Skip to main content
. 2022 Jan 24;12:1198. doi: 10.1038/s41598-022-04854-3

Table 2.

Evaluation results for different choices of hyper-parameters, measured in terms of Segmentation Quality (SQ) and Recognition Quality (RQ), with training and inference times.

SQ RQ Training (min.) Inference (s)
Network depth
5 0.753 0.778 346 187
4 0.757 0.816 269 152
3 0.781 0.616 219 119
2 0.758 0.214 176 89
Loss
Weighted CE 0.757 0.816 269 152
Generalized dice 0.324 0.184 276 151
Focal 0.756 0.619 262 151
No border class 0.318 0.150 262 150
Tile size
256 0.769 0.647 79 250
384 0.767 0.756 169 216
512 0.757 0.816 269 152
524 without padding 0.766 0.729 227 4.5
768 0.769 0.733 332 54
Tile sampling
Area-based 0.757 0.816 269 152
Random 0.759 0.742 270 150
Fiber-centered 0.786 0.663 213 148
Proportional 0.783 0.675 213 150

Inference times are measured on image 18. CE denotes cross-entropy.

Using a V100 GPU.