the 

participant’s speed on that trial. The output was a time series of simulated heading for every 

trial in the experiment. To compare the simulations with the human data, we calculated the 

root mean squared error (RMSE) between the mean data time series for each participant 

in each condition and the corresponding mean simulated time series for each participant in 

each condition. We chose to calculate the error on mean time series, rather than individual 

trials, to reduce error due to gait oscillations, for we were not attempting to model gait. We 

used Bayes Factors to evaluate the strength of evidence for competing hypotheses.

3 Experiment 1: Noisy Neighbors

Experiment 1 tested the effect of adding noise into the heading directions of the virtual 

humans in a crowd. It is well known that, when viewing moving dots in the frontal plane (on 

a screen), the visual system integrates stochastic local motions to perceive the direction of 

coherent global motion, with a range of dot directions up to 90° [24]. Here we ask whether 

this holds for an observer embedded in a moving crowd, when viewing local motions in 

depth, in the horizontal plane.
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The heading direction of each neighbor was selected from a uniform distribution with a 

mean of either ±10° or ±20° (left or right) and a range that varied from 0° (aligned) to 90° 

(±45° about the mean) (see schematic in Figure 1A). If participants average the headings of 

neighbors in the neighborhood, their mean final heading should be close to the crowd mean. 

In addition, the model predicts that the variable error in a participant’s heading response 

across trials should increase with the amount of crowd “noise”. This prediction stems 

from the fact that the neighborhood average depends on distance and heading deviation of 

neighbors, which vary from trial to trial. If participants ignore neighbors with large heading 

deviations, we would expect the human variability to stop increasing at a critical noise level. 

We tested these hypotheses by measuring the participant’s heading response as a function of 

crowd noise, and comparing the results to model simulations of the stimuli.

3.1 Displays

Twenty-four virtual humans were initially positioned at equal intervals on each of 6 

concentric arcs (four neighbors on each arc) with the participant at the center. The arcs 

had radii of 2.5m to 7.5m (1m apart) and an eccentricity of −88° to +88° (176° total) about 

the participant’s initial heading direction. These initial positions were jittered in depth and 

eccentricity on every trial; the amount of jitter was randomly selected from a Gaussian 

distribution in polar coordinates (radius Δr: SD = 0.5m; eccentricity Δθ: SD = 5°).

At the beginning of each trial, the virtual humans appeared facing the orientation pole, 

with their backs to the participant; after 1s they began walking straight ahead (0° heading), 

accelerating from a stand-still (0 m/s) to a speed of 1.15 m/s over a period of 3s. One second 

later, the headings of the entire crowd were perturbed. Each virtual human was randomly 

assigned a heading sampled from a uniform distribution with a mean of ±10° or ±20° (left 

or right), and a range of ±0° (aligned), ±15°, ±30°, or ±45° about the mean. These headings 

were re-sampled for each trial and each participant, providing unique stimuli for every 

participant.

3.2 Design

Mean turn angle (10°, 20°, collapsed left/right) was crossed with noise range (±0°, ±15°, 

±30°, ±45°) to yield 8 experimental conditions. There were 12 repetitions per condition (half 

left and half right turns), for a total of 96 trials per participant.

3.3 Results

3.3.1 Final Heading—The participants’ mean final heading in each condition appears 

in Figure 2A. It is clear that the mean response in the 10° turn condition (mean heading 

M =9.04°, cyan curve) and the 20° turn condition (M=20.30°, dark blue curve) are close to 

their respective crowd turn angles, and constant across noise conditions. Thus, participants 

closely match the crowd’s mean heading in both aligned (0°) and very noisy crowds (up to 

±45°), consistent with spatial averaging.

An LME regression was used to analyze final heading, with fixed effects of crowd turn 

angle, crowd noise, and their interaction, and participants as random effects. The results 

(Table SM1A) demonstrate that only the crowd’s turn angle significantly contributed to the 
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variability in final heading (χ2(1) = 33.50, p < 0.001). The level of crowd noise was not 

significant, either as a main effect or an interaction with turn angle (χ2(2) = 0.86, p = 

0.650). The regression analysis allows us to estimate that for every degree increase in the 

crowd turn angle, there is a corresponding 1.11° (± 0.08 SE) increase in the participants’ 

final heading response. This pattern of results indicates that participants are attracted to the 

crowd’s mean heading, regardless of the amount of crowd noise.

3.3.2 Variable Error—The mean variable error in each condition appears in Figure 2B, 

and was analyzed in a similar LME regression. The results (Table SM1B) show that only the 

crowd noise contributes to variability in the variable error (χ2(1) = 31.09, p < 0.001), while 

neither the turn angle nor the interaction between turn angle and crowd noise do so (χ2(2) 

= 1.43, p = 0.490). For every degree increase in the range of crowd noise (from 0° to 90°), 

the regression analysis estimates a corresponding 0.11° (± 0.01 SE) increase in the variable 

error. Thus, the variable error in a participant’s final heading increases with crowd noise 

due to larger trial-to-trial variation in neighbor headings, as predicted by weighted averaging 

over the neighborhood.

3.3.3 Heading Over Time—The mean time series of heading in each condition appears 

in Figure 3. The strength of attraction to the neighborhood mean is reflected in the turning 

rate (rate of change in heading over time), where a steeper slope indicates a stronger 

attractor. According to the weighted averaging model (Equation 1), a larger turn angle 

(solid vs. dashed curves in Figure 3) should be more attractive because it creates a larger 

difference between the participant’s current heading and the neighborhood mean. Somewhat 

counter-intuitively, attractor strength should be unaffected by increased heading noise that is 

symmetric about the crowd mean (colored curves in Figure 3), because this does not alter the 

neighborhood mean or the heading difference with the participant.

To compare attractor strength in different conditions, we analyzed the time series of heading 

using an LME regression with fixed effects of crowd turn angle, crowd noise, time, the 

interactions with time, and participants as random effects (see final model in Table SM1C). 

The results show that both the crowd turn angle (χ2(1) = 15.50, p < 0.001) and time (χ2(1) 

= 58.93, p < 0.001) had significant effects on mean heading. More importantly, so did their 

interaction (χ2(1) = 37.42, p < 0.001), indicating that the time series had steeper slopes in 

the 20° than the 10° turn condition (see Figure 3). On the other hand, there was no effect of 

crowd noise, the interaction between time and crowd noise, the interaction between crowd 

noise and crowd turn angle, or the three way interaction between noise, turn angle, and time 

(χ2(4) = 1.50, p = 0.824). This pattern of results is expected by weighted averaging.

3.4 Simulations of Exp. 1

To test the predictions of the weighted-average model (Eq. 1), every experimental trial was 

simulated using the model with a 90° field of view (see General Methods for details). The 

RMSE between the mean heading time series for the model and each participant in each 

condition was computed. This resulted in a mean RMSE of 4.06° (±0.70° SD) for the 

experiment. This value can be compared with the performance of a null model that does not 

respond to the stimuli and simply moves straight ahead on each trial, providing an estimate 
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of the floor for any model. The RMSE between the null model and the human data was 

12.81° (±1.65° SD), more than twice the error of the weighted-average model (BF10 > 100). 

The weighted-average model thus generates a steering trajectory over time that is quite close 

to the human data.

3.4.1 Final Heading—The model’s mean final heading in each noise condition appears 

in Figure 2C. Like the human data in Figure 2A, the simulation curves are fairly flat and 

hover around the crowd mean. In the 20° turn condition, the model slightly undershoots the 

crowd mean at lower levels of noise and slightly overshoots at higher levels. Nevertheless, 

the overall pattern is similar to human subjects.

3.4.2 Variable Error—The mean variable error in final heading for model simulations 

is plotted as a function of crowd noise in Figure 2D. Again, note the similarity with the 

corresponding human data in Figure 2B – in both graphs, the response variability increases 

monotonically with crowd noise.

A model that computes the weighted average of neighbor headings thus predicts the 

observed increase in variable error as crowd noise increases. This finding strongly implies 

that the human response variability across trials is a direct result of averaging. On each 

trial, variation in the distances and headings of virtual neighbors produces a slightly 

different mean heading in the participant’s neighborhood. With increasing crowd noise, 

the trial-to-trial variation in neighbor headings increases, yielding larger fluctuations in 

the neighborhood mean. Thus, the increase in variable error is a simple consequence of 

averaging noisy neighbors.

Taken together, the similarities between model predictions and human behavior provide 

strong evidence that participant heading responses are based on weighted averaging over the 

neighborhood, consistent with model (Equation 1).

3.5 Discussion

The results of Experiment 1 show that even with the noisiest neighbors, the participants’ 

mean heading was still clustered around the mean heading of the crowd. This finding 

indicates that participants average the headings in their neighborhood when walking with a 

crowd. On the other hand, variable error in heading increased in proportion to crowd noise, 

due to heading fluctuations in the neighborhood from trial to trial. An analysis of the time 

series of heading found that the attractor strength of the crowd mean increased with turn 

angle but was unaffected by symmetric crowd noise. This result reveals that a pedestrian 

who deviates from the crowd will be recruited to align with the crowd mean, regardless 

of the level of noise; if all pedestrians obey this rule, the crowd will become progressively 

aligned. All of these findings are predicted by Rio, et al.’s [15] weighted averaging model, 

as demonstrated by the simulations. Weighted averaging in humans is thus highly robust to 

noise in crowd headings, and acts as a recruitment mechanism into collective motion.
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4. Experiment 2: Splitting Crowd

If a crowd splits into two groups, will a pedestrian follow one group or walk in the 

average direction of the two groups? Previous studies have found that participants average 

all neighbors in a virtual crowd when the heading difference between two groups is 10° 

[15]. In Experiment 2, we investigate whether robust averaging extends to larger heading 

differences between groups. Rio, et al’s. [15] model predicts that participants will continue 

to walk in the mean direction even with large angular differences between groups.

In the present experiment we manipulated the angular difference between the heading 

directions of two completely aligned groups (α = 10 to 40°) and the proportion of the 

crowd in the majority group (50, 67 or 84%). On each trial, the virtual crowd began walking 

straight ahead, and then two groups turned by the same angle (α/2) left and right, and 

continued walking (see schematic in Figure 1B). The groups appeared as two spatially 

overlapping, continuously crossing streams, with new neighbors coming into view as others 

went out of view.

If participants average over their neighborhood, their final heading should align with the 

mean of the crowd – that is, they should walk between the two groups. Note that the crowd 

mean shifts from straight ahead (0°) toward the majority group as it increases in size, which 

should also lead the participant to turn at a faster rate due to the larger discrepancy from the 

neighborhood mean. Alternatively, if participants follow one group, then their final heading 

should align with that group. As the angular difference α between groups increases, we 

would expect to observe a transition from averaging to following if the limits of weighted 

averaging are reached. In that case, if participants are more attracted to the majority, their 

final heading should align with the larger group.

4.1 Displays

To create a display with two continuously crossing groups, the crowd consisted of 48 virtual 

humans initially positioned on six concentric 182° arcs, with radii of 1.6m to 6.6m (at 1m 

intervals), with eight virtual humans evenly spaced on each arc. Thus, many virtual humans 

were outside the 94° horizontal field of view of the HMD. These initial positions were 

then jittered by sampling from a uniform distribution in polar coordinates (radius Δr: SD 

= 0.15m; eccentricity Δθ: range = −15° to 15°) on every trial. The neighbors that were 

perturbed to the right were selected randomly in depth, but evenly distributed in eccentricity, 

such that no matter where the participant looked there was representation from each turn 

group. By default, the remainder of the crowd turned in the opposite direction such that the 

members of each group were spatially dispersed throughout the entire crowd. Consequently 

there were two continuous streams of neighbors crossing at the specified angle in the field of 

view.

On each trial, the virtual humans appeared with their backs to the participant. After 2s they 

began walking straight ahead (0°), accelerating from a stand-still to a speed of 1.15 m/s over 

a period of 2s. After a random interval (1.8s to 2.8s from the start of walking), a percentage 

of the crowd (50, 66 or 84%) turned to the right by 5°, 10°, 15° or 20°, and the rest turned an 

equal angle to the left (or vice versa).
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4.2 Design

Four angular differences (α = 10°, 20°, 30° or 40°) were crossed with three proportions 

(50, 66 or 84%) in the majority, yielding 12 conditions. The proportions were left/right 

counter-balanced, but subsequently collapsed for analysis and normalized with the majority 

turning to the right. There were 8 repetitions in each condition, for a total of 96 trials in a 

single 1-hour session.

4.3 Results

Histograms of mean final heading for each condition appear in Figure 4; the white arrows 

on the horizontal axis indicate the crowd mean in that condition. Note that the crowd mean 

(white arrows) and the center of the distribution shift together to the right as the proportion 

in the majority group increases (within each row); this shift is amplified by the angular 

difference between groups (within each column). This allows us to infer that participants 

generally walked in the mean heading direction of the crowd in all conditions, even with 

the largest angular difference between groups, consistent with the weighted averaging 

prediction. The spread of the distribution, increases with angular difference (within each 

column), however, but does not appear to depend on the size of the majority (within each 

row). We consider these results in turn.

4.3.1 Final Heading—The mean final heading in each condition appears in Figure 

5A, which clearly illustrates its dependence on the heading difference between groups 

(horizontal axis) and the percentage of neighbors in the majority (curves). With 50% of the 

crowd in each group, the mean heading is close to zero, for participants split the difference 

between them. But with majorities of 67% and 84%, mean final heading is biased toward the 

majority and increases with the angular difference.

We analyzed final heading using an LME regression with fixed effects of the angular 

difference (α), percentage in the majority, and their interaction, and participants as random 

effects (see final model in Table SM2A). Chi-squared likelihood ratio tests reveal a 

significant effect of angular difference (χ2(1) = 59.71, p < 0.001), a significant effect of 

percentage (χ2(1) = 133.81, p < 0.001), as well as a significant interaction between them 

(χ2(1) = 16.81, p < 0.001). The regression results allow us to estimate that going from 

a majority of 50% to 84% accounts for a ~5.8° increase in final heading, going from an 

angular difference of 10° to 40° accounts for a ~4.4° increase in final heading, and their 

interaction accounts for an additional ~5.3° increase in final heading. Thus, overall, mean 

final heading shifts both with an increase in angular difference and an increase in the size of 

the majority, as well as their interaction.

To determine whether heading responses were more aligned with the mean of the crowd or 

the mean of the majority group, we used simple linear regression. When the participants’ 

mean final heading in each condition is regressed onto the crowd’s mean heading (Figure 

6A) there is a strong linear relationship (R2 = 0.94) with a steep slope (0.714). In contrast, 

when mean final heading is regressed on the mean heading of the majority group (Figure 

6B), there is a much weaker relationship (R2 = .65) and a shallow slope (0.35). These results 

clearly indicate that participants average the headings of all neighbors, not just the majority 
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group, as predicted by the weighted averaging model. The fact that the slope is less than 1 

is likely due to the fact that trials with large perturbations often ended before the participant 

finished turning and heading stabilized (e.g. time series in Figure 7C,D). A Bayes Factor 

confirmed that the human final heading was closer to the crowd’s mean heading (C) than 

the majority group’s heading (G), BFCG > 100, providing decisive evidence for the former 

hypothesis.

4.3.2 Variable Error—The mean variable error in final heading appears in Figure 5B. 

A participant’s variability increases with the angular difference between groups (horizontal 

axis), but not with the proportion in the majority (curves). This effect occurs because the 

trial-to-trial variation in neighbor headings increased with the heading difference between 

groups, whereas the proportion of neighbors in each group merely shifted the mean heading 

in the neighborhood, and is consistent with weighted averaging over the neighborhood.

A similar mixed effects linear regression was used to analyze variable error in heading 

(final model in Table SM2B). Chi-squared likelihood ratio tests reveal a significant effect of 

angular difference (χ2(1) = 75.32, p < 0.001), but no effect of majority size (χ2(1) = 0.02, 

p = 0.90), nor an interaction between them (χ2(1) = 0.23, p = 0.63). The regression results 

allow us to estimate that going from an angular difference of 10° to 40° accounts for a 5.12° 

increase in the variable error.

4.3.3 Heading Over Time—The mean time series of heading in each condition appear 

in Figure 7 (blue curves), where Panels A to D correspond to the angular difference between 

groups (10° to 40°, respectively). According to the weighted averaging model, attraction 

strength, and hence the rate of change in heading, should increase with the difference 

between the crowd mean and the participant’s initial heading (0°). Consistent with this 

expectation, the slope of the time series appears to increase with both the size of the majority 

(curves) and the angular difference between groups (panels) – with the exception of the 50% 

condition, which predicts a heading near 0°.

Heading over time was analyzed using an LME regression with fixed effects of angular 

difference, percentage in the majority, time, and their interactions, and participants as 

random effects (final model in Table SM2C). The results show that time (χ2(1) = 22.29, 

p < 0.001), the interaction of angular difference and time (χ2(1) = 15.68, p < 0.001), 

the interaction of percentage and time (χ2(1) = 27.09, p < 0.001), and the three-way 

interaction (χ2(1) = 10.32, p = 0.001) have significant effects on heading. The two-way 

interactions indicate that the turning rate (slope) increases with both the percentage in the 

majority and the angular difference between groups; the three-way interaction indicates an 

additional effect of the combined factors on turning rate. This analysis confirms that the 

attraction strength of the crowd mean increased with its deviation from the participant’s 

initial heading.

4.4 Simulations of Exp. 2

To compare the data with predictions of the weighted-averaging model (Eq. 1), all 

experimental trials were simulated using a 90° field of view similar to the Oculus Rift 

HMD (see General Methods for details). Histograms of the simulated final heading in each 
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condition appear in Figure 8. Visual comparison with the histograms of the human data 

(Figure 4) reveals similar unimodal distributions centered around the overall crowd mean 

(white arrows), although they are less variable that the human data. (The lower variability 

is attributable to the fact that the model does not simulate gait oscillations and tracker 

error.) The impression is supported by graphs of the model’s mean final heading (Figure 5C) 

and the mean variable error (Figure 5D) in each condition, which are quite similar to the 

corresponding plots of the human data (Figure 5A,B).

To measure the model’s performance we calculated the RMSE between the time series of 

heading for the model and the participant on every trial. The mean RMSE for Experiment 

2 (excluding the 50% condition) was 4.35° (±1.55° SD), which is better than the RMSE for 

the null “do nothing” model of 6.12° (±1.65° SD). A Bayes Factor comparing them provides 

decisive evidence that the weighted averaging model outperforms the null model (BF10 > 

100). Mean heading time series for the model in each condition appear in Figure 7E–H, 

revealing their similarity to the human mean time series (Figure 7A–D). The comparable 

pattern of slopes confirms that the increase in attraction strength as the crowd mean deviates 

from the agent’s initial heading follows from the dynamics of weighted averaging.

We also used simple linear regressions to compare the weighted averaging model’s 

alignment with the crowd mean and with the majority group. When the model’s mean final 

heading in each condition is regressed on the crowd mean (Figure 6C) there is a strong linear 

relationship (R2 > 0.99) with a steep slope (0.898). In contrast, when mean final heading is 

regressed on the majority group’s heading (Figure 6D) there is a much weaker relationship 

(R2 = .47) and a shallow slope (0.38). The similarity with the human regressions (Figure 6A, 

B) confirms that participants averaged the headings in their neighborhood, as predicted by 

the weighted averaging model, rather than following the majority group.

4.5 Discussion

The results of Experiment 2 reveal that when a crowd splits into two continuously crossing 

groups heading to the left and right, participants align with the mean heading in all 

conditions, even with a large angular difference of 40°. As the size of the majority group 

increases, the final heading shifts along with the crowd mean. Human averaging is thus 

highly robust not only to noise but to diverging groups in a crowd. The data are quite close 

to the model predictions, evidence that humans rely on a weighted average of headings in 

their neighborhood.

To test whether weighted averaging generalized to groups that separated in space, we 

repeated the experiment with a virtual crowd consisting of 8 or 16 virtual humans 

that diverged into two visibly separate groups (see Supplementary Material). The spatial 

separation of the two groups increased through the trial, so up to half of the neighbors had 

moved out of the field of view by the end of a trial. Nevertheless, the results were the same: 

The participants’ mean final heading was more closely aligned with the crowd mean than the 

majority group, as were model simulations of the stimuli. Thus, even with visibly separate 

groups, participants followed the crowd mean, consistent with robust weighted averaging.
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It is important to note that in our splitting crowd experiments, only the virtual humans 

appeared in the display. In many real-world situations, two subgroups might be moving 

toward two visible goals, such as marked exits. An explicit choice between two alternatives 

would add competing attractors to the crowd dynamics. For example, Kinateder and Warren 

[25] studied an emergency evacuation scenario in which a virtual crowd split into two 

subgroups that walked to two visible exits. In this situation the authors did not observe 

weighted averaging, but rather a tradeoff between following the majority and going to the 

uncrowded exit, which depended on both the size of the crowd and the width of the exit. 

In a subsequent article, we plan to report a model of choice behavior in which nonlinear 

competition between alternatives is added to the weighted averaging model. The present 

findings highlight the robust nature of averaging in the absence of explicit alternatives.

5 Experiment 3: Coherent Subgroup

Experiments 1 and 2 demonstrated that participants align with a crowd by spatially 

averaging over both ‘noisy neighbors’ and diverging groups. This alignment behavior is 

well characterized by the weighted averaging model (Equation 1). In Experiment 3, we 

investigate whether weighted averaging extends to a coherent subgroup within a noisy 

crowd. According to the perceptual grouping principle of ‘common fate’ [26], elements 

that move together in the frontal plane tend to be perceived as a group. Similarly, if a 

subgroup of neighbors in a noisy crowd moves in a common direction in depth, they might 

be perceived as a unit and attract a pedestrian to align with them. On the other hand, there 

is also evidence that it is difficult to identify a coherently moving group of elements amid 

incoherent element motions [27].

In the present experiment, the participant was immersed in a noisy crowd whose members 

walked in random directions within a range of 180° (±90° centered on the participant’s 

heading). After a few seconds, a subgroup of neighbors that were interspersed in the 

crowd turned with a mean angle of ±20° (right or left) (see schematic in Figure 1C). The 

coherence of the subgroup was manipulated by selecting their individual headings from a 

Gaussian distribution with an SD of 0° (aligned), 10°, or 20° about the mean. In addition, 

the proportion of the crowd in the subgroup was varied (0%, 25%, 50%, 75%, or 100%), 

shifting the mean heading of the entire crowd from 0° to 20°.

If participants are attracted to align with a coherent subgroup, their final heading should 

match the subgroup’s mean heading (20°), and the attraction strength should increase with 

the subgroup’s coherence. On the other hand, according to the weighted-averaging model 

participants should align with the crowd mean in all conditions. The model thus predicts that 

final heading will gradually shift from 0° to 20° as the subgroup proportion increases from 

0% to 100%, whereas attraction strength will be unaffected by subgroup coherence. The 

model also predicts that variable error will decrease as the subgroup proportion increases, 

because this reduces the overall noise in the crowd; for the same reason, variable error may 

also decrease slightly as the subgroup becomes more coherent. The pattern of results once 

again supports robust weighted averaging.
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5.1 Displays

The virtual crowd consisted of 48 virtual humans. Each virtual human was initially 

positioned in polar coordinates with a radius ranging from 1.6m to 6.6m (1m apart) in 

depth, and a theta ranging from 91° to −91° (26° apart) in eccentricity. Their positions were 

then jittered by sampling from a uniform distribution in polar coordinates (Δr: SD = 0.15m; 

Δθ: range = −16° to 16°) on every trial.

On each trial, the virtual humans appeared facing in directions randomly selected from 

a uniform distribution with a range of ±90°, centered on the participant’s initial heading 

(0°), and accelerated from a stand-still (0 m/s) to a speed of 1.15 m/s over a period of 3 

seconds. After a random interval (2.5s to 3.5s from the start of walking), a subgroup of 

virtual humans (0%, 25%, 50%, 75%, or 100% of the crowd), evenly spaced in eccentricity 

and depth, was perturbed: each turned and walked in a new heading direction selected from 

a Gaussian distribution with a mean of ±20° (positive values to the right), and an SD of 0°, 

10°, or 20° (subgroup coherence).

5.2 Design

The factors of subgroup proportion (0%, 25%, 50%, 75%, 100%) and subgroup coherence 

(SD = 0°, 10°, or 20°) were crossed, yielding 15 experimental conditions. There were 8 

repetitions per condition (half left and half right turns), for a total of 120 trials in a one-hour 

session.

5.3 Results

5.3.1 Final Heading—Mean final heading in each condition appears in figure 9A. If 

participants align with the coherent subgroup, mean final heading should be close to 20° in 

all conditions (except the 0% condition, which predicts no response). However, final heading 

gradually shifted with the percentage of the crowd in the subgroup, consistent with weighted 

averaging. There appears to be no systematic relationship between final heading and crowd 

coherence (curves).

Final heading was analyzed using an LME regression with fixed effects of subgroup 

percentage, subgroup coherence, and their interaction, and participants as random effects 

(see final model in Table SM3A). The analysis reveals that only the subgroup percentage 

had a significant effect on final heading (χ2(1) = 24.18, p < 0.001), with no effect of 

subgroup coherence or interaction (χ2(2) = 1.58, p = 0.457). The regression estimate 

indicates that for every percent increase in the subgroup size, there was 0.19° (±0.02 SE) 

increase in final heading.

Bayes Factors were calculated to assess whether the human mean final heading was closer 

to the subgroup mean (20°) or the crowd mean in the neighborhood (as measured by the 

weighted-averaging model), for conditions in which these predictions differ (25%, 50%, 

75% in the subgroup). The results indicated that the human data were closer to the crowd 

mean (C) than the subgroup mean (G) in the 25% subgroup condition (BFCG = 67.7), very 

strong evidence favoring the crowd mean. The data did not distinguish the two hypotheses 

in the 50% (BFCG = 1.02) or 75% (BFCG = 1.01) conditions, however, as the predicted 
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difference became smaller and the maximum heading response was reached (about 18.79°). 

These results indicate that participants aligned with the crowd mean in their neighborhood, 

which was meaningfully different from the subgroup mean in the 25% condition.

5.3.2 Variable Error—The mean variable error in final heading (Figure 9B) decreases 

with the subgroup percentage, and also appears to decrease with as the subgroup becomes 

more coherent (curves).

A similar LME regression was used to analyze variable error in final heading (the final 

model appears in Table SM3B). Chi-squared likelihood ratio tests revealed significant 

effects of both subgroup percentage (χ2(1) = 23.30, p < 0.001) and subgroup coherence 

(χ2(1) = 4.48, p = 0.035), with no interaction(χ2(1) = 0.010, p = 0.752). The statistical 

model indicates that for every point increase in the subset percentage, there was a 0.21° 

(±0.03 SE) decrease in a participant’s variable error. It also reveals that for every degree of 

increase in the subgroup’s SD (i.e., decrease in coherence), there was a corresponding 0.36° 

(±0.13 SE) increase in a participant’s variable error.

Both of these effects can be attributed to the total noise in the virtual crowd, much as 

observed in Experiment 1. First, as the percentage of virtual humans in the coherent 

subgroup goes up, the number of random headings in the rest of the crowd goes down; there 

is thus less heading variation in the neighborhood from trial to trial, so the variability in 

the participant’s response is reduced. Second, as the coherence of the subgroup goes up, the 

total heading variation in the crowd decreases slightly – enough to reduce the participant’s 

variable error. Thus, both effects are expected from a weighted-average neighborhood. We 

compare the predictions of the model in the following simulations.

5.3.3 Heading Over Time—The mean time series of heading in each condition appear 

in Figure 10. Turning rate (slope) tends to increase with subgroup percentage (curves). An 

LME regression analysis reveals a significant effect of time (χ2(1) = 57.70, p < 0.001), 

and a significant interaction of the subgroup percentage and time (χ2(1) = 12.33, p < 

0.001). There was no effect of subgroup coherence, the interaction of coherence and time, 

the interaction between subgroup coherence and subgroup percentage, or the three-way 

interaction between time, subgroup percentage, and subgroup coherence (χ2(4) = 4.08, p 

= 0.396) (see Table SM3C for final statistical model). This finding indicates that a larger 

subgroup was more attractive not because it was more coherent, but because it increased the 

deviation of the crowd’s mean from the participant’s current heading.

5.3.4 Simulations of Exp. 3—To compare the results with the weighted-averaging 

predictions, the experimental trials were simulated as before, using a 110° horizontal field 

of view similar to the Odyssey HMD. The average RMSE between the mean time series for 

each participant in each condition and the corresponding mean simulated time series was 

9.24° (±4.23° SD). For purposes of comparison, this value is better than the RMSE of 11.73° 

(±2.41° SD) for the null model that moves straight ahead (BF10 > 100), but worse than the 

weighted-average model for the noisy neighbors in Experiment 1 (mean RMSE = 4.19°). 

This suggests that participants in the present experiment may not have been averaging all 

headings in the neighborhood.
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To investigate the source of this discrepancy, we broke down the mean RMSE by condition 

(see SM Figure 7). The mean RMSE decreases linearly as a function of subgroup 

proportion, as overall crowd noise decreases. Thus, the discrepancy between the model 

and human data is greatest in the 0% and 25% conditions, when most of the crowd has 

random headings in a 180° range, and lowest in the 75% and 100% conditions, when most 

of the crowd has headings within a narrow range (SD=0° to 20°). This pattern implies 

that participants may be ignoring neighbors with highly discrepant headings (>45°) that are 

greater than those in Experiment 1 (<45°).

5.3.5 Final Heading—The model’s final heading in each condition appears in Figure 

9B. Note the similarity with the human data in Figure 9A: in both cases, the final heading 

monotonically shifts toward the subgroup mean (20°) as the subgroup percentage grows. 

Thus, the mean model output predicts the mean human heading quite well, consistent with 

weighted averaging.

5.3.6 Variable Error—The model’s mean variable error in final heading in each 

condition appears in Figure 9D. The graph is similar to the corresponding human 

variable error (Figure 9B): response variability decreases monotonically with the subgroup 

percentage, consistent with averaging a less noisy crowd (cf. Experiment 1, Figure 2B). 

There are, however, two notable differences.

First, the model variable error is markedly higher than the human error in the 0% and 

25% subgroup conditions. This confirms that participants are ignoring highly discrepant 

neighbors. Compare the present variable error (Figure 9B and D, 0% condition) with that 

in Experiment 1 (Figure 2B and D, ±45° condition): the model’s variable error is much 

greater in the present experiment with crowd noise of ±90° (about 40°) than in Experiment 

1 with crowd noise of ±40° (about 13°) – but the human variable error is the same in the 

two experiments (about 12°). This comparison reveals that, whereas the model averages all 

headings, participants ignore large heading differences (>45°), thus reducing human variable 

error.

Second, the model variable error shows no consistent ordering by subgroup coherence 

(Figure 9D, curves), whereas there was a significant effect of coherence on human variable 

error (Figure 9B). We suspect that, because participants ignored highly discrepant headings, 

they were sensitive to the slight reduction in overall crowd noise produced by a more 

coherent subgroup. In contrast, because the model is strongly influenced by discrepant 

headings, this slight reduction in noise had little effect on its variable error.

In sum, the patterns of RMSE and variable error indicate that participants ignore neighbors 

with highly discrepant headings (>45°). This leads humans to be less influenced by extreme 

crowd noise than predicted by the weighted-averaging model.

5.4 Discussion

Experiment 3 tested the hypothesis that participants would be attracted to align with a 

coherent subgroup in a noisy crowd, and that this attraction would increase with subgroup 

coherence. In contrast, the results were consistent with robust weighted averaging: mean 

Wirth and Warren Page 17

Front Appl Math Stat. Author manuscript; available in PMC 2022 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



final heading gradually shifted together with the crowd mean as the percentage in the 

subgroup increased from 0% to 100%.

Moreover, the strength of attraction did not increase with the subgroup’s coherence, but with 

the deviation of the crowd’s mean heading from the participant’s current heading. These 

results support the weighted averaging model.

In addition, the pattern of errors clearly indicates that humans ignore highly discrepant 

headings that differ from the participant’s current heading by >45°. In other words, human 

weighted averaging only extends over heading differences of 0°−45°, suggesting a modest 

revision to the model.

The results of this experiment reveal an essential property of the mechanism of recruitment. 

One might expect that a pedestrian would be more attracted to a group of neighbors as 

their coherence (degree of alignment) increased, consistent with the principle of common 

fate. This response would amplify the alignment in the crowd and recruit more individuals 

into collective motion. In contrast, however, we find that a subgroup is not attractive due 

to its coherence, but due to its effect on the mean heading deviation in an individual’s 

neighborhood. We consider the implications of this finding in the concluding section.

6 Conclusion

In three experiments, we asked participants to walk with a virtual crowd in several scenarios. 

Experiment 1 added noise in the heading directions of crowd members (range up to 90°), 

and found that participants aligned with the crowd mean in all conditions. Experiment 2 

presented two diverging groups (angular difference up 40°) and varied their proportions, and 

again found that participants aligned with the crowd’s mean heading rather than following 

one group. In Experiment 3, a coherent subgroup in a noisy crowd (range 180°) was 

perturbed, and participants once again aligned with the mean heading of the crowd rather 

than the subgroup. Taken together, these results show that weighted averaging in humans 

is highly robust: pedestrians align with the mean heading direction in their neighborhood, 

just as predicted by Rio, et al’s [15] soft metric model (Equation 1). However, the results 

indicate that weighted averaging is limited to heading differences of 0°−45°, and humans 

ignore highly discrepant neighbors (>45°).

Weighted averaging within a spatial neighborhood thus provides a mechanism of self-

organization: a positive feedback that recruits an increasing number of individuals into 

collective motion. But how, exactly, is this positive feedback to be understood? First, 

consider the phenomenon from the perspective of an individual pedestrian. It would seem 

intuitive that an individual is more strongly attracted to align with neighbors that are 

more coherent (aligned with each other); in this way, the individual would increase the 

attractiveness of the emerging collective. But this type of positive ‘coherence’ feedback 

does not follow from Equation 1 and is empirically disconfirmed by Experiments 1 and 3: 

neighbors that are more coherent (aligned) do not in fact increase the attractiveness of their 

mean heading. Rather, as predicted by Equation 1, attraction strength increases with the 

deviation of the neighborhood mean from the individual’s current heading (Figures 3, 7, 10).
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Now consider the phenomenon from the perspective of the collective. When a few neighbors 

move in a similar heading direction, they shift the mean heading in adjacent neighborhoods 

toward that direction. The adjacent neighbors are attracted to their new neighborhood mean 

– with a strength that increases with their current deviation from the mean – which in turn 

contributes to a common heading direction in more neighborhoods, in a self-reinforcing 

cascade. This common heading thus propagates through the crowd, yielding emergent 

collective motion. This type of positive ‘heading’ feedback is a result of weighted averaging 

over a soft metric neighborhood, and follows from Equation 1.

In sum, the present experimental evidence and model simulations indicate that robust 

weighted averaging provides a mechanism of self-organization in human crowds, which acts 

to recruit individuals into emerging collective motion through a positive ‘heading’ feedback.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematics of experimental designs. (A) Experiment 1, Noisy Neighbors: The participant 

(black figure) was immersed in a crowd of virtual humans (orange figures, n = 24) that 

had ‘noisy’ heading directions (small black arrows) about the crowd mean (large orange 

arrow, 10° or 20° left or right). Individual headings were randomly selected from a uniform 

distribution centered on the crowd mean (orange vector on right), with a range of 0°, +/− 

15°, +/−30°, or +/− 45° (set of black vectors on right). (B) Experiment 2, Splitting Crowd: 

The participant (black figure) was immersed in a virtual crowd (n=48) that split into two 

groups, each turning by the same angle to the left (blue figures) and to the right (red figures). 

Wirth and Warren Page 21

Front Appl Math Stat. Author manuscript; available in PMC 2022 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We manipulated the angular difference between the heading of the two groups (α = 10°, 

20°, 30° or 40°) and the proportion of the crowd in the majority group (50, 66 or 84%). 

The two groups formed continuously crossing streams and did not spatially separate. If the 

participant rotated their head, members of both groups appeared in the field of view (gray 

shading) in an approximately constant proportion. (C) Experiment 3, Coherent Subgroup: 

The participant (black figure) was immersed in a crowd of virtual humans (n=48) with very 

noisy heading directions sampled from a uniform distribution (range ±90°, centered on 0° 

heading). A subgroup of the crowd (orange figures and arrows) turned left or right with a 

mean heading of 20° (large orange arrow), and their coherence was manipulated (heading 

SD = 0°, 10°, 20°), while the rest of the crowd continued walking in the same directions 

(gray figures and arrows). The proportion of the crowd in the subgroup (0%, 25%, 50%, 

75%, or 100%) was also varied.
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Figure 2. 
Results of Experiment 1. (A) Mean final heading as a function of crowd noise (heading 

range in the virtual crowd), for human participants. Curves represent the crowd’s mean turn 

angle. (B) Mean variable error in final heading across trials as a function of crowd noise, 

for the participants. (C) Model simulations of mean final heading and (D) mean variable 

error, corresponding to the human data in panels A and B. For both human and model, final 

heading increases with crowd turn angle, whereas variable error increases with crowd noise. 

Error bars represent the standard error of the mean (±SEM).
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Figure 3. 
Mean time series of heading for participants in Experiment 1. Dashed curves represent 

crowd turns of 10°, solid curves represent 20° turns; color denotes the crowd noise level 

(heading range). The data are aligned so the heading perturbation occurs as t=0. Slopes 

indicate the attractiveness of the mean heading in the participant’s neighborhood.
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Figure 4. 
Histograms of final heading for each condition in Experiment 2. (A-L) Panels represent 

the frequency of final heading (2.5° intervals) for all trials in that condition, where positive 

heading values are in direction of the majority group. Columns represent the proportion of 

the crowd in the majority group, rows represent the angular heading difference between 

the two groups. White arrows indicate the overall mean heading of the entire crowd in the 

corresponding condition, which shifts rightward as the proportion in the majority grows and 

as the angular difference increases. Data cluster around the crowd mean in each condition.
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Figure 5. 
Results of Experiment 2. (A) Mean final heading and (B) mean variable error as a function 

of the angular difference between groups, where positive heading values are in the direction 

of the majority group. Curves represent the proportion of the crowd in the majority. Panels 

A and B summarize the data in the histograms of Figure 4. (C) Model simulations of mean 

final heading and (D) mean variable error corresponding to the human data in panels A and 

B. For human and model, final heading increases with both the proportion in the majority 

and the angular difference, whereas the variable error only increases with angular difference. 

Error bars represent the standard error of the mean (±SEM).
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Figure 6. 
Did participants follow the majority or the crowd average in Experiment 2? Linear 

regression of mean final heading on (A) the mean heading of the crowd or (B) the heading 

of the majority subgroup in each condition. (C, D) Corresponding linear regressions for 

simulations of the weighted-averaging model. Regression slopes and correlations (R2) on 

each panel indicate that final heading is much closer to the crowd mean than the majority for 

both humans and model.
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Figure 7. 
Mean time series of heading for each condition in Experiment 2. (A-D) Human heading 

over time at each angular difference, α = 10°, 20°, 30°, and 40°, respectively. Curves 

represent the percentage of the crowd in the majority group (solid = 84%, dash-dot = 

67%, dashes = 50%). (E-H) Model simulations of heading over time in the corresponding 

conditions. Slopes indicate the attractiveness of the mean heading in the neighborhood, 

which increases with both independent variables for the model and human participants. The 

weighted averaging model thus predicts the increase in attraction strength with the deviation 

of the neighborhood mean from the participant’s initial heading.
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Figure 8. 
Histograms of final heading for model simulations of Experiment 2. (A-L) Panels represent 

the frequency of final heading (2.5° intervals) for all simulated trials in each condition, same 

layout as Figure 4. Although the spread of the model histograms is narrower that the human 

histograms, the clustering about the crowd mean in each condition (white arrows) is quite 

similar.
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Figure 9. 
Results of Experiment 3. (A) Mean final heading and (B) mean variable error as a function 

of the proportion of the crowd in the subgroup, for participants. Curves represent the 

coherence of headings in subgroup. (C) Model simulations of mean final heading and (D) 
mean variable error corresponding to the data in panels A and B. See text for comparisons. 

Error bars represent the standard error of the mean (±SEM).
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Figure 10. 
Mean time series of heading for each condition in Experiment 3. (A, B, C) Human heading 

over time in each coherence condition (SD=0°, 10°, 20°, respectively). Curves represent 

the proportion of the crowd in the subgroup. (D, E, F) Model simulations of heading over 

time in the corresponding conditions. Slopes indicate the attractiveness of the mean heading 

in the neighborhood, and are highly similar for humans and model: they increase with 

subgroup proportion, but not with subgroup coherence.
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