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Peeking into a black box, the 
fairness and generalizability of  
a MIMIC-III benchmarking model
Eliane Röösli   1,2, Selen Bozkurt2 & Tina Hernandez-Boussard   2,3 ✉

As artificial intelligence (AI) makes continuous progress to improve quality of care for some patients 
by leveraging ever increasing amounts of digital health data, others are left behind. Empirical 
evaluation studies are required to keep biased AI models from reinforcing systemic health disparities 
faced by minority populations through dangerous feedback loops. The aim of this study is to raise 
broad awareness of the pervasive challenges around bias and fairness in risk prediction models. We 
performed a case study on a MIMIC-trained benchmarking model using a broadly applicable fairness and 
generalizability assessment framework. While open-science benchmarks are crucial to overcome many 
study limitations today, this case study revealed a strong class imbalance problem as well as fairness 
concerns for Black and publicly insured ICU patients. Therefore, we advocate for the widespread use of 
comprehensive fairness and performance assessment frameworks to effectively monitor and validate 
benchmark pipelines built on open data resources.

Introduction
The expansive availability of digital health data has led to a colossus of data-driven models to guide and improve 
healthcare delivery. This change of paradigm will and partially already does decisively shape medical diagnostics, 
drug discovery, clinical research and personalized medicine1. These tools approach and sometimes surpass expert 
clinicians in certain specialties2. Thereby, medical artificial intelligence (AI) has the potential to render health-
care more efficient and effective through better informed decisions and improved patient outcomes. However, 
emerging evidence suggests that many of these data-driven clinical decision support tools may be biased and not 
equally benefit all populations3–6. As AI makes progress to improve quality of care for some patients, others are 
left behind7–10. Particularly minorities and historically disadvantaged groups are at risk of suffering from unfair 
model predictions, as we have seen for example in the case of COVID-1911,12.

AI models are susceptible to bias since they learn themselves from biased data reflecting an intrinsically unjust 
healthcare system13,14. In the absence of tight controls, AI could hence unconsciously reinforce pre-existing biases 
through dangerous feedback loops15,16. To address these concerns, many recent studies, books and ventures have 
provided methodologies and frameworks for reporting breakdowns in model performance across different pro-
tected entities, for example gender, ethnicity or socioeconomic background. These approaches range from cor-
porate Algorithmic Auditing and Consulting ventures to full ML life cycle bias screenings, fairness definition 
comparison studies or frameworks targeting a specific single protected entity4,17–20. While these efforts highlight 
pathways towards gaining a better understanding of the fairness and generalizability of data-driven models, the 
identification of a standard set of metrics for systematic, objective and comprehensive evaluation is still emerging. 
In particular, no universal notion of fairness exists as of yet. Rather, the inherent difficulties to mathematically 
capture and express the vague concept of fairness gave rise to a multiplicity of formal definitions, all of them valid 
in their own right21,22. However, most of these fairness definitions can be regrouped into three main classes as 
suggested by Corbett-Davis and Goel: anti-classification, classification parity and calibration19.

The risks of model bias and fairness concerns corrode the public’s trust and therefore critically hamper the 
successful adoption of clinical AI tools23. In addition to systematic fairness assessments, data sharing and trans-
parency are key to build up trust, improve model quality and foster a better understanding of potential biases to 
enable effective mitigation. The Medical Information Mart for Intensive Care (MIMIC) is a prime example of such 
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effort24. Its creation in 2011 constituted a paradigm change, being one of the first publicly available Electronic 
Health Record (EHR) databases. The resulting broad use has spurred the development of thousands of AI models. 
Furthermore, many communities view MIMIC as a gold standard for developing further EHR sandboxes to spur 
the development and testing of AI-driven research. MIMIC is also used for educational purposes – to train the next 
generation of AI developers. Therefore, understanding the inherent biases, the demographic representativeness 
and the risk of model overfitting in the MIMIC dataset is essential to guide these future endeavors.

Recently, Harutyunyan et al. built a MIMIC-III multi-task benchmarking pipeline focusing on four specific 
clinical prediction tasks: in-hospital mortality, physiological decompensation, length of stay and phenotype clas-
sification25. With the idea of an iterative improvement process in mind, this case study highlights the potential for 
validating and refining clinical decision support models developed in publicly accessible datasets. It focuses on 
the benchmark model of in-hospital mortality (IHM) since this constitutes one of the prime outcomes of interest 
in an ICU setting. Better understanding this benchmarking model is particularly relevant since it represents a 
typical use case for a publicly available EHR dataset and received great attention by the scientific community. In 
particular, several dozen other research teams have already used this benchmarking pipeline to assess different 
IHM modeling approaches with MIMIC-III data yet show a similar lack of comprehensive model evaluations26–31.

As studies like the publication by Harutyunyan et al.25 are forging new paths for benchmark models in open 
data, it is important to understand the implications of single-site, potentially biased benchmarks as well as the 
ubiquitous use of the MIMIC dataset to produce fair and equitable healthcare solutions. The aim of this study is 
to raise broad awareness of the pervasive challenges around bias and fairness in risk prediction models. To inform 
this discussion, we conducted an empirical case study to characterize the opportunities and limitations of the 
Harutyunyan benchmark model developed with MIMIC data. Specifically, our contribution is three-fold. First, 
we replicated the Harutyunyan study in the MIMIC database, including an evaluation of the cohort building 
process and the resulting demographic distributions. Second, we ran the Harutyunyan model in a separate EHR 
system from a different geographic location to test its generalizability. Third, we re-trained and tested the model 
in the independent validation set. At each stage, we applied a comprehensive fairness and generalizability assess-
ment framework building on the fairness definition classification work from Sharad-Davis & Goel19 to character-
ize the risk of any undue bias towards certain demographic groups based on gender, ethnicity and insurance payer 
type as a socioeconomic proxy. Based on the insights gained from this work, we discuss the hurdles of developing 
fair algorithms using MIMIC data and highlight recommendations on how to cautiously monitor and validate 
benchmark pipelines arising from this important resource. In addition, understanding the limitations of models 
derived from MIMIC data can provide guidance to other initiatives to create further and even more powerful 
open-source EHR datasets.

Results
Case study framework.  For greater clarity, the fairness and generalizability assessment framework used 
in this case study is first quickly presented here in Fig. 1 with more details available in the Methods section. The 
framework pulls from other existing methodologies and is based on a three-stage analytical setting: (1) internal 
model validation, followed by (2) external validation and (3) internal validation after retraining on the external 
data. At each stage, a fairness and generalizability assessment made up of three tasks is performed: (A) descriptive 
cohort analyses, (B) performance and fairness evaluations, and (C) comprehensive reporting. The cohort screen-
ings should particularly focus on the cohort demographics, the outcome distribution and data missingness of the 
model variables. Many tools exist for performance and fairness evaluations, at the minimum a discrimination and 
calibration assessment should be done both on the test population level for performance analysis and on a demo-
graphic group level to check for parity of those metrics. Finally, comprehensive reporting guidelines should be 
followed, such as provided in MINIMAR32. Additionally, class imbalance should be discussed and all evaluation 
results of the model from task A and B should be provided.

Case study.  Descriptive cohort analyses.  Cohort demographics.  Table 1 shows the demographic distribu-
tion of patients, ICU stays and IHM rates across both datasets. STARR is one third the size of MIMIC and has a 
similar gender distribution. The age distribution is similar for young adults but STARR has fewer older patients 
above 70. The STARR dataset is more ethnically diverse with only roughly half of the patients being non-Hispanic 
White compared to two thirds in the MIMIC dataset. In terms of health insurance, roughly a third of MIMIC and 
STARR patients are covered by private insurance, and more than 50% is enrolled in Medicare. MIMIC’s overall 
IHM rate of 13.23% is almost a third higher than STARR’s rate of 10.18%. IHM increases with age, where STARR 
has consistently lower rates than MIMIC except for the youngest age group. Female patients have a higher IHM 
risk in both datasets, with the difference being more pronounced in STARR. Moreover, there is also a large range 
of variability for ethnic and socioeconomic groups.

Data missingness.	 Table 2 gives a diagnostic overview of the average amount of data available for each variable 
in each ICU stay. In MIMIC, capillary refill rate (CRR), fraction of inspired oxygen (FiO2) and patient height are 
missing in over two thirds of ICU stays (captured by the None column). CRR is missing altogether in 49 out of 
50 patients and not available in STARR. On the other hand, there are 11 out of the 17 variables in MIMIC with less 
than 2% of the ICU stays having no measurements during the first 48 hours. STARR has better data coverage for 
FiO2 and height but generally suffers from higher rates of stays with completely missing data for a given variable. 
STARR also has four variables with full data coverage for more than 50% of the ICU stays in the cohort, whereas 
this indicator is below 20% for all variables in MIMIC. Finally, differences can also be seen when looking at the 
average number of data points retained per variable in the Average column across both datasets.
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Fig. 1  The fairness and generalizability assessment framework.

MIMIC STARR

Patients n (%) ICU stays n (%) IHM rate (%) Patients n (%) ICU stays n (%) IHM rate (%)

Totals 18’094 21’339 13.23 6’066 6’407 10.18

Gender

Female 8’090 (44.7) 9’510 (45.0) 13.5 2’485 (41.0) 2’641 (41.2) 11.6

Male 10’004 (55.3) 11’629 (55.0) 13 3’581 (59.0) 3’766 (58.8) 9.2

Age

0–17 0 (0.0) 0 (0.0) 0 0 (0.0) 0 (0.0) 0

18–29 782 (4.3) 873 (4.1) 5.6 275 (4.5) 291 (4.5) 7.2

30–49 2’680 (14.8) 3’171 (15.0) 9.3 879 (14.5) 958 (15.0) 8.8

50–69 6’636 (36.7) 7’921 (37.5) 11.1 2’660 (43.9) 2’814 (43.9) 9.1

70–89 7’043 (38.9) 8’065 (38.2) 16.5 2’076 (34.2) 2’161 (33.7) 11.7

90+ 953 (5.3) 1’109 (5.3) 21.8 176 (2.9) 183 (2.9) 20.8

Ethnicity

Asian 437 (2.4) 492 (2.3) 13.8 837 (13.8) 883 (13.8) 11.9

Black 1’480 (8.2) 2’016 (9.5) 9.2 329 (5.4) 354 (5.5) 9.3

Hispanic 568 (3.1) 679 (3.2) 8.1 945 (15.6) 1’015 (15.8) 11.4

White 12’851 (71.0) 15’043 (71.2) 12.9 3’199 (52.7) 3’361 (52.5) 8.7

Other 2’758 (15.2) 2’909 (13.8) 18.7 756 (12.5) 794 (12.4) 13.5

Insurance

Medicare 10’337 (57.1) 12’286 (58.1) 15.3 3’144 (51.8) 3’321 (51.8) 10.5

Medicaid 1’489 (8.2) 1’813 (8.6) 10.3 944 (15.6) 1’006 (15.7) 10.3

Private 5’601 (31.0) 6’326 (30.0) 10.2 1’711 (28.2) 1’800 (28.1) 9.1

Other 667 (3.7) 714 (3.4) 11.6 267 (4.4) 280 (4.4) 12.1

Table 1.  Characteristics of the MIMIC and STARR study cohorts. Several ICU stays may be collected for a 
single patient.

https://doi.org/10.1038/s41597-021-01110-7


4Scientific Data |            (2022) 9:24  | https://doi.org/10.1038/s41597-021-01110-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Performance evaluation.  Model discrimination.  The results for discriminatory power in all three framework 
stages are presented in Table 3.

Stage 1. The test data is imbalanced with an IHM rate of 11.56%. Accounting for some variability due to 
random factors, the results for AUROC and AUPRC reported in the benchmark study could be reproduced. 
AUROC and accuracy are both well above 0.8, whereas AUPRC is lower. Precision and especially recall of the 
event instances are also lower as compared to non-events.

Stage 2. Testing the same model on STARR data with an IHM rate of 10.18%, AUPRC dropped by almost 
0.1 points as compared to internal validation in stage one, whereas AUROC remained stable. Accuracy, precision 
for both outcomes and recall of non-events slightly increased, though these changes are mostly not significant 
at the 95% significance level. The event recall, however, falls below the 20% mark, implying that the model now  
only identifies one in five high-risk patients as such, compared to the one-in-four ratio achieved in internal 
validation.

Stage 3. Retraining the model on STARR data resulted in a visible improvement of AUPRC and AUROC as 
compared to the second stage results. However, the confidence intervals of the metrics became larger because the 
STARR test set is now much smaller. There is a noteworthy improvement in event precision but the recall of those 
instances remains extremely low.

Model calibration.  Figure 2 shows the validation graphs for all three framework stages.
Stage 1. The MIMIC-trained model appears well calibrated, with only slight risk underestimation in the low 

risk strata and risk overestimation for the high risk strata.
Stage 2. When testing the MIMIC-trained model on STARR data, its predictions remain reasonably well 

calibrated. However, risk underestimation for lower risk strata got more severe and is statistically significant.

MIMIC STARR

None (%) Full (%) Average n(%) None (%) Full (%) Average n(%)

Capillary refill rate 98.1 0 0.2 (0.3) 100 0 0.0 (0.0)

Diastolic blood pressure 1.2 14 43.4 (6.2) 11 8.9 20.2 (42.0)

Fraction inspired oxygen 70.5 0 3.0 (6.2) 43.5 0 3.5 (7.2)

Glascow coma scale

Eye opening 0.9 0.1 14.8 (30.9) 14.3 0 6.7 (14.1)

Motor response 0.9 0.1 14.8 (30.8) 14.2 0 7.2 (15.1)

Total 41.8 0.1 8.8 (18.4) 14 0 9.8 (20.4)

Verbal response 1 0.1 14.8 (30.8) 14.7 0 5.6 (11.7)

Glucose 0.1 0 12.5 (26.0) 9.8 0.5 15.2 (31.6)

Heart rate 1.2 19.8 44.4 (92.4) 1.8 74.9 45.8 (95.4)

Height 81 0 0.2 (0.4) 9.7 76.8 42.9 (89.4)

Mean arterial pressure 1.2 13.3 43.2 (90.0) 11 8.9 20.2 (42.0)

Oxygen saturation 0.7 14.1 42.8 (89.3) 1.7 65.2 45.5 (94.9)

Respiratory rate 1.3 18.6 43.7 (91.0) 13.7 36.7 38.1 (79.3)

Systolic blood pressure 1.2 14.1 43.4 (90.4) 11 8.9 20.2 (42.0)

Temperature 2 0.4 15.7 (32.6) 3.8 1.3 20.0 (41.7)

Weight 27 0 1.5 (3.1) 4.8 81.1 45.3 (94.3)

pH 17.3 0 6.3 (13.1) 22.2 0 7.8 (16.3)

Table 2.  Data coverage statistics for physiological model variables. None relates to the percentage of ICU stays 
that do not have any data points for the given variable during the study period (first 48 h after ICU admission). 
Full captures the percentage of stays with available data for every hour during the 48 h analysis period. Average 
reports the mean number of data points usable out of a maximum of 48.

Metrics

MIMIC-trained model STARR-trained model

Benchmark study (1) Internal validation (2) External validation (3) Internal validation

Test data IHM rate — 11.56% 10.18% 10.19%

AUROC 0.862 (0.844, 0.881) 0.861 (0.842, 0.879) 0.827 (0.810, 0.843) 0.872 (0.839, 0.904)

AUPRC 0.515 (0.464, 0.568) 0.499 (0.452, 0.546) 0.408 (0.372, 0.446) 0.500 (0.403, 0.601)

Accuracy — 0.896 (0.889, 0.903) 0.907 (0.903, 0.911) 0.912 (0.902, 0.921)

Precision event — 0.618 (0.546, 0.692) 0.658 (0.591, 0.724) 0.783 (0.609, 0.944)

Precision non-event — 0.910 (0.905, 0.914) 0.915 (0.912, 0.918) 0.915 (0.908, 0.923)

Recall event — 0.255 (0.211, 0.299) 0.186 (0.156, 0.216) 0.184 (0.112, 0.265)

Recall non-event — 0.979 (0.974, 0.984) 0.989 (0.986, 0.992) 0.994 (0.988, 0.999)

Table 3.  Evaluation metrics reported by the benchmark study25 and the three framework stages.
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Stage 3. The STARR-trained model shows consistent risk underestimation across all risk strata. Compared to 
the MIMIC-trained model predictions on STARR, risk underestimation decreased slightly for lower risk strata 
but is much worse for higher risk patients.

Fairness evaluation.  Classification parity.  Figure 3 shows the classification parity plots for the three stages of 
the case study framework. The plots need to be interpreted in the context of class imbalance as explained in the 
corresponding Methods section.

Stage 1. Two major points can be made here: Since patients with private insurance and Medicaid have very 
similar event rates (8.3% and 8.5%, respectively) but Medicaid patients get distinctively worse predictions as 
measured by both AUROC and AUPRC, classification parity is violated. A similar argument can be made for two 
ethnic groups, where non-Hispanic White patients have a higher IHM rate (11.3%) as compared to Black patients 
(9.7%) – which should disadvantage them – yet still achieve better scores for both discrimination measures. There 
are no notable performance differences for gender and the high model performance on Hispanic patients is linked 
to a much lower IHM rate than any other group (7.3%).

Stage 2. The external validation results of the MIMIC-trained model show no meaningful observable differ-
ences in performance for the different socioeconomic groups. The one percentage point lower IHM event rate for 
privately insured patients explains why their AUROC is slightly higher than for public insurance but falls behind 
for AUPRC. Medicaid patients receive much more accurate predictions in STARR than was the case for MIMIC. 
There are again no notable differences in terms of gender but stark disparities can be found for non-Hispanic 
White and Black patients: They have very similar IHM rates in STARR (8.7% and 9.3%, respectively), yet Black 
patients suffer again from comparably very bad model predictions. The performance on Asian and Hispanic 
patients is very similar and even slightly better than for White patients.

Stage 3. One can again note the larger confidence intervals due to a smaller test set in the last framework stage. 
Despite very similar event rates across the different socioeconomic groups, Medicaid once more suffers from 
noticeably worse predictions both in terms of AUROC and AUPRC. Also, female patients now tend to have more 
accurate predictions than male patients despite their higher event rate. Finally, Black patients now suffer from 
even stronger model discrimination with much worse prediction performance than all other ethnic groups. This 
result is reinforced by the event rate of 7.3% for Black patients in the test data, which is the lowest for any ethnic 
group and should support good model performance given the problem of class imbalance. Notably, the previous 
performance gap of non-Hispanic White patients as compared to Hispanic and Asian patients practically van-
ished after model retraining.

Calibration.  Calibration-in-the-large. Figure 4 shows the calibration-in-the-large plots under demographic 
stratification for the three analytical framework stages.

Stage 1. The MIMIC-trained model indicates slight internal decalibration as the actual IHM risk is under-
estimated on average (10.4% predicted vs. 11.6% actual risk) despite being trained on data with an event rate 
of 13.5%. Risk calibration varies for socioeconomic groups: Private patients receive the best overall calibrated 
risk predictions, whereas the risk of Medicare patients is significantly underestimated and the risk of Medicaid 
patients slightly overestimated. Calibration remains stable for gender-specific groups but varies by ethnicity. While 
non-Hispanic White patients have the same calibration as the overall model, confidence intervals are longer for the 
ethnic minority groups Asian, Black and Hispanic and particularly the risk for Hispanic patients is overestimated.

Fig. 2  Validation plots of the three framework stages. Model calibration is shown alongside the distribution 
of risk predictions on the bottom (counts in log-scale). Calibration is assessed on ten Hosmer-Lemeshow 
risk groups based on exponential quantiles including 95% binomial proportion confidence intervals using 
Wilson’s score. In addition, the non-parametric smoothing line given by LOWESS is added. Ideal calibration is 
indicated by the diagonal dashed line in gray. The vertical red line indicates the decision threshold to give binary 
predictions on in-hospital mortality based on a risk percentage.
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Stage 2. Risk underestimation gets stronger when tested on STARR data: the MIMIC-trained model predicts 
a 7.0% risk given an actual event rate of 10.2% in the test data. Medicaid and privately insured patients are still 
comparably well calibrated, whereas the risk for Medicare patients is strongly underestimated. Also, the risk of 
female patients is now more strongly underestimated than it is for male patients and the differences in calibration 
for socioeconomic groups essentially disappear.

Stage 3. Retraining slightly improves decalibration but the model still consistently underestimates the IHM 
risk for all demographic groups. Female patients still have worse risk underestimation and Black patients have the 
best calibration-in-the-large despite extremely low discrimination performance.

Comorbidity-risk plots. The plots in Fig. 5 show the relation between algorithmic risk and comorbidity. Patient 
comorbidity is quantified by the Charlson score based on a weighted sum of the severity of 12 comorbidity factors 
that were shown to be indicative of the overall patient state of health. Overall, the plots do not clearly show a uni-
form trend of expected positive correlation. Rather, the curves stay roughly stable until the 70th algorithmic risk 
score percentile before starting to diverge in most demographic groups.

Insurance type. High-risk Medicaid patients are more likely to suffer from a heavy burden of comorbidities 
as shown by the spike in plot A whereas the converse holds true for high-risk patients with private insurance. 
That disparate trend can, however, not be observed in the risk predictions by the STARR-trained model (plot 
B). Finally, Medicare patients have a very stable relationship between algorithmic risk score and comorbidity. 
However, they visibly suffer from more comorbidities (about 1 index point) for a given risk score in both the 
MIMIC and STARR-trained model.

Gender. In the plots C and D, the curves show no significant differences in comorbidity burden given a 
low-to-medium algorithmic risk score percentile. The curves slightly diverge in both models for higher risk strata 
with male patients suffering from slightly more comorbidities.

Ethnicity. Generally speaking, Hispanic and Asian patients have a higher comorbidity burden than 
non-Hispanic White and Black patients for a given risk score as shown in plots E and F. Where non-Hispanic 
White and Asian patients of high-risk strata show a slight decline in the Charlson score in plot E, Black and par-
ticularly Hispanic patients experience a steep increase similar to Medicaid patients in plot A. The same, but even 
more distinct, pattern can be seen in plot F for non-Hispanic White and Black patients, whereas the trend reverses 
for Hispanic and Asian patients.

Discussion
The MIMIC dataset provides a wealth of opportunities to develop, train, and educate; as a prime example, 
Harutyunyan et al.25 developed a benchmark study to predict IHM risk that has been replicated in multiple set-
tings26–31. Given the magnitude of impact of this work, we performed an empirical evaluation of this model – a 
task generally done far too inconsistently and sparingly33. In this endeavor, we appreciated the authors’ efforts to 

Fig. 3  Classification parity plots of AUROC and AUPRC for the three analytical framework stages. In-hospital 
mortality rates (%) for demographic groups are added in parentheses after the group labels. 95% confidence 
intervals are illustrated by thin gray lines, standard deviations by bold black lines and median values by black dots.
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facilitate model comparison through the development of easily reproducible benchmark models as well as their 
detailed explanations and general user-friendliness of their open-source code. While there are many strengths 
to this publication, we also identified several limitations related to class imbalance and fairness that require mit-
igation and transparent reporting. Specifically, we found three main problems to be addressed. First, the cohort 
and performance screening unmasked a typical class imbalance problem, where the model struggles to correctly 
classify minority class instances as demonstrated through low recall. Only every fourth to fifth high-risk patient is 
identified as such by the AI tool. Second, while the assessment showed the model’s capacity to generalize, the clas-
sification parity assessment revealed that model fairness is not guaranteed for certain ethnic and socioeconomic 
minority groups, but gender is unaffected. Finally, the calibration fairness study pointed to differences in patient 
comorbidity burden for identical model risk predictions across socioeconomic groups. These results highlight the 

Fig. 4  Plots of calibration-in-the-large under demographic stratification for the three analytical framework 
stages. The deviations of the predicted average risk from the observed average risk are shown. 95% confidence 
intervals are illustrated by thin gray lines, standard deviations by bold black lines and median values by black 
dots. The dashed line in red indicates optimal agreement between predicted and observed risk.

Fig. 5  The percentiles of algorithmic IHM risk scores are plotted against patients’ comorbidities, quantified 
by the Charlson score. The curves are plotted for all demographic groups based on predictions on STARR data 
by the MIMIC and STARR-trained model. Plot A and B show groups by insurance payer type, plot C and D by 
gender, and plot E and F show the ethnic groups.
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extent of masked bias in high-quality scientific work and the need for thorough fairness evaluations. In light of 
the possible repercussions and the pervasiveness of bias in AI models, we provide a detailed analysis of the case 
study results and highlight recommendations on how to cautiously monitor and validate benchmark pipelines.

The empirical analysis of the Harutyunyan model suggests that class imbalance has a significant effect on this 
model’s performance in all three analytical framework stages. In the context of AI-guided clinical decision sup-
port, such limitations may threaten the model’s usability. As seen in particular from this model, recall rates as low 
as 25% or less should raise important concerns regardless of the model’s potential future application fields and 
use cases. In fact, this specific model’s endpoint may not be clinically relevant in many settings, but the pandemic 
has proven that there are moments where doctors increasingly look for tools to help them triage patients in a 
resource-scarce or momentarily overstrained setting. In a slightly different context, a case in point of such a tool 
is the Care Assessment Need (CAN) score deployed for almost a decade by the Veterans Health Administration 
in the US. It calculates weekly CAN scores for all Veterans who receive primary care services within the VA, 
including 90-days and 1-year mortality endpoints34. This tool has also been shown to be amenable to COVID-19 
mortality risk stratification repurposing to support clinical decision making in a system under duress35.

One of the biggest dangers of model bias and class imbalance, such as exhibited by this benchmark model, 
is the fact that such intrinsic modeling problems frequently get hidden by inadequate and too simplistic sum-
mary performance metrics such as accuracy, or to a lesser degree even in current reporting standards such as 
AUROC36–38. The accuracy paradox explains how this pitfall may cause misleading conclusions in the case of 
unbalanced datasets by failing to provide comprehensible information about the model’s discriminatory capabil-
ities39. Various targeted data and algorithm-level methods have been developed to effectively mitigate the inher-
ently adverse effects of class imbalance40. But even if such mitigation methods may, in some cases, decisively 
help in alleviating the repercussions of data imbalance on performance, there is still a critical need to address the 
remaining negative impact. Given the still widespread neglect surrounding the proper handling of class imbal-
ance and the associated far-reaching negative consequences37, it is urgent to finally work towards broad adoption 
of adequate performance evaluation procedures and reporting standards, such as provided in MINIMAR32, tak-
ing into account the characteristic challenges arising from class imbalance. More specifically, we advocate for the 
cessation of simplistic performance reporting solely based on accuracy or AUROC since performance metric 
choices have far-reaching implications on the study’s conclusions, particularly in the presence of data imbalance. 
Therefore, it is imperative that scientific journals now go beyond current reporting guidelines and start broadly 
requiring publications to explicitly state the class (im)balance and, in the case of pronounced skew, to require the 
reporting of further metrics beyond accuracy and AUROC.

Despite the inherent difficulties associated with mathematical definitions of fairness19,21 and the analytic lim-
itations imposed by class imbalance37, significant differences for both examined fairness criteria were found. 
The classification parity assessment revealed important performance differences for socioeconomic and ethnic 
groups, but not with respect to gender. Medicaid patients receive significantly worse predictions compared to 
patients with private insurance in the internal validation assessments of both the MIMIC and STARR-trained 
model (stage one and three). Studying ethnic disparities, Black patients suffer from significantly lower model 
prediction performance as compared to non-Hispanic White patients in all assessment stages. Part of this bias 
might stem from the low representation of Black patients in both datasets, yet the two other ethnic minority 
groups, Asians and Hispanics, did not show such pronounced bias. Evidently, more research is warranted to better 
understand the underlying causes of these observed differences.

Complementary to classification parity, the fairness calibration analysis revealed further fairness disparities 
for publicly insured patients. Particularly Medicare patients consistently suffer from the strongest decalibration as 
their risks are severely underestimated. Since the Medicare population tends to be distinctively older by the nature 
of its inclusion criteria resulting in an elevated IHM rate, these results are however not surprising in the context 
of the class imbalance problem. Studying the relationship of comorbidity burden and algorithmic risk predictions 
paints a similar picture as Medicare patients consistently have more comorbidities for any risk score percentile.  
In the hypothetical case of deploying such a model in an ICU setting, older patients would potentially be at risk of 
not receiving the appropriate care resources they would need to improve their chances of survival.

Another interesting phenomenon in the study of comorbidity-risk associations are the randomly seeming 
spikes for higher risk percentiles in many demographic groups. They may be partially explained by random 
fluctuations due to the quickly decreasing sample size as the algorithmic risk score increases. Another expla-
nation, however, might be that the IHM risk of those high-risk strata patients has strongly varying depend-
encies according to the characteristics of the demographic group. The opposing spiking behavior of Medicaid 
and privately insured high-risk patients is particularly interesting. The steep positive association of risk score 
and comorbidity burden in Medicaid patients suggests that their predicted likelihood of death in or after an 
ICU stay is disproportionally driven by comorbidities. On the other hand, patients with private insurance seem 
much more likely to receive such a high model risk score because of a sudden unexpected event unrelated to 
their comorbidities. This disparity in comorbidity burden points to a more systemic problem in our healthcare 
system, where socioeconomically disadvantaged patients receive unequal quality of care, contributing to many 
preventable deaths13,14,41,42.

Bias in a deployed AI-guided clinical decision support may have long-lasting and severe negative conse-
quences for the affected patient groups. In this specific case, particularly Black patients and patients under public 
insurance would be at risk, though other minority groups may also suffer from underrepresentation3–6. These 
results build on Obermeyer’s previous work and strengthen the case that Black patients and other systemically 
disadvantaged groups are the ones left behind by AI revolutionizing standards of care9. Not identifying and 
addressing such hidden biases would lead to their propagation under the mantle of AI, thereby further exac-
erbating the health disparities faced by minority populations already today7–10. Moreover, such wide-ranging 
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repercussions would also destroy public trust and hinder the further adoption of AI tools capable of decisively 
improving patient outcomes21.

While this case study is focused on the evaluation of the risk-prediction behavior of a MIMIC-trained model, 
it is important to consider the underlying data and its fit for purpose. Much of our historical healthcare data 
include inherent biases from decades of a discriminatory healthcare system13,14,43. For example, several studies 
have documented that non-White patients were less likely to receive an analgesic for acute pain, particularly when 
the underlying reason is difficult to quantify, such as a migraine or back pain44,45. This disparity becomes embed-
ded in the data and therefore a model learning from these data can only regurgitate the biases in the data itself. 
This highlights the need for diverse stakeholder involvement throughout the design, development, evaluation, 
validation and deployment of an AI model to understand how and where these biases may occur in the data and 
potential mitigation strategies, such as discussion with a nurse/clinician about different levels of missingness for 
a particular variable46. Ultimately, solutions ready for safe deployment must be developed through a joint team 
effort involving people on the ground, knowledge experts, decision makers, and end-users.

Our work has far-reaching implications. First, it sheds light on the negative repercussions of disregarding 
class performance disparities in the context of skewed data distributions – a challenge still largely neglected but 
impacting many areas of AI research and requiring systemic changes in model evaluation practices and reporting 
standards36–38. Secondly, it showcases the importance of thorough external model validation prior to its use as 
a benchmarking tool. And finally, models should also systematically undergo fairness assessments to break the 
vicious cycle of inadvertently perpetuating the systemic biases found in society and healthcare under the mantle 
of AI. Particularly, the modeling of certain research questions on single-centered datasets like MIMIC is at an 
elevated risk of embedded systemic bias and the widespread use of only a handful of large public datasets fur-
ther escalates the negative consequences thereof. Our work shows that particularly Black and socioeconomically 
vulnerable patients are at higher risk of inaccurate predictions by the model under study. These findings are of 
particular importance since this model has already been used several dozen times to benchmark new modeling 
techniques without any prior performance or fairness checks reported26–31.

This study has limitations. First, the fairness assessment is significantly limited by the model’s underlying 
problem of class imbalance. However, the results obtained under these unmodifiable constraints are statistically 
sound and meaningful. A second limitation is the lack of multi-center data, which would further strengthen the 
generalizability of the study findings, although two academic settings were evaluated in this study. https://doi.org/ 
10.25740/tb877wd0973). Finally, the study is also limited by the similarity of the two datasets since STARR orig-
inates, like MIMIC, from an affluent academic teaching hospital setting. Yet the large geographic distance result-
ing in a different demographic patient population mix provides a good basis for a first model generalizability 
assessment.

In the present era of big data, the use of AI in healthcare continues to expand. An important aspect of the safe 
and equitable dissemination of AI-based clinical decision support is the thorough evaluation of the model and its 
downstream effects, a step that goes beyond predictive model performance to further encompass bias and fairness 
evaluations. Correspondingly, regulatory agencies seek to further initiate and develop real-world performance 
requirements and test beds, using MIMIC as a gold standard10. A crucial step to achieving these goals is open 
science. Yet as MIMIC is often viewed as an exemplar of open science, understanding its limitations, through for 
example case studies, is an imperative. In our evaluation of an IHM benchmarking model, we found challenges 
around class imbalance and worse predictions for Black and publicly insured patients. Going further, we also saw 
that model performance measured by AUROC was the center of evaluation and other important assessments, 
such as minority class performance, risk of bias and concerns around model fairness, were missing or not ade-
quately reported. The repercussions from such non-comprehensive evaluation frameworks are a safety concern of 
entire populations, where the most vulnerable will ultimately suffer the most. Hence, this study cautions against 
the imprudent use of benchmark models lacking fairness assessments and external validation in order to make 
true progress and build trust in the community.

Methods
Data sources.  MIMIC.  MIMIC-III (v1.4), short for Medical Information Mart for Intensive Care, is an 
extensive single-centered database comprising EHRs of patients admitted to an intensive care unit (ICU) at the 
Beth Israel Deaconess Medical Center, an academic teaching hospital of the Harvard Medical School in Boston 
US24. The ICU data is deidentified and spans over a decade between 2001 and 2012. The most recent version 1.4 
at the time of study is used here.

STARR.  The STAnford medicine Research data Repository (STARR) contains electronic health record data 
from Stanford Health Care, the Stanford Children’s Hospital and various other ancillary clinical systems47. The 
data used for this study spans ICU stays from November 2014 to July 2019.

Demographic factors.  Gender, insurance type and ethnicity are the three main demographic attributes con-
sidered in this case study. Gender is encoded in a binary fashion as either female or male as there are no other 
reported categories in both datasets. There are no missing values for any ICU stay in both datasets.

Health insurance type is included as a socioeconomic proxy. There are three major insurance types available 
in the United States: The public programs Medicare and Medicaid, and private insurance providers. Medicare is 
a federal social insurance program and anyone over 65 years or with certain disabilities qualifies for it, whereas 
Medicaid provides health insurance to very low-income children and their families. Insurance data was therefore 
mapped to the four distinct categories Medicare, Medicaid, private and other insurance. Neither MIMIC nor 
STARR has missing data for insurance type.
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Following the terminology used in the MIMIC database, the term ethnicity is used here in the following, sum-
marizing fashion: Patients self-reporting as of White race and non-Hispanic ethnicity are coded as White, Asian 
and Black patients are, independently of their Hispanic background, coded as Asian and Black respectively, and 
all other patients of Hispanic origin are coded as Hispanic. Patients of other races such as American Indian and 
Pacific Islander are regrouped under the catch-all option Other. Hence, patients were mapped in both datasets 
onto a total of five mutually exclusive and collectively exhaustive groups.

Benchmark cohorts.  MIMIC.  The MIMIC benchmark cohort was reconstructed based on the publicly 
available source code of the benchmark model25. There are two major steps in the data processing pipeline. 
First, the root cohort is extracted based on the following exclusion criteria: Hospital admissions with multiple 
ICU stays or ICU transfers are excluded to reduce any possible ambiguity between outcomes and ICU stays. 
Moreover, patients younger than 18 are excluded as well. Finally, event entries are only retained if they can be 
assigned to a hospital and ICU admission and are part of the list of 17 physiological variables used for modeling 
(cf. Table 2). From the root cohort, the IHM cohort can be extracted by filtering for ICU stays that have a known 
length-of-stay of more than 48 hours and contain observation data during that initial time window. For a more 
detailed description of the cohort building process, the reader is referred to Harutyunyan’s publication25.

STARR.  The processing flow of STARR data is very similar to MIMIC but has been adapted and optimized 
for its characteristics. Most importantly, we use identical exclusion criteria and data processing steps that were 
applied for the MIMIC cohort. More detailed information can be found on our GitHub repository

Benchmark model.  Mortality risk prediction is generally formulated as a binary classification problem 
using observational data from a limited time window of typically 12–24 hours following hospital admission. 
Harutyunyan’s model uses a longer 48-hour window inspired by the PhysioNet/CinC Challenge 2012 to facilitate 
capturing any change in patterns affecting patient acuity25. For in-hospital mortality, the target label captures 
whether a given patient has died before being discharged. The channel-wise long short-term memory (LSTM) 
model without deep supervision has been selected as the study focus based on its superior reported AUROC 
performance among the five developed non-multitask models by Harutyunyan et al.25. The selected benchmark 
model is a modified version of the standard LSTM where all variables are first independently pre-processed with 
an individual bidirectional LSTM layer instead of working directly on the full matrix of clinical events as usual. 
More details about the LSTM model architecture, the data preprocessing and the parameters of the training 
procedure can be found in Harutyunyan’s publication25.

Three-stage analytical framework.  The case study consists of three stages – descriptive cohort analyses, 
and performance and fairness evaluations – implemented across a three-stage analytical framework: (1) internal 
model validation on MIMIC data, followed by (2) external validation and (3) internal validation after retraining 
on STARR data.

Descriptive cohort analyses.  After data selection and processing, the demographics of the resulting cohorts are 
analyzed by looking at the distributions of patient characteristics and the outcome in terms of gender, age, eth-
nicity and insurance type (cf. Table 1). Moreover, data missingness is quantified by looking at three main factors 
for each physiological variable: The percentage of ICU stays with (1) completely missing data and (2) fully avail-
able data during the 48 h observation window, as well as (3) the mean number of data points retained out of a 
maximum of 48, with the percentage in parentheses (cf. Table 2).

Performance evaluations.  Prediction models should both be well calibrated and have high discriminatory power. 
The specific application context determines the relative importance of these two objectives.

Model discrimination.  This study uses the threshold metrics precision, recall and accuracy with a risk thresh-
old of 0.5 as implemented by Harutyunyan et al.25. In addition, two AUC metrics are used: (1) The area under 
receiver-operator curve (AUROC) and (2) the area under precision-recall curve (AUPRC). While random binary 
classifiers’ AUROC is always at 0.5, the baseline AUPRC is given by the event rate. This makes AUPRC especially 
useful and informative when dealing with moderately to highly skewed classes as precision is directly influenced 
by class imbalance36.

To create empirical 95% confidence intervals for the different discrimination metrics, bootstrapping has been 
used by independently resampling K times with replacement from the original test dataset to mimic different test 
populations. In accordance with Harutyunyan’s analysis protocol, K was set to 10’000 in this study25.

Model calibration.  The Hosmer-Lemeshow (HL) goodness-of-fit test is a common tool to study calibration for 
binary risk prediction models. However, given its strong sensitivity to the chosen number of risk groups and 
cutoffs significantly impacting the conclusions regarding model fit48, the focus is put on graphical illustrations of 
calibration instead. Validation graphs as proposed by Steyerberg et al. are used to examine overall model calibra-
tion49. It is an augmented version of a calibration plot, where the mean expected and observed risk score data 
pairs are plotted for each HL risk group against the diagonal line, which is indicative for optimal calibration. The 
grouping protocol for the HL risk groups is adapted to the specifics of this modeling problem. The number of 
classes is set to the default value ten but splitting by quantiles or percentiles could not be used due to strong class 
imbalance in the data. Therefore, a tailored splitting approach had to be developed, termed exponential quantiles. 
The formula =f q q( ) 1/5 adjusts the quantiles q to work with skewed data. The exponent should be individually 
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adapted to the specific data skew. Three additional features are added to this calibration plot: (1) The risk predic-
tion distribution on the bottom of the graph for both outcomes gives a visual impression of the discriminatory 
capabilities. (2) 95% risk group confidence intervals help in dealing with the problems associated with the group-
ing procedure. These binomial proportion confidence intervals have been computed based on Wilson’s score. (3) 
The LOWESS algorithm, short for Locally Weighted Scatterplot Smoothing, gives calibration information inde-
pendent of the grouping scheme (smoother span = 0.5).

Fairness evaluations.  Corbett-Davis and Goel identified three major classes of fairness definitions19: 
anti-classification, classification parity and calibration. In this work, we only study the latter two definitions 
since anti-classification, the requirement to exclude any protected patient attributes, is already respected in 
Harutyunyan’s model.

Classification parity.  This fairness concept asks for equal predictive performance across any protected groups as 
measured by commonly used threshold and ranking-based metrics19. The specific choice of examined metrics is 
an important design choice and should be adapted to the problem setting. In this case study, classification parity is 
assessed on the metrics AUROC and AUPRC to account for both the need to have a high-performing model but 
being aware of the challenges resulting from class imbalance. In fact, assessing classification parity gets even more 
challenging when there is a combination of skewed cohort data and differing performance for the two classes like 
it is the case for the IHM model under study. In an attempt to alleviate or even eliminate the far-reaching con-
straints of class imbalance on the fairness assessment framework, we tested the use of the synthetic minority over-
sampling technique (SMOTE) in the model training procedure, but without success50. In such a situation, valid 
conclusions about model fairness can only be drawn if taking the varying event rates across demographic groups 
into account since they directly impact AUROC and AUPRC. AUPRC is better adapted than AUROC to deal with 
data skew but these values cannot be directly compared either since the baseline performances are determined by 
the event rates51. Observed performance differences can therefore only be attributed to unfair model predictions 
in two scenarios such that the effect of class imbalance can be excluded: (1) the demographic groups have similar 
event rates or (2) their event rates are the converse of what the metric would imply (i.e., higher event rate yet still 
higher performance contrary to the expected negative effect of class imbalance or vice-versa). Hence, classifica-
tion parity results can only be interpreted in close context with the IHM rates indicated in parentheses after the 
group labels in Fig. 2.

Calibration.  This fairness definition requires that outcomes should be independent of protected attributes con-
ditional on risk estimates. Therefore, calibration is not supposed to be substantially different across demographic 
groups. Two different approaches, calibration-in-the-large and comorbidity-risk plots, are used in this study to 
examine calibration under demographic stratification. They are better adapted to smaller datasets than the vali-
dation plots used in the predictive model performance evaluation phase.

Calibration-in-the-large.  This calibration assessment consists in comparing the average rates of predicted and 
observed outcomes. The calibration-in-the-large plots quantify the observed difference in average predicted 
and observed risk in each bootstrap sample and build confidence intervals based on the relative differences. 
Confidence intervals centered around zero as indicated by the red dashed line are indicative for good calibration. 
Thereby, it is possible to diagnose systematic risk over- or underestimations for certain demographic subpopu-
lations but the plots do not give any information on local model calibration as non-uniform decalibrations can 
simply average out.

Comorbidity-risk plots.  Extending the definition of calibration, a model can also be examined for systematic 
disparities across demographic groups in patient comorbidity conditional on risk score percentiles. Comorbidity 
provides a good representation of the patient’s overall health by mainly focusing on chronic diseases. In this 
study, the Charlson comorbidity index based on a weighted sum of the severity of 12 comorbidity factors with 
an observation window of two years prior to ICU admission has been used for the computational analysis52. 
Intuitively, higher comorbidity scores should correlate with higher predicted IHM risk – independently of demo-
graphic factors. This hypothesis is analyzed for risk predictions by both the MIMIC-trained and STARR-trained 
model on the full STARR cohort. The analysis is limited to STARR test data since MIMIC is a database containing 
exclusively information about ICU stays, and not complete patient EHRs, hence not allowing to compute accurate 
Charlson comorbidity scores on those patients as well.

IRB Statement
This study was approved by Stanford University’s Institutional Review Board.

Previous Presentations
The results of this study have not been previously presented.

Data availability
MIMIC-III data is available on the PhysioNet repository53 and made widely accessible to the international 
research community through a data use agreement. The STARR database contains fully identifiable patient data 
and can therefore not be shared with the public. Access to the STARR database is restricted to investigators 
identified on IRB protocols, which may be pursued through a formal collaboration with the corresponding 
author.
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Code availability
Harutyunyan’s code for its benchmark suite is available on a Zenodo repository54. Our code to reproduce the 
results and apply the analytical fairness and generalizability assessment framework also to other contexts is 
available on GitHub (https://doi.org/10.25740/tb877wd0973)55.
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