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Coronavirus disease (COVID-19) has significantly affected the daily life activities of people globally. To
prevent the spread of COVID-19, the World Health Organization has recommended the people to wear
face mask in public places. Manual inspection of people for wearing face masks in public places is a chal-
lenging task. Moreover, the use of face masks makes the traditional face recognition techniques ineffec-
tive, which are typically designed for unveiled faces. Thus, introduces an urgent need to develop a robust
system capable of detecting the people not wearing the face masks and recognizing different persons
while wearing the face mask. In this paper, we propose a novel DeepMasknet framework capable of both
the face mask detection and masked facial recognition. Moreover, presently there is an absence of a uni-
fied and diverse dataset that can be used to evaluate both the face mask detection and masked facial
recognition. For this purpose, we also developed a largescale and diverse unified mask detection and
masked facial recognition (MDMFR) dataset to measure the performance of both the face mask detection
and masked facial recognition methods. Experimental results on multiple datasets including the cross-
dataset setting show the superiority of our DeepMasknet framework over the contemporary models.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coronavirus disease (COVID-19) (Wang et al., 2020) was caused
by the propagation of a novel coronavirus (SARS-CoV-2) that began
inWuhan, China and was quickly labelled a global pandemic by the
World Health Organization (WHO). Since the emergence of COVID-
19, 220,563,227 COVID positive cases and 4,565,483 deaths have
been reported globally till September 6, 2021 (WHO, 2021). The
arrival of vaccines initially brought some relief among the people
around the world, however, cases of COVID-19 infections in vacci-
nated people raised an alarming situation and importance of fol-
lowing the SOPs (i.e., wearing face masks, social distancing, etc.)
recommended by the WHO. Before this pandemic, face masks were
commonly used by the people to protect themselves from air pol-
lution (World Health Organization, 2020; Al-Ramahi et al., 2021) or
paramedical staff in the hospitals or to hide their identities for
committing the crimes, etc. During the pandemic, however, indi-
viduals all across the world must wear face masks in public areas
to prevent the spread of COVID-19. Presently, COVID-19 dispersal
control is a huge challenge for WHO policy makers and the entire
humanity. The predominance of evidence from WHO
(Greenhalgh et al., 2020), analysis (Balotra et al., 2019) and
research (McDonald et al., 2020) reveals that wearing face mask
reduces the expansion of COVID-19 by decreasing the probability
of transmission of contaminated respiratory (virus-laden) droplets
(Jayaweera et al., 2020; Eikenberry et al., 2020; Jayaweera et al.,
2020). Therefore, many countries require people to wear face
masks in public places to prevent the spread of COVID-19. Manu-
ally inspecting persons in public locations for wearing face masks
is a difficult task. As a result, there is a need to create automated
systems for detecting the face masks.

At one side, governments have to enforce their population to
wear the face masks to avoid the rapid spread of COVID-19,
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whereas, on the other side, wearing face mask also introduces new
challenges for the traditional face recognition applications, which
are typically designed for unveiled faces. These facial recognition
applications installed at different checkpoints (Mundial et al.,
2020; Damer et al., 2021) offer degraded performance in the case
of masked faces due to the loss of significant information of face
segments such as nose, lips, chin, cheeks, etc., (Du et al., 2021).
The failure of facial recognition methods in case of face masks
has raised significant challenges for the verification/authentication
applications such as mobile payments, public safety examination,
unlock phones and attendance, etc., (Kumar et al., 2021; Meenpal
et al., 2019; Proença and Neves, 2018). For example, in the public
security checkpoints such as railway and bus stations, the entry
gates are equipped with installed cameras and rely on the conven-
tional face recognition methods that are unable to recognize the
persons with face masks. The ongoing COVID pandemic has dis-
couraged the use of various traditional biometric-based methods
such as fingerprint recognition, facial recognition, etc., as these
methods can cause the spread of COVID-19 virus among the users.
Automated user verification systems capable of recognizing the
persons in the presence of face mask seems an effective solution
in this pandemic. However, the existing facial recognition methods
are not much robust for masked faces. Therefore, this pandemic sit-
uation demands an urgent need to develop robust facial recogni-
tion systems that are able to recognize any person while wearing
the face mask. It is significant to improve the present face recogni-
tion methods that rely on all facial feature points, so that the reli-
able authentication can be performed in case of masked faces with
less face exposure.

Recently, few studies have been presented for masked face
recognition (Du et al., 2021; Ding et al., 2020; Geng et al., 2020),
but still this research problem is less explored. One potential rea-
son for such limited work in this domain is the unavailability of
a standard masked face recognition dataset. Although, there exists
multiple largescale and diverse unmasked facial recognition data-
sets (Trillionpairs, 2018; Guo et al., 2016; Cao et al., 2018; Yi
et al., 2014) containing the face images of thousands of people.
Still, to the best of our knowledge, there doesn’t exist any standard
and large-scale masked face recognition dataset. Unlike unmasked
facial recognition datasets, the preparation of masked face datasets
also requires the images of people with different masks on the face
beside other diverse parameters i.e., variations in face angles, race,
age, skin tone, lightning, and gender, etc. This also highlights the
potential research gap of the unavailability of a robust and diverse
masked face recognition dataset. Moreover, according to the best of
our knowledge, there doesn’t exist any unified dataset that can be uti-
lized to assess both the face mask detection and masked facial recog-
nition applications. This paper also addresses this issue by
developing a unified mask detection and masked facial recognition
(MDMFR) dataset to fill this existing research gap. Our in-house
unified MDMFR dataset contains both the masked and unmasked
facial images of 226 persons of different gender, age, skin tone,
and face angles.

In existing research, the most frequently used methods for face
mask detection and masked face recognition are transfer learning
of pre-trained deep learning models and support vector machine
(SVM). But SVM takes long training time and huge memory
requirements for a large dataset (Zhang et al., 2005). Whereas in
transfer learning, overfitting and negative transfer are the most
alarming limitations (Zhao, 2017). Also, due to the lack of accurate
labelled datasets, masked facial recognition is very challenging. To
resolve these issues of transfer learning and SVM, we proposed a
novel deep learning based model that can be used to reliably detect
face masks (binary classification) and recognize masked faces
(multiclass classification).
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Existing research works on face mask detection and masked
facial recognition have certain limitations, i.e., the absence of a uni-
fied method and dataset to tackle both problems, low accuracy of
masked face recognition, less uncovered face exposure that makes
it difficult to capture enough facial landmarks, etc. To address the
aforementioned limitations of existing methods, we proposed a
novel Deepmasknet model that is capable of reliable face mask
detection and masked facial recognition. Our novel end-to-end
Deepmasknet model automatically extracts the most discriminat-
ing features for reliable face mask detection and masked facial
recognition. The proposed technique is robust to variations in face
angles, lightning conditions, gender, skin tone, age, types of masks,
occlusions (glasses), etc. We develop a largescale and diverse
MDMFR dataset that can be used to measure the performance of
both the face mask detection and masked facial recognition meth-
ods. Rigorous experiments were performed including the cross cor-
pora evaluation to compare the performance of our proposed
model with 9 deep transfer learning models for face mask detec-
tion and 8 models for masked facial recognition to prove the effi-
cacy of our model.

The remaining paper is organized as follows. The related work is
described in Section 2. We presented the motivation for the
planned work and a description of it in Section 3. The details of
our in-house dataset and experimental results were described in
Section 4. Finally, Section 5 concludes our discussion.
2. Related work

In the era of the COVID-19 epidemic, face mask detection and
masked facial recognition deployment face various operational
challenges. As a result, we’ve recently seen a few research efforts
focused on face mask detection and masked facial recognition.

Existing works (Geng et al., 2020; Ud Din et al., 2020; Li et al.,
2020; Venkateswarlu et al., 2020; Qin and Li, 2020) on face mask
detection can be categorized into conventional machine learning
(ML) methods, deep learning (DL) based methods, and hybrid
methods. Hybrid approaches contain algorithms that use both
the deep learning and traditional machine learning (ML) based
methods. The deep learning-based methods were utilized in the
majority of studies on face mask detection, while conventional
ML-based methods (Nieto-Rodríguez et al., 2015) are limited. In
Nieto-Rodríguez et al. (2015), an automated system was designed
that activates an alarm in the operational room when the health-
care workers do not wear the face mask. This system used the Viola
and Jones face detector for face detection and Gentle AdaBoost for
face mask detection. In Vijitkunsawat and Chantngarm (2020), two
traditional ML classifiers i.e., KNN and SVM and one DL algorithm
i.e., Mobilenet were evaluated to find the best model for detecting
the face masks. The results confirmed that MobileNet achieves bet-
ter performance over the KNN and SVM.

The significance of deep learning in computer vision has moti-
vated the researchers to use it for face mask detection. In
Chowdary et al. (2020), the InceptionV3 deep learning model was
used to automate the mask detection process. To classify the
images into mask and un-mask, the pre-trained InceptionV3model
was fine-tuned. The Simulated Masked Face dataset was used for
the training and testing of the InceptionV3 model (SMFD). In
Nagrath et al. (2021), SSDMNV2 deep learning based model was
presented for face mask detection. The SSDMNV2 model used a
single shot multibox detector for face detection and MobilenetV2
model for the classification of the mask and un-masked images.
In Militante and Dionisio (2020), a real-time end-to-end network
based on VGG-16 was presented for face mask detection. In Bu
et al. (2017), a cascaded CNN framework comprises of three CNN
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models was proposed for masked face detection. The first CNN
model was comprised of five layers, whereas, second and third
CNN models used seven layers each. The disadvantage of the three
cascaded CNNs is the higher computational cost of this method.

Apart from the standalone deep learning models, existing works
have also employed the hybrid models comprising of both the tra-
ditional ML and DL-based techniques. Loey et al. (2021) presented
a hybrid model based on both the traditional ML and DL-based
methods for face mask detection. This hybrid model employed
the resnet50 algorithm for feature extraction and used them to
train the SVM, ensemble algorithm, and decision tree for classifica-
tion of images into mask and un-mask. In Bhattacharya (2021), a
HybridFaceMaskNet model was proposed for detection of face
masks. This model was based on deep learning, handcrafted fea-
ture extractor and classical machine learning classifiers. Due to
the limited data, both deep learning (CNN) and handcrafted feature
extraction (LBP, textural Harlick feature and Hue moments) tech-
niques were applied to extract more robust features. Then features
selection was performed through the Principal Component Analy-
sis (PCA). Finally, the classification was accomplished using a ran-
dom forest classifier.

Although, wearing the face masks are important to control the
transmission of COVID-19, however, we also observe that people
are often reluctant to cover both the lips and nose regions of the
face. Thus, it reduces the effectiveness of face mask due to impro-
per placement of the mask on the face. The research community
also presented a few studies to monitor the placement of masks
on the face. In Qin and Li (2020), an automated method was pre-
sented to identify the placement of the face mask, i.e., improper
mask wearing, proper mask wearing, or no mask wearing. By inte-
grating image super-resolution and classification networks, the
scientists developed the SRCNet model, which enumerates a
three-category classification issue based on unconstrained 2D
facial pictures (SRCNet). In Inamdar and Mehendale, 2020, a Face-
masknet model was proposed to verify the correct placement of
the mask on the face. Face mask images were divided into three
categories using the Facemasknet model: no mask, improperly
worn mask, and properly worn mask. The model was trained using
a total of 35 images, including both masked and non-masked faces.

Facial recognition is a commonly employed technique for user
authentication-based applications. Deep face recognition has
attained remarkable performance because of two reasons: first
the availability of large-scale datasets e.g., VGGFace2 (Cao et al.,
2018) and CASIA-Webface (Yi et al., 2014) and second the availabil-
ity of sophisticated deep learning methods e.g., DeepFace (Taigman
et al., 2014) and Center Loss-based CNN (Wen et al., 2016), etc.
However, deep learning models used these datasets to learn the
features from the complete uncovered facial images. Unlike the
conventional unmasked recognition (Simonyan and Zisserman,
2014), masked facial recognition is very challenging due to the
availability of limited uncovered facial exposure. In Sabbir Ejaz
and Rabiul Islam (2019), the Google FaceNet network was
employed to extract the features from the masked images and later
SVM was used to recognize the candidate faces. In Ejaz et al.
(2019), authors have used the PCA technique whereas the work
in Deng et al. (2021) have used the Facenet deep learning-based
technique for both the masked and unmasked facial recognition.
It was observed in (Ejaz et al., 2019; Deng et al., 2021) that the per-
formance drops by 23% and by a range of 4% to 11% respectively for
masked facial recognition as compared to unmasked face recogni-
tion. According to Deng et al. (2021), masked facial recognition
accuracy is 72% on average, while non-masked face image recogni-
tion accuracy is 95% on average. According to Deng et al. (2021),
masked facial recognition accuracy is best (�97%), while non-
masked face image recognition accuracy varies between 86% and
93%.
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Occlusion is considered one of the key limitations of face recog-
nition approaches. In the pre-pandemic era, most of the obstacles
were glasses, clothes, helmet and other devices. However, in the
post-pandemic era, masks are the most widely used obstacles in
front of the face. Masked facial recognition has become a signifi-
cant research problem recently and researchers are working in this
domain. The traditional ML approaches, as well as deep learning
approaches, have been employed for occluded face recognition.
In Oh et al. (2008), the authors used a local approach based on
PCA to detect the occlusions and Selective Local Non-Negative
Matrix Factorization (S-LNMF) technique was employed for
occluded face recognition. In (Min et al. (2011), the authors first
detected the existence of occlusion i.e., scarf or sunglasses, etc.,
by using the Gabor wavelets, PCA and SVM, and later used the
block-based local binary patterns to perform the recognition of
non-occluded facial parts. Deep learning-based techniques auto-
matically ignored the occluded parts and just highlights on the
un-blocked or un-occluded ones. CNN is very effective for facial
recognition applications specifically after the arrival of Alexnet
(Krizhevsky et al., 2012). Alexnet has been found very useful for
facial recognition in the presence of various occlusions (He et al.,
2019). In Song et al. (2019), pairwise differential Siamese network
(PDSN) based on the CNN was designed to counter the occlusion
(i.e., identifies and removes corrupted feature elements) and only
concentrates on the non-occluded facial regions. Firstly, the PDSN
was used to generate a mask dictionary by altering the differences
between the top characteristics of occlusion free and occluded face
pairings. The items of the dictionary called Feature Discarding
Mask (FDM) captured the correspondence between corrupted fea-
ture elements and occluded facial areas. When dealing with an
occluded face image, its FDM was generated by combining the
appropriate dictionary items.

Existing literature on face mask detection and masked facial
recognition are unable to attain better classification and recogni-
tion performance because of different varieties of face masks
beside other diverse parameters, i.e., variations in face angles, race,
age, skin tone, lightning, and gender, etc. So, to address the limita-
tions of both the face mask detection and masked facial recogni-
tion, a robust system and a unified dataset are urgently required.
3. Methodology

The proposed work comprises of two main phases: first phase
includes the data collection and dataset preparation, while the sec-
ond phase presents a novel Deepmasknet model construction for
face mask detection and masked facial recognition. We proposed
a novel Deepmasknet model that can effectively be used for both
the face mask detection and masked facial recognition. Fig. 1
demonstrates the basic workflow of the proposed method. The
model consists of 10 learned layers, i.e., six convolutional and four
fully connected layer.
3.1. Motivations

Alexnet is the most widely used CNN architecture proposed by
Krizhevsky and Sutskever (Krizhevsky et al., 2012). Alexnet has
done a decent job at distinguishing persons who hide their identi-
ties by wearing scarves over their faces (Abhila and Sreeletha,
2018). Inspired from the Alexnet architecture, we proposed a deep-
masknet model for face mask detection and masked facial recogni-
tion in this study. The goal of this research was to create a unified
model that can detect the face masks and recognize the masked
faces with higher accuracy. Our proposed model is based on the
two most widely used CNNs scaling techniques i.e., scaling net-
work depth and input image resolution. Depth scaling is used by



Fig. 1. Flow Diagram of face mask detection and masked face recognition.
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many CNNs to achieve better accuracy (He et al., 2016; Huang
et al., 2017). The obvious perception is that deeper CNNs capture
more complex features and improves the classification perfor-
mance of the network. However, as the network’s depth grows,
the computational complexity also increases without guaranteeing
the improvement in accuracy for all cases. Also, CNNs capture more
fine-grained features with higher resolution input images to
achieve better performance.

CNNs accept input images of different resolutions i.e.,
224 � 224, 297 � 297 and 299 � 299, but the architectures
employing higher resolution tend to result in improved recognition
performance (Szegedy et al., 2016). Our Deepmasknet model is ten
layers deep and accepts an input image of 256 � 256 resolution for
processing. The architecture of our Deepmasknet model and input
image size is selected according to the available computing
machine requirements. As the distribution of each layer’s input
changes during the training when the model is trained predomi-
nantly on one type of images, but the dataset contains slightly dif-
ferent images in a very low proportion. For example, in case of face
masks, people often use surgical masks, so the dataset contains
more surgical masks as compared to other types of masks i.e.,
N95, KN95, Cloth, etc. This causes the parameter training to be
tremendously tedious and needs better initialization. To deal with
this covariate shifting, we used batch normalization in DeepMas-
kNet architecture. And used the LeakyRelu (Maas et al., 2013) acti-
vation function instead of Relu activation function (Nair and
Hinton, 2010) to overcome the dying relu problem. To add the
non-linearity, Relu activation function is widely used between
the layers to deal with more complex datasets. But Relu has certain
issues. Firstly, gradient at x = 0 cannot be computed for Relu, which
effects the training performance slightly. Secondly, all negative val-
ues (x < 0) are set to zero by the Relu activation function, so all the
neurons with negative values are set to zero, i.e., neurons die and
hence the issue is referred to as the dying Relu problem. The net-
work stops learning in case of a dying Relu problem. Leaky relu
is used in our Deepmasknet model to address these issues. The
Leaky Relu activation function permits a minor, non-zero gradient
when the unit is inactive. So, it would continue learning without
reaching to the dead end.

3.2. DeepMaskNet architecture details

Assume that X is a collection of data samples (masked images)
as illustrated below:
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X ¼ X1;X2;X3; . . . ;XK½ � ð1Þ
In the image space RI�J, XK signifies a sample datum, and K

denotes the number of sample data. Assume that Y is a set of labels
that correspond to X in the following way:

Y ¼ y1;y2;y3; . . . ; yK
� � ð2Þ

And in RC, YK is XK’s label vector, where C is the number of
classes.

Yc
k ¼

1 if XK 2 C

0 if XK R C

�
ð3Þ

The purpose of image classification and recognition is to create
a mapping function that maps image set X to label set Y using a
training set and then categorizes fresh data points based on the
learned mapping function. We present a novel deep learning-
based Deepmasknet model to address the problem of image classi-
fication and recognition.

The architecture of our DeepMaskNet model is revealed in
Fig. 2. The Deepmasknet model comprises ten learnable layers,
i.e., six convolutional layers H2, H3, H4, H5, H6, H7, and four fully
connected layers as revealed in Table 1. The input layer H1 is the
first layer in Deepmasknet model, the size of the input layer H1

is equal to the dimension of the input features, and it has I � J
units. Our model accepts the input images of size 256 � 256 for
processing.

To create the feature maps, the convolutional layer performs
convolutional operations on image data and the output feature
map is computed as follows:

hk
ij ¼

X
ð wk � x
� �þ bk ð4Þ

where k denotes the kth layer, h denotes the feature’s value, (i,j)
denotes pixel coordinates, wk denotes the current layer’s convolu-
tion kernel, and bk denotes the bias.

When convolution operations are performed on an image of size
h � w, with a kernel size of k, padding p, and stride size s, the out-
put is of size h�kþ2p

ðsþ1Þ � w�kþ2p
ðsþ1Þ . When the kernels are convolved with

the image, they operate as feature detectors, resulting in a set of
convolved features.

Activation functions are usually followed by the convolutional
layers. In the past, the most widely used activation functions were
sigmoid and tanh. However, because of its disadvantages, research-
ers have developed different activation functions like the rectified



Fig. 2. Architecture of our proposed DeepMaskNet model.

Table 1
The DeepMaskNet architecture.

Sr. No Layer Filters Size Stride Padding

1 Input
2 Convolutional-1 (Batch Normalization + LeakyRelu) 128 3 � 3 4 � 4 0 � 0
3 Max pooling 3 � 3 2 � 2 0 � 0
4 Convolutional-2 (Batch Normalization + LeakyRelu) 512 3 � 3 1 � 1 2 � 2
5 Max pooling 3 � 3 2 � 2 0 � 0
6 Convolutional-3 (Batch Normalization + LeakyRelu) 384 3 � 3 1 � 1 1 � 1
7 Max pooling 3 � 3 2 � 2 0 � 0
8 Convolutional-4 (Batch Normalization + LeakyRelu) 256 3 � 3 1 � 1 1 � 1
9 Convolutional-5 (Batch Normaslization + LeakyRelu) 256 3 � 3 1 � 1 1 � 1
10 Convolutional-6 (Batch Normalization + LeakyRelu) 256 3 � 3 1 � 1 1 � 1
11 Max pooling 3 � 3 2 � 2 0 � 0
12 Fully Connected + LeakyRelu + Dropout
13 Fully Connected + LeakyRelu + Dropout
14 Fully Connected + LeakyRelu + Dropout
15 Fully Connected
16 softmax
17 classification
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linear unit (ReLU) and its derivatives (leaky ReLU, Noisy ReLU,
ELU), which are now employed in most deep learning applications.
The activation function specifies how a node in a layer converts the
weighted sum of the input into an output. Here, we have used
leaky ReLU to specify the ReLU activation function as an extremely
small linear component of x instead of declaring it as 0 for negative
values of inputs (x). This activation function is computed as
follows:

f xð Þ ¼ maxð0:01� x; xÞ ð5Þ
This method returns x if the input is positive, but a very small

value if the input is negative, 0.01 times x. As a result, it also out-
puts the negative values. Additionally, down-sampling procedures
are performed utilizing max-pooling layers to minimize the spatial
size.

f xð Þ ¼ maxðx1; x2; x3; � � � :; xkÞ ð6Þ
where f(x) is optimized feature vector. Max-pooling is a down-
sampling procedure that uses a kernel (k) and a stride (s) to extract
the largest value from the current neighborhood (based on kernel
size) on an image of size h � w. The operation generates a file with
the following dimensions: h�k

sþ1 � w�k
sþ1 . The key purpose for inserting a

max-pooling layer between the convolutional layers is to gradually
decrease the size of the spatial representation, i.e., h and w, lower-
9909
ing the number of parameters to train and the computations in the
network as a whole. This also helps to prevent the issue of
overfitting.

The first convolution layer of the proposed model extracts the
features from a 256 � 256 � 3 input image by applying 128 filters
(kernels) of size 3-by-3 with a stride (shift) of 4 pixels at a time.
The output of the first convolutional layer is sent to the second
convolutional layer (after applying normalization and pooling).
The subsequent convolutional layer applies 512 kernels of 3-by-3
with a stride (shift) of 1 pixel at a time. The third convolutional
layer filters the inputs by applying 384 filters of size 3-by-3 which
use a stride value of 1 pixel. The next two convolutional layers i.e.,
fourth and fifth are not followed by the pooling layers. On the input
feature map, the fourth, fifth, and sixth convolutional layers apply
256 filters of size 3-by-3 with a default stride of 1 pixel. All six con-
volutional layers are proceeded with the batch normalization,
leaky ReLU (nonlinear activation function), and maximum pooling
layers. The architecture has four maximum pooling layers, the first
three and last convolutional layers are followed by the maximum
pooling layers.

Each fully linked layer’s node is connected to all of the upper
layer’s nodes. To synthesize the features retrieved from the image
and translate the two-dimensional feature map into a one-
dimensional feature vector, fully linked layers are used. The sample
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label space is mapped to the distributed feature representation via
the fully connected layers. Equation (7) expresses the fully con-
nected operation as:

ai ¼
Xm�n�1

j¼0

wij � xi þ bi ð7Þ

where i represents the index of the fully connected layer’s output;
m, n, and d represent the width, height, and depth of the feature
map derived from the last layer, respectively. Moreover, w and b
represent the shared weights and bias, respectively. The first three
fully connected layers are followed by leaky ReLU and dropout lay-
ers (to reduce overfitting or overlearning during training), whereas
the last fully connected layer is proceeded by the softmax and clas-
sification layers. The output of the last fully connected layer is used
as an input to a 2-way softmax in case of face mask detection
(masked and unmasked face) and 226-way softmax in case of
masked face recognition (226 different persons/subjects).

3.3. Training parameters

We used the trial-and-error based approach, i.e., experiments
are performed using different values of the parameters to find
the optimum value for each parameter. The details of the selected
parameters are presented in Table 2. We performed the training of
our Deepmasknet model by stochastic gradient descent (SGD) with
final learning rate of 0.01 and a minibatch size of 10 images. The
model is trained on 14 epochs for both the detection and recogni-
tion considering the occurrence of overfitting.

4. Results and discussion

We offer an in-depth explanation of the results of various
experiments meant to assess the effectiveness of our DeepmaskNet
model. This section also contains additional information about our
in-house MDMFR dataset. Performance of our method is assessed
using three publicly available Kaggle datasets (Facemask
(Smansid, 2020), Facemask Detection Dataset 20,000 Images (Jain
and Singaraju, 2020), and Facemask dataset (Shah, 2020), as well
as our custom MDMFR dataset with cross-dataset settings.

4.1. Dataset

The unavailability of a unified standard dataset for face mask
detection and masked facial recognition motivated us to develop
an in-house MDMFR dataset (MDMFR, 2022) to measure the per-
formance of face mask detection and masked facial recognition
methods. Both of these tasks have different dataset requirements.
Face mask detection requires the images of multiple persons with
and without mask. Whereas, masked face recognition requires
multiple masked face images of the same person. Our MDMFR
dataset consists of two main collections, 1) face mask detection,
and 2) masked facial recognition. There are 6006 images in our
MDMFR dataset. The face mask detection collection contains two
categories of face images i.e., mask and unmask. Our detection
Table 2
Parameters of DeepMaskNet model.

Parameter Value

learning rate 0.01
Maximum Epochs 14
Shuffle Every epoch
Validation frequency 30
Iterations per epoch 42
Verbose false
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database consists of 3174 with mask and 2832 without mask (un-
masked) images. To construct the dataset, we captured multiple
images of the same person in two configurations (mask and with-
out mask). The masked facial recognition collection contains a total
of 2896 masked images of 226 persons. More specifically, our data-
set includes the images of both male and female persons of all ages
including the children. The images of our dataset are diverse in
terms of gender, race, and age of users, types of masks, illumination
conditions, face angles, occlusions, environment, format, dimen-
sions, and size, etc. Before being fed to our DeepMaskNet model,
all images are scaled to a width and height of 256 pixels. All images
have a bit depth of 24. We prepared the images of our dataset for
the proposed DeepMaskNet model during preprocessing where
images are cropped in Adobe-Photoshop to exclude the extra
information like neck and shoulder. As the input size of our
Deepmasknet model was 256-by-256, so images were resized to
256-by-256 in publicly available Plastiliq Image Resizer software
(Plastiliq, 2022). Some representative images of our MDMFR data-
set are shown in Fig. 3, and statistical details of our MDMFR dataset
are provided in Table 3.

4.2. Evaluation metrics

To assess the effectiveness of our Deepmasknet model for face
mask detection and masked facial recognition, we used precision,
recall, F1-score and accuracy metrics. We computed these metrics
as follows:

Accuracy ¼ ðTN þ TPÞ
TS

ð8Þ

Precision ¼ TP
ðTP þ FPÞ ð9Þ

Recall ¼ TP
ðTP þ FNÞ ð10Þ

F1� score ¼ 2� Precision� Recall
ðPrecisionþ RecallÞ ð11Þ

True positive, total samples, false positive, true negative, and
false negative are represented as TP, TS, FP, TN, and FN,
respectively.

4.3. Experimental setup

All of our experimentations were carried out on a computer
with an Intel (R) Core (TM) i5-5200U processor and 8 GB of RAM.
We utilized the R2020a version of MATLAB to complete the project.
Each dataset is divided into training and testing sets for all exper-
iments. More specifically, we used 80% of the dataset for model
training and 20% for testing. The performance of our proposed
DeepMaskNet model for both the face mask detection and masked
facial recognition is evaluated through a series of experiments.

4.3.1. Performance evaluation on face mask detection
The key purpose of this experiment is to assess the performance

of our proposed model for face mask detection. For this experi-
ment, we used all the 6006 images of our dataset, where 4805
images (2539 masked and 2266 unmasked) were used for training
and rest 1201 images (635 masked and 566 unmasked) for testing.
We used the training set to train our DeepMaskNet model on the
same experimental settings mentioned in Table 2 for the classifica-
tion of masked and unmasked face images. The training of our
DeepMaskNet model took 192 min and 4 s for face mask detection.
Our method achieved the optimal accuracy, precision, recall, and
F1-score of 100% that shows the reliability of our method for face



Fig. 3. Sample images of our MDMFR dataset.

Table 3
Mask detection mask face recognition dataset details.

Samples Male Female Types of masks used Images details

With mask 2923 251 Surgical cloths N95 and KN95 Bit depth Type
Without mask 2625 206 2892 121 164 24 RGB
Total 5548 457
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mask detection. These results are due to the fact that our DeepMas-
kNet model successfully extracts the most discriminating features
to represent the masked and unmasked faces for accurate
classification.

To further assess the performance and verify the robustness of
our DeepMaskNet model for face mask detection, we validated
our model on the three standard and diverse Kaggle datasets
(Smansid, 2020; Jain and Singaraju, 2020; Shah, 2020). Each data-
set contains two types of images i.e., images with masks and
images without masks. The details of these datasets and obtained
results in terms of accuracy, precision, recall, and F1-score are
given in the Table 4. From these results (Table 4), we can see that
we achieved the optimal 100% accuracy, precision, recall, and F1-
score on our MDMFR, facemask (Smansid, 2020) and Facemask
Detection Dataset 20,000 Images (Jain and Singaraju, 2020) data-
sets. Whereas, we also achieved remarkable results on the Face-
Mask Dataset (Shah, 2020). Regardless of the limited and
imbalanced data in the FaceMask dataset, we achieved an accuracy
of 98.51%. Therefore, we argue that the proposed DeepMaskNet
model can reliably be used for face mask detection under diverse
conditions.
Table 4
Performance evaluation on face mask detection.

Dataset With mask images Without mask

MDMFR 3174 2832
Facemask 690 686
Facemask Detection Dataset 20,000 Images 10,000 10,000
FaceMask Dataset 208 131
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4.3.2. Masked detection comparison with state-of-the-art deep
learning models

The purpose of this experiment is to assess the effectiveness of
the DeepMaskNet model for face mask detection over the contem-
porary deep learning models. For this purpose, we compared the
performance of DeepMaskNet model with these contemporary
models i.e., GoogleNet (Szegedy et al., 2015), SqueezeNet
(Iandola et al., 2016), DenseNet (Huang et al., 2017), ShuffleNet
(Zhang et al., 2018), ResNet (He et al., 2016), MobileNetv2
(Sandler et al., 2018), InceptionresNetv2 (Szegedy et al., 2017),
DarkNet 19 (Redmon, 2022), and DarkNet 53 (Simonyan and
Zisserman, 2014). All of these comparative deep learning models
were used in a transfer learning setup trained on millions of
images of the ImageNet database. All pre-trained versions of these
networks can classify the images into 1000 different categories.
The final layer was fine tuned to divide the images into two
groups: with mask and without mask. The input image size of net-
works differs from model to model, like the image input size of
VGG19 is 224-by-224, 227-by-227 for squeezenet, and so on. We
tuned all of these models with the same experimental settings
(mentioned in Table 2) as used for our model. The results are
images Type Accuracy % Precision % Recall % F-score %

RGB 100 100 100 100
RGB 100 100 100 100
Gray Scale 100 100 100 100
RGB 98.51 100 97.56 98.76
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presented in Table 5. Based on these findings, we observed that our
model outperformed the other nine models by achieving 100%
accuracy for face mask detection. The Mobilenetv2 model achieved
the second-best accuracy of 99.82%, whereas, InceptionresNetv2
obtained the lowest accuracy of 97.43% among all models.
Whereas, Resnet18 and Mobilenet outperformed other models in
terms of true positive rate by achieving a recall of 100%. It is to
be noted that six comparative models (DenseNet, ShuffleNet,
ResNet, MobileNetv2, DarkNet 19, and DarkNet 53) achieved an
accuracy of more than 99%. It is also worth noting that our
proposed method obtained the optimal 100% accuracy, recall,
precision, and F1-score. The Mobilenetv2 model achieved the
second-best accuracy because Mobilenetv2 uses the concept of
depth wise convolution and pointwise convolutions having 1 � 1
convolution which is used to capture the most important features.
The linear bottleneck is used between the layers to prevent nonlin-
earities from abolishing greater loss of information. Inception-
resNetv2 model achieved the lowest accuracy because of the use
of ReLU activation function. ReLU activation function sets all the
negative values (x < 0) to zero, so all the neurons with negative val-
ues are set to zero, thus giving no guarantee that all the neurons
will be active throughout and causes the dying ReLU problem.
The network does not learn through the optimization algorithm
in this situation. Dying ReLU problem is undesirable because it
gradually makes a big portion of the network inactive. The pro-
posed DeepMaskNet model achieved the best results because of
the ability to extract more descriptive, discriminative and robust
deep features for face mask detection. These comparative results
illustrate the superiority of our DeepMaskNet model over compar-
ative models for face mask detection.

4.3.3. Face mask detection comparison with existing methods
The key purpose of this experiment is to validate the efficacy of

proposed DeepMaskNet model over existing face mask detection
methods. For this experiment, we compared our method with
these approaches (Chowdary et al., 2020; Song et al., 2019). In
Loey et al. (2021), the authors used the resnet50 model to extract
the features and employed the SVM for the classification of masked
and unmasked facial images. We tested this method on our own
MDMFR dataset and achieved an accuracy of 98.78%. In
Chowdary et al. (2020), inceptionV3 deep learning algorithm was
presented for face mask detection. We also evaluated this method
on our MDMFR dataset and attained an accuracy of 98.69%. In com-
parison to (Chowdary et al., 2020; Loey et al., 2021), our method
achieved 100% accuracy.

This comparative analysis also demonstrates the effectiveness
of our DeepMaskNet model over these approaches (Chowdary
et al., 2020; Loey et al., 2021). It is important to mention that these
approaches are computationally more complex than our proposed
approach, because they employ deeper networks, which can easily
lead to overfitting. These results evidently demonstrate the effec-
tiveness of the suggested approach along with the supplementary
Table 5
Detection performance results.

Model Accuracy % Precision % Recall % F1_score %

Deepmasknet 100 100 100 100
GoogleNet 98.08 98.51 99.25 98.87
Squeezenet 98.29 98.28 99.75 99.00
Densenet201 99.12 99.83 98.52 99.17
Shufflenet 99.82 100 99.66 99.82
Resnet18 99.12 98.33 100 99.15
Mobilenetv2 99.82 99.66 100 99.82
Inceptionresnetv2 97.43 98.50 98.50 98.50
Darknet19 99.75 97.72 100 98.84
Darknet53 99.51 98.48 97.02 97.74
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benefits, i.e., computationally efficient. As our proposed DeepMas-
kNet model comprises of only ten layers followed by the batch nor-
malization operation and Leaky ReLU activation function, Thus, all
biases of the CNN layers are not activated. Therefore, we can con-
clude that our approach is more efficient.

4.3.4. Performance evaluation on masked facial recognition
The purpose of this experiment is to assess the performance of

proposed DeepMaskNet model for recognizing different persons
while wearing the face mask. For this experiment, 2330 images
of 226 classes of our MDMFR dataset were used. Among these
image samples, 1864 were utilized for the training and 466 images
were used for testing. We used the training set to train and testing
set to validate DeepMaskNet model on the same experimental set-
tings mentioned in Table 2 for the recognition of masked faces. The
training process took 165 min and 43 s for masked face recogni-
tion. Our method achieved the accuracy of 93.33% for masked facial
recognition. It is worthy to mention that although the masked
facial images contain a limited visible portion of the face, yet our
method is capable of extracting the distinctive traits from the
uncovered facial image and recognizing the person with better
accuracy. The proposed DeepMaskNet model was able to achieve
the best results because of the ability to extract more discrimina-
tive, descriptive and robust deep features.

4.3.5. Masked facial recognition comparison with state-of-the-art
models

The purpose of this experiment is to assess the effectiveness of
the proposed DeepMaskNet model for masked face recognition
over contemporary models. For this, we compared the masked
facial recognition performance of our Deepmasknet model with
eight state-of-the-art deep learning models i.e., DenseNet (Huang
et al., 2017), ShuffleNet (Zhang et al., 2018), ResNet (He et al.,
2016), MobileNetv2 (Sandler et al., 2018), DarkNet 19 (Redmon,
2022), DarkNet 53 (Redmon, 2022), VGG19 (Simonyan and
Zisserman, 2014) and Alexnet (Krizhevsky et al., 2012). For this
purpose, 2330 image samples of 226 classes were used. All of these
comparative deep learning models were used in a transfer learning
setup trained on the ImageNet database. To recognize the masked
faces, last layers of all networks were fine tuned to classify images
into 226 categories. We resized the input image size to meet the
requirement of each comparative deep learning model. We tuned
all of these models with the same experimental settings (men-
tioned in Table 2) as used for our model. The experimental findings
are presented in Table 6. Based on our findings from these results,
we observed that our model significantly outperforms the eight
comparative deep learning models. More precisely, we achieved
an accuracy gain of 2.42% from the second-best performing model
(VGG-19) and 9.13% from the worst performing model (Resnet-18)
for masked facial recognition. VGG-19 achieved the second-best
results because the architecture uses very small (3 � 3)
Table 6
Recognition comparison with state-of-the-art models.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

Darknet19 90.00 90.00 91.5 90.74
Darknet53 89.1 87.96 87.43 87.69
Resnet18 84.20 83.65 85.31 84.47
VGG19 90.91 90.00 93.00 90.47
Shufflenet 88.57 88.5 88.6 88.54
Alexnet 88.89 90.00 90.00 90.00
Mobilenetv2 86.76 88.9 86.78 87.82
Densenet201 88.89 89.00 89.00 89.00
Deepmasknet

(Proposed)
93.33 93.00 94.5 93.74



Table 7
Cross dataset validation results.

Training dataset Testing dataset Accuracy Precision Recall F-score

Facemask Detection Dataset 20,000 Images MDMFR 100 100 100 100
MDMFR Facemask Detection Dataset 20,000 Images 99.99 99.99 100 99.99
MDMFR FaceMask 99.99 99.99 100 99.99
FaceMask MDMFR 100 100 100 100
FaceMask Facemask Detection Dataset 20,000 Images 100 100 100 100
Facemask Detection Dataset 20,000 Images FaceMask 100 100 100 100
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convolution filters, which extract the most important features and
shows significant improvement in accuracy for masked facial
recognition. ResNet18 model achieved the lowest accuracy
because of the use of ReLU activation function which gradually
makes a big portion of the network inactive.

The reason behind achieving the best performance is that our
proposed DeepMaskNet model effectively extracts more distinctive
features from the face mask images. We applied the small filter of
size 3 � 3 which guarantees the extraction of capturing detailed
features. The batch normalization technique used in the feature
map of the proposed model standardizes the inputs to a layer for
each mini-batch, provides regularization, and reduces the general-
ization error. Also, the dropout technique used in the classification
unit of our model provides regularization by dropping out a per-
centage of outputs from the previous layer to prevent the overfit-
ting and improve generalization. These results show the
effectiveness of our method for masked facial recognition.
4.3.6. Cross-dataset validation
The key purpose of this experiment is to test the generalizabil-

ity of our model face mask detection over cross-dataset scenarios.
The fundamental goal of cross-dataset validation is to determine
our model’s generalization potential and demonstrate its applica-
bility for real-world scenarios. We used our MDMFR dataset, ‘‘Face-
mask Detection Dataset 20,000 Images” and ‘‘FaceMask Dataset”
(Iandola et al., 2016; Huang et al., 2017) for this purpose. The
‘‘Facemask Detection Dataset 20,000 images” has 10,000 images
in each class i.e., with mask, and without mask, whereas the ‘‘Face-
Mask Dataset” contains 208 images with masks and 131 images
without masks. To perform the cross-dataset validation process,
we acquired the following six scenarios: (a) training on the ‘‘Face-
mask Detection Dataset 20,000 Images” and testing on our MDMFR
dataset, (b) training on our MDMFR dataset and testing on ‘‘Face-
mask Detection Dataset 20,000 Images” dataset, (c) training on
the MDMFR dataset and testing on the ‘‘facemask” dataset, (d)
training on the ‘‘facemask” dataset and testing on our MDMFR
dataset, (e) training on the ‘‘facemask” dataset and testing on the
‘‘Facemask Detection Dataset 20,000 Images” dataset, (f) training
on the ‘‘Facemask Detection Dataset 20,000 Images” dataset and
testing on the ‘‘facemask dataset”. The results of our cross-
dataset validation experiment are reported in Table 7. Our pro-
posed model attained the testing accuracy of 100% for scenarios
(a), (d), (e) and (f), whereas, 99.99%, for scenarios (b) and (c). These
remarkable results validate the generalizability of our proposed
model for face mask detection in real-world diverse scenarios.
Because of the unavailability of standard large scale masked facial
recognition datasets, we are unable to evaluate our framework on
cross dataset for the masked facial recognition task.
5. Conclusion

This paper has presented a Deepmasknet framework for accu-
rate face mask detection and masked facial recognition. Moreover,
an in-house unified MDMFR dataset has also been developed to
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assess the performance of the proposed method. We have created
a largescale and diverse face images dataset to evaluate both the
face mask detection and masked facial recognition. The accuracy
of 100% for face mask detection and 93.33% for masked facial
recognition have confirmed the superiority of our Deepmasknet
model over the contemporary techniques. Furthermore, experi-
mental results on the three standard Kaggle datasets and our
MDMFR dataset have verified the robustness of the proposed
Deepmasknet model for face mask detection and masked facial
recognition under diverse conditions i.e., variations in face angles,
lightning conditions, gender, skin tone, age, types of masks, occlu-
sions (glasses), etc. The proposed method can be utilized for a vari-
ety of purposes including the security and safety of the people i.e.,
recognition of robbers wearing a face mask, etc. In the future, we
intend to further expand our dataset in terms of both the quantity
and diversity.
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