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Deep learning increases

the availability of organism
photographs taken by citizens
In citizen science programs

Yukari Suzuki-Ohno®®”, Thomas Westfechtel?®%?, Jun Yokoyama3, Kazunori Ohno*,
Tohru Nakashizuka®?, Masakado Kawata® & Takayuki Okatani?

Citizen science programs using organism photographs have become popular, but there are two
problems related to photographs. One problem is the low quality of photographs. It is laborious to
identify species in photographs taken outdoors because they are out of focus, partially invisible,

or under different lighting conditions. The other is difficulty for non-experts to identify species.
Organisms usually have interspecific similarity and intraspecific variation, which hinder species
identification by non-experts. Deep learning solves these problems and increases the availability of
organism photographs. We trained a deep convolutional neural network, Xception, to identify bee
species using various quality of bee photographs that were taken by citizens. These bees belonged
to two honey bee species and 10 bumble bee species with interspecific similarity and intraspecific
variation. We investigated the accuracy of species identification by biologists and deep learning.
The accuracy of species identification by Xception (83.4%) was much higher than that of biologists
(53.7%). When we grouped bee photographs by different colors resulting from intraspecific variation
in addition to species, the accuracy of species identification by Xception increased to 84.7%. The
collaboration with deep learning and experts will increase the reliability of species identification and
their use for scientific researches.

The number of scientific researches using organism photographs has been increasing in the field of ecology'~".
Advances in digital cameras and photograph sharing via the internet have made it possible to obtain individual-
level data on organisms from photographs without taking photographs ourselves. To collect organism photo-
graphs, researchers often use citizen science programs. Photographs collected in citizen science programs have
been used to investigate or estimate species distributions®’~1. These studies showed that photographs collected
from citizen science programs have a potential to be used in scientific studies, especially in the fields of conser-
vation ecology and invasion ecology.

While citizen science programs using organism photographs have become popular, there are two big problems
related to photographs in citizen science. One problem is the low quality of photographs. When photographs are
collected through citizen science programs, it sometimes results in low-quality photographs because animals
move or hide under various lighting conditions outdoors (Fig. 1a—c). It increases the labor of identifying species
in photographs. The other problem is the difficulty of species identification by non-experts due to interspecific
similarity and intraspecific variation. Citizen science programs sometimes aim to monitor a specific group of
organisms for conservation, and collect photographs of species in the same genus. Species in the same genus
often have strong interspecific similarity, which produces less interspecific variation than intraspecific variation
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Figure 1. Difficulties of species identification of bees in photographs taken by citizens. Uppers represent low
quality photographs. (a) Out of focus, (b) partially invisible, and (c) hard to see by shadow (a bumble bee
appears within a white circle). Lowers represent interspecific similarity and intraspecific variation of bees. (d)
Female Bombus ardens ardens, (e) female B. ignitus, and (f) male B. ardens.

(Fig. 1d-f). These similarity and difference hinder species identification by human volunteers''~'. In citizen sci-
ence programs “Blooms for Bees” and “BeeWatch’, the total accuracies of species identification by participants
were 44% and 49%, respectively'®.

To solve these problems, deep learning was selected to identify species in photographs taken by citizens.
After the development of deep learning, the accuracy of object classification by convolutional neural networks
(DCNNs) improved dramatically. DCNNs have succeeded in automatically identifying animals based on animal
photographs captured by motion-sensor cameras in Serengeti National Park, Tanzania'®. These photographs
included partially invisible, too close, or far away animals with shadows under different lighting conditions,
but DCNN can identify animals at 93.8% vs. experts’ identification. On the other hand, the accuracy of animal
identification by human volunteers was 96.6% vs. experts’ identification. The difficulty of species identification
by humans due to interspecific similarity and intraspecific variation was low in these animal photographs. It
was expected that deep learning would be more useful for us when species identification was difficult due to
interspecific similarity and intraspecific variation of target organisms. In citizen science programs using pho-
tographs, participants may not always be able to obtain the cooperation of experts in species identification. If
the accuracy of species identification by deep learning is high, it will increase the availability and reliability of
organism photographs collected in such citizen science programs, and enhance their use for scientific researches.

The aim of this study is investigating the accuracy of species identification by deep learning using various
quality photographs of bee species with interspecific similarity and intraspecific variation. The photograph dataset
used in this study consisted of 3779 photographs of two honey bee species and 10 bumble bee species in citizen
science program “Hanamaru-maruhana national census (Bumble bee national census in English)”®. Of course,
there is interspecific similarity within the same genus, but one of the major causes of interspecific similarity
for these bee species is Miillerian mimicry'®"”. Black body with orange tail like B. ardens ardens and B. ignitus
(Fig. 1d,e) was considered as Miillerian mimicry'”'®. The major causes of intraspecific variation are castes and
phenotypic variation. Bumble bees have the castes of queen, worker, and male, and there are obvious differences
between castes at least in body size and sometimes in hair color. The hair color of B. ardens ardens shows clear
sexual dimorphism: black body with orange tail in females vs. yellow body with orange tail in males (Fig. 1d,f).
Even in the same caste (especially worker), body size and color are different among individuals based on grow-
ing situations and ages'. For example, the hair color of B. diversus becomes yellowish when they inhabit colder
regions, and their hair color becomes dull as they were older. In the special case of intraspecific variation, two
subspecies of B. ardens have different hair colors from the nominotypical subspecies B. ardens ardens.

For defining the degree of interspecific similarity and intraspecific variation for humans, 50 people were
tested to identify species using the photograph dataset. In the species identification test by humans, there is a
risk of low accuracy regardless of interspecific similarity and intraspecific variation due to the difficulty of spe-
cies identification itself. To see misidentification patterns by interspecific similarity and intraspecific variation,
“biologists”, an intermediate group between the general participants and the expert identifying bee species in
the citizen science program, were selected as subjects of the species identification test. They identified species of
nine bee photographs selected randomly from the photograph dataset. The accuracy of species identification by
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Figure 2. Confusion matrix by biologists. Bright color indicates high percentage of predicted classes for a true
class. AC: Apis cerana, AM: A. mellifera, BC: Bombus consobrinus, BD: B. diversus, BU: B. ussurensis, BP: B.
pseudobaicalensis and B. deuteronymus, BHo: B. honshuensis, BA: B. ardens, BB: B. beaticola, BHy: B. hypocrita,
BI: B. ignitus, and BT: B. terrestris. Others means NA or the others.

biologists was also used to evaluate the accuracy of species identification by deep learning. Then, the accuracy
of species identification by deep learning was investigated using the photograph dataset. A deep convolutional
neural network, Xception?’, was selected, and transfer learning?>* and data augmentation? were adopted to solve
the issue of a shortage of photographs (Appendix S1 in Supplementary information). Xception learned species
classes of the photograph dataset that were classified into different classes depending on bee species. Xception
also learned color classes of the photograph dataset that were classified into different classes depending on color
differences resulting from intraspecific variation in addition to bee species. The accuracies of identifying spe-
cies classes and color classes by Xception were compared with that of identifying species classes by biologists.

Results

Species identification by biologists. To define the degree of interspecific similarity and intraspecific
variation for humans and the accuracy of species identification by humans, we asked 50 biologists with different
levels of knowledge to identify species using bee photographs. We calculated total accuracy, precision, recall,
and F-score based on their answers. Precision is the proportion of correct answers for all answers of the target
species. Recall is the proportion of correct answers for the target species. F-score is the harmonic average of the
precision and recall.

The total accuracy of species identification by biologists was 53.7% vs. expert’s identification. Interspecific
similarity between bumble bee species strongly affected the accuracy of species identification (Fig. 2). Interspe-
cific similarity between female B. ardens ardens (black body with orange tail in Fig. 1d) and female B. ignitus
(black body with orange tail in Fig. le) reduced the accuracy of species identification. Female B. ardens ardens
was frequently misidentified as female B. ignitus, and female B. ignitus was also misidentified as B. ardens (Fig. 2).
In addition, male B. ignitus (yellow body with black bands and orange tail) was often misidentified as male B.
hypocrita (yellow body with black bands and orange tail) or female B. hypocrita (black body with cream bands
and orange tail) (Fig. 2). It resulted in 37.7% precision and 57.1% recall of B. ignitus, and 44.2% recall of B. ardens
(Table 1). Interspecific similarity between honey bee species also affected the accuracy of species identification.
Native honey bee species A. cerana was often misidentified as domestic A. mellifera, and A. mellifera was also
misidentified as A. cerana (Fig. 2). The precision and recall of A. cerana were 30.8% and 57.1%, respectively
(Table 1). On the other hand, the precision, recall, and F-score of A. mellifera were higher than 70% (Table 1).
The accuracy of species identification for A. cerana was low but A. mellifera was high because A. mellifera can
be observed more easily than A. cerana in Japan, especially in urban habitats.

The precisions of common bumblebee species B. diversus and B. ardens were higher than 70% (Table 1). How-
ever, even for common species, intraspecific variation made it difficult to identify species and resulted in 58.8%
recall of B. diversus and 44.2% recall of B. ardens (Table 1). The major hair color of B. diversus was orange, but
their hair becomes yellowish in cold habitats such as high elevation regions and the northern island Hokkaido.
B. ardens has not only interspecific similarity but also intraspecific color differences depending on sex (Fig. 1d,f),
phenotypic variation, and subspecies (B. ardens ardens, B. ardens sakagamii, and B. ardens tsushimanus), which
led to misidentification as other species.

In addition to misidentification due to interspecific similarity and intraspecific variation, there is a tendency
to misidentify species when the biologists have not frequently seen them outdoors. The precisions, recalls, and
F-scores of B. consobrinus, B. ussurensis, and B. beaticola were lower than 30% (Table 1). These bumble bee species
inhabit limited areas or high elevation regions, and they cannot be observed easily in Japan.
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Genus Subgenus Species Precision (%) | Recall (%) | F-score (%)
Apis cerana 30.8 57.1 40.0
Apis Apis
A. mellifera 83.9 74.3 78.8
Bombus consobrinus 26.7 28.6 27.6
Megabombus B. diversus 80.5 58.8 67.9
B. ussurensis 12.5 16.7 14.3
B. pseudobaicalensis and B. deuteronymus | 34.8 53.3 4.1
Thoracobombus
B. honshuensis 343 45.8 39.3
Bombus
B. ardens 72.4 44.2 54.9
Pyrobombus
B. beaticola 16.0 21.1 18.2
B. hypocrita 64.3 65.5 64.9
Bombus B. ignitus 37.7 57.1 455
B. terrestris 90.0 64.3 75.0

Table 1. Precision, recall, and F-score of species identification by biologists. Precision is the number of correct
predictions as a certain class divided by the number of all predictions as the class returned by biologists. Recall,
which is equivalent to sensitivity, is the number of correct predictions as a certain class divided by the number
of test datasets as the class. F-score is the harmonic average of the precision and recall, (2 x precision x recall)/
(precision + recall).

Genus Subgenus Species Precision (%) | Recall (%) | F-score (%)
Apis cerana 93.5 90.6 92.1
Apis Apis
A. mellifera 94.5 96.3 95.4
Bombus consobrinus 65.6 61.8 63.6
Megabombus B. diversus 89.8 94.9 92.3
B. ussurensis 50.0 10.0 16.7
B. pseudobaicalensis and B. deuteronymus | 92.5 90.7 91.6
Thoracobombus
B. honshuensis 86.1 59.6 70.5
Bombus
B. ardens 75.4 89.2 81.7
Pyrobombus
B. beaticola 77.4 80.0 78.7
B. hypocrita 83.3 81.3 82.3
Bombus B. ignitus 84.8 67.2 75.0
B. terrestris 83.9 86.7 85.2

Table 2. Precision, recall, and F-score of species identification by Xception in species class experiment.
Precision is the number of correct predictions as a certain class divided by the number of all predictions as
the class returned by Xception. Recall, which is equivalent to sensitivity, is the number of correct predictions
as a certain class divided by the number of test datasets as the class. F-score is the harmonic average of the
precision and recall, (2 x precision x recall)/(precision + recall).

Species identification in species class experiment by Xception. To compare the accuracy of spe-
cies identification by deep learning with that by biologists, we categorized bee photographs into different classes
according to species in species class experiment. The total accuracy of species identification by Xception reached
83.4% vs. expert’s identification in species class experiment. With exception of precision of B. terrestris and recall
of B. ussurensis, precisions, recalls, and F-scores were higher than those by biologists (Tables 1 and 2). However,
the effect of interspecific similarity between female B. ardens ardens and female B. ignitus was large even in spe-
cies class experiment by Xception (Fig. 3).

The precisions, recalls, and F-scores of B. consobrinus and B. ussurensis were lower than 70% in species class
experiment by Xception (Table 2). B. consobrinus and B. ussurensis were sometimes predicted as B. diversus
(Fig. 3). B. consobrinus and B. ussurensis were similar to B. diversus in respect of body shape because they belong
to the same subgenus Megabombus. The hair color of B. consobrinus (yellow thorax with red band) was similar
to that of B. diversus (orange thorax), but the hair color of B. ussurensis (olive yellow thorax) seemed to be dif-
ferent from that of B. diversus. In other misidentification cases, B. consobrinus and B. ussurensis were sometimes
predicted as B. ardens (Fig. 3). B. consobrinus and B. ussurensis were very different from female B. ardens ardens
(Fig. 1d), but relatively similar to that of male B. ardens (Fig. 1f) in the coloration.

Species identification in color class experiment by Xception. To investigate the effect of intraspe-
cific variation on the accuracy of species identification by deep learning, we categorized bee photographs into
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Figure 3. Confusion matrix in species class experiment by Xception. Bright color indicates high percentage of
predicted classes for a true class. AC: Apis cerana, AM: A. mellifera, BC: Bombus consobrinus, BD: B. diversus,
BU: B. ussurensis, BP: B. pseudobaicalensis and B. deuteronymus, BHo: B. honshuensis, BA: B. ardens, BB: B.
beaticola, BHy: B. hypocrita, BL: B. ignitus, and BT: B. terrestris.

Genus Subgenus Species Precision (%) | Recall (%) | F-score (%)
Apis Apis Apis cerana 93.8 93.8 93.8
A. mellifera 92.9 96.3 94.5
Bombus consobrinus 96.0 70.6 81.4
Megabombus B. diversus 922 94.3 93.3
B. ussurensis 80.0 80.0 80.0
Thoracobombuss B. pseudobaicalensis and B. deuteronymus | 90.6 88.9 89.7
B. honshuensis (F) 82.9 65.9 73.4
B. ardens ardens (F) 82.5 95.2 88.4
Bombus Pyrobombus B. ardens (M) 72.4 80.8 76.4
B. beaticola (F) 66.7 78.6 72.1
B. hypocrita (F) 90.4 81.0 85.5
B. hypocrita (M) 75.9 91.7 83.0
Bombus B. ignitus (F) 80.0 66.7 72.7
B. ignitus (M) 88.9 80.0 84.2
B. terrestris 96.2 83.3 89.3

Table 3. Precision, recall, and F-score of species identification by Xception in color class experiment. F/M
within a parenthesis represents female/male. Precision is the number of correct predictions as a certain class
divided by the number of all predictions as the class returned by Xception. Recall, which is equivalent to
sensitivity, is the number of correct predictions as a certain class divided by the number of test datasets as the
class. F-score is the harmonic average of the precision and recall, (2 x precision x recall)/(precision + recall).

different classes according to intraspecific color differences in color class experiment. The total accuracy of spe-
cies identification by Xception increased to 84.7% vs. expert’s identification in color class experiment. Besides
total accuracy, all precisions, recalls, and F-scores were higher than those of biologists (Tables 1 and 3). The
recalls of male B. hypocrita and male B. ignitus became equal to or higher than 80% (Table 3). When weighting
the recalls of females and males using sex ratio in test data, the recalls of B. hypocrita and B. ignitus in color class
experiment were 84.1%, and 68.9%, respectively. These were higher than those of species class experiment (B.
hypocrita: 84.1% in color class vs. 81.3% in species class, B. ignitus: 68.9% in color class vs. 67.2% in species class).

The precisions, recalls and F-scores of B. consobrinus and B. ussurensis were higher than 70% in color class
experiment (Table 3), even though their classes were the same as in species class experiment. A part of the
reason was the decrease in misidentification cases as male B. ardens (Fig. 4, Tables S2 and S3 in Appendix S2 in
Supplementary information). In species class experiment by Xception, B. consobrinus was predicted as B. ardens
in 30.8% of misidentification cases, and B. ussurensis was predicted as B. ardens in 22.2% of misidentification
cases (Table S2 in Appendix S2 in Supplementary information). In color class experiment, B. consobrinus was
predicted as male B. ardens in only 10.0% of misidentification cases, and B. ussurensis was not predicted as male
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Figure 4. Confusion matrix in color class experiment by Xception. Bright color indicates high percentage.
AC: Apis cerana, AM: A. mellifera, BC: Bombus consobrinus, BD: B. diversus, BU: B. ussurensis, BP: B.
pseudobaicalensis and B. deuteronymus, BHo: B. honshuensis, BA: B. ardens, BB: B. beaticola, BHy: B. hypocrita,
BI: B. ignitus, and BT: B. terrestris. F and M in front of them mean female and male, respectively.

B. ardens (Table S3 in Appendix S2 in Supplementary information). Both of the negative effects of intraspecific
variation and interspecific similarity were mitigated in color class experiment.

Discussion

We considered that species identification by deep learning can increase the availability of organism photographs
taken by citizens. In this study, a deep convolutional neural network, Xception, trained bee species identification
using the photograph dataset. The total accuracy of species identification by Xception was evaluated by com-
paring the total accuracy of species identification by biologists. 50 biologists with different levels of knowledge
tested species identification test of nine bee photographs selected randomly from the photograph dataset. The
total accuracy of species identification by Xception (83.4% and 84.7%) was much higher than that of biologists
(53.7%). Deep convolutional neural networks (DCNNs) will be able to identify species more accurately than
most participants in citizen science programs by learning numerous photographs. In addition, if participants
have a lot of photographs to identify species or if the experts have no time to identify species, DCNNs will be
able to identify species faster than the experts. The rapid response of species identification from DCNNs will
provide a benefit for participants, such as increasing the efficiency of species identification training and the
availability of their data before experts’ verification. Although some researchers may think that the accuracy
of species identification by DCNNs is not high enough to use for scientific researches, they can use results of
species identification in scientific researches considering the error rate of species identification. Statistics for
erroneous data (e.g.**) can be applied to species identification data with errors. Otherwise, the results of species
identification in collaboration with DCNNs and experts can be used for scientific researches. DCNNSs can output
the certainty of species identification numerically. Experts can select photographs with low certainty of species
identification by DCNNs, and judge whether they should identify species in the photographs or eliminate the
photographs from data.

The total accuracy of species identification by biologists was low (53.7%), but comparable to the accuracy of
species identification by experts and non-experts using field guides®, or slightly higher than those of partici-
pants in other citizen science programs'®. The experimental conditions of these previous studies were greatly
different: experts and non-experts answered whether two bumble bee images from different field guides were the
same species®, and participants in citizen science programs answered the species of bumble bee photographs'*.
Although the experimental conditions were different among previous studies and this study, all results would
support the difficulty in identifying bee species. The interspecific similarity of bee species hindered species
identification by biologists. As we expected, the negative effect of interspecific similarity (Miillerian mimicry)
between female B. ardens ardens (black body with orange tail in Fig. 1d) and female B. ignitus (black body with
orange tail in Fig. le) was strong for biologists (Fig. 2). The intraspecific variation of bee species also hindered
species identification by biologists. Low recalls of B. diversus and B. ardens in species identification by biologists
were partly attributed to the effect of intraspecific variation.

The negative effect of interspecific similarity between female B. ardens ardens and B. ignitus was large even
in species identification by DCNN Xception (Figs. 3 and 4, Tables S2 and S3 in Appendix S2 in Supplementary
information), though the recalls of female B. ardens and B. ignitus were much higher than those by biologists
(Tables 1, 2, and 3). Previous studies of fine-grained image classification by deep learning reported the nega-
tive effect of interspecific similarity in the same genus on the accuracy of species identification. In study of 200
bird species identification, five of the six cases that are most confused with each other were species in the same
genus®®. We considered that the total accuracy of species identification in species class experiment by Xception
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was relatively high because our target was a small number of species in a small number of genera in the same
family. In an extreme case, iNaturalist photograph dataset consisted of over 5000 species in both animals and
plants, and the accuracy of species identification by deep learning was 67%?’. When DCNNs learn a large num-
ber of species across many genera or families, differences between similar species in the same genus may be too
small to learn more.

The negative effect of intraspecific variation was also large in species class experiment, but mitigated in color
class experiment by Xception. Focusing on species with sexual dimorphism, the recalls of B. hypocrita and B.
ignitus in color class experiment became higher than those of species class experiment by Xception. Interestingly,
color class experiment improved the identification of species with interspecific similarity as well as species with
intraspecific variation. Intraspecific variation was not independent of interspecific similarity: one type of hair
colors in intraspecific variation was similar to the hair color of other species. By categorizing color differences
of intraspecific variation into different color classes, Xception learned intraspecific variation efficiently, and
distinguished one type of hair colors in the species from the hair color of other species. In color class experi-
ment, Xception could learn male B. ardens, which has different hair color from female B. ardens. Then, Xception
distinguished male B. ardens from B. consobrinus and B. ussurensis more precisely in color class experiment than
species class experiment (Table 3 and Fig. 4, Appendix S2 in Supplementary information).

In general, the accuracy of species identification does not always increase by detailed classification because
there is a trade-off between data quality and quantity, or the shortage of volume for minor species/variants.
Species present in organism photographs are usually imbalanced®'®, and categorization into more classes will
increase the imbalance in the number of photographs per class and worsen the shortage of photographs for spe-
cific classes. This shortage reduces the accuracy of species identification for the specific classes, and may lower
the total accuracy of species identification. In this study, species identification for some minor classes (less than
40 original photographs) had to be abandoned in color class experiment, but data augmentation mitigated the
negative effect of photograph shortage for the other classes. By categorizing color differences of intraspecific
variation into different classes, the total accuracy of species identification by Xception increased from 83.4% to
84.7% in color class experiment. If we did not normalize it (see “The accuracy of species identification” subsec-
tion in M&M), the accuracy of species identification in color class experiment reached 86.7%. In future works,
we will be able to improve the accuracy of identifying species in minor classes to incorporate other methods like
a linear support vector machine®.

These photographs and species identification can be used for scientific researches such as investigating native
species distributions, conserving habitats of rare species, and detecting invasion of alien species. In this study,
the proportion of species in test data reflects the proportion of species in training data, and deep learning was
conducted to maximize the accuracy of species identification. In that case, the recall of common species is high,
but the recall of rare species may become low. If the major purpose is to detect rare species or uncommon alien
species, it will be ideal to conduct deep learning so as to mitigate the imbalance of species in training data (e.g.,
the constant volume of photographs per class) or maximize the recall average. Depending on the purpose, we
must select a methodology for increasing the availability and reliability of photographs taken by citizens.

Materials and methods

Citizen science program “Hanamaru-maruhana national census”. We asked citizens to take bee
photographs and send them by e-mails in citizen science program “Hanamaru-Maruhana national census
(Bumble bee national census in English)” (http://hanamaruproject.s1009.xrea.com/hanamaru_project/index_E.
html)®. We gave citizens previous notice that their photographs were going to be used for scientific studies,
and for other non-profit activities on our homepage and flyers. From 2013 to 2016, we collected roughly 5000
photographs taken by citizens. Citizens sent photographs of various bee species, but most of them were bumble
bees and honey bees. They have interspecific similarity and intraspecific variation, making it difficult for non-
experts to identify species. Since species identification was not a requirement for participants, most citizens sent
bee photographs without species identification. These bees were identified by one of the authors, J. Yokoyama.
These bees are relatively easy for experts to identify because only two honey bee species and 16 bumble bee spe-
cies inhabit the Japanese archipelago excluding the Kurile Islands. The consistency of species identification by J.
Yokoyama was 95% for 15 bumble bee species, and 97.7% for major six bumble bee species in our test using 100
bumble bee photographs®.

Bee photographs used for deep learning.  From bee species observed in citizen science program “Han-
amaru-maruhana national census (Bumble bee national census in English)”, we selected two honey bee species
and 10 bumble bee species having interspecific similarity and intraspecific variation. Two honey bee species con-
sisted of Apis cerana Fabricius, and A. mellifera Linnaeus. 10 bumble bee species consisted of Bombus consobri-
nus Dahlbom, B. diversus Smith, B. ussurensis Radoszkowski, B. pseudobaicalensis Vogt, B. honshuensis Tkalcu,
B. ardens Smith, B. beaticola Tkalcu, B. hypocrita Perez, B. ignitus Smith, and B. terrestris Linnaeus. To increase
training data of B. pseudobaicalensis, we added photographs of B. deuteronymus Schulz to photographs of B.
pseudobaicalensis because they can rarely be distinguished using only photographic images (see http://hanam
aruproject.s1009.xrea.com/hanamaru_project/identification_E.html for the details of their color patterns). We
primarily used photographs taken by citizens from 2013 to 2015 in the citizen science program, but also used
photographs taken by citizens in 2016 if the number of photographs for a certain class was small.

We cropped a bee part as a rectangle image from a photograph to reduce background effects. We increased
the number of photographs by data augmentation (Fig. S1 in Appendix S1 in Supplementary information). Please
see Appendix S1 in Supplementary information for the details of “Data augmentation.” We assigned 70, 10, and
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20% of the total data of the training dataset, validation dataset, and test dataset, respectively. Please see Appendix
S1 in Supplementary information for the details of “Data split and training parameters”.

Deep convolutional neural network (DCNN).  In this study, we chose a deep convolutional neural net-
work Xception, as it provides a good balance between the accuracy of the model on one hand and a smaller
network size on the other. We adopted transfer learning**? and data augmentation® to solve the issue of a
shortage of photographs. The Xception network has a depth of 126 layers (including activation layers, normaliza-
tion layers etc.) out of which 36 are convolution layers. In this study, we employed the pretrained Xception V1
model provided on the Keras homepage. Please see Appendix S1 in Supplementary information for the details of
“Xception’, and “Transfer learning.” For the training, we chose a learning rate of 0.0001 and a momentum of 0.9.

Species identification by biologists. We asked 50 biologists to identify the species present in nine pho-
tographs selected randomly from the photograph dataset using a questionnaire form. Their professions were
forth undergraduate student (16%), Master’s student (14%), Ph.D. student (12%), Postdoctoral fellow (26%),
Assistant professor (6%), Associate professor (12%), Professors (6%), and others (8%). Their research organisms
were honey bees (6%), bumble bees (14%), bees (6%), insects (12%), plants and insects (12%), plants (22%),
and others such as fishes, reptiles, and mammals (28%). 14% of the biologists were studying bumble bees, but
they did not need to identify all bumble bee species in their researches because only several species inhabit their
study areas. We allowed the biologists to see field guide books, illustrated books, and websites. We did not limit
the method or time to identify the species of photographs to simulate the species identification of actual citizen
science programs as much as possible, except for asking experts. The experiment was approved by the Ethics
Committee in Tohoku University, and carried out in accordance with its regulations. Informed consent was
obtained from the biologists.

Species identification in species class experiment by Xception. We conducted species class
experiment by categorizing photographs into different classes according to species. A total of 3779 original
photographs were used in species class experiment (Table S1 in Appendix S1 in Supplementary information).
These photographs were classified into 12 classes according to species. We inputted test dataset to Xception, and
recorded their predicted classes.

Species identification in color class experiment by Xception.  We conducted color class experiment
by categorizing photographs into different classes according to intraspecific color differences. Photographs of
B. ardens were classified into the following four classes: female B. ardens ardens, B. ardens sakagamii, B. ardens
tsushimanus, and male B. ardens (Table S1 in Appendix S1 in Supplementary information). Photographs of
B. honshuensis, B. beaticola, B. hypocrita, and B. ignitus were classified into female and male classes. In trial
experiments, we had found that the Xception cannot learn images in minor classes if the number of original
photographs in the classes was less than 40. No photographs in the class were predicted correctly, and no pho-
tographs in the other classes were predicted as the class. Therefore, in color class experiment, we did not use the
photographs of minor classes (B. ardens subspecies: B. ardens sakagamii and B. ardens tsushimanus, male B. hon-
shuensis, and male B. beaticola). Therefore, a total of 3681 original photographs were used in color class experi-
ment (Table S1 in Appendix S1 in Supplementary information). They were classified into 15 classes according to
intraspecific color differences in addition to species classes. We inputted test dataset to Xception, and recorded
their predicted classes. To compare the total accuracy of color class experiment by Xception with those of other
experiments, it was normalized using the number of test data including those of the minor classes, assuming that
all test data of the minor classes were misidentified.

The accuracy of species identification. We calculated total accuracy, precision, recall, and F-score in
each class. Total accuracy is the number of total correct predictions divided by the number of all test datasets.
Note that the total accuracy of color class experiment by Xception was normalized using the number of test data
including those of the minor classes. It reduces the total accuracy of color class experiment by Xception, and
enables to compare with those by biologists and species class experiment by Xception directly. Precision is the
number of correct predictions as a certain class divided by the number of all predictions as the class returned by
biologists or Xception. Recall, which is equivalent to sensitivity, is the number of correct predictions as a certain
class divided by the number of test datasets as the class. F-score is the harmonic average of the precision and
recall, (2 x precision x recall)/(precision + recall).

To show the effect of interspecific similarity on the accuracy of species identification, we used confusion
matrix. The confusion matrix represents the relationship between true and predicted classes. Each row indicates
the proportion of predicted classes in a true class. All correct predictions are located in the diagonal of the matrix,
wrong predictions are located out of the diagonal. In species identification by biologists, “Others” class represents
cases that they wrote no species name or a species name other than two honey bee species and 10 bumble bee
species in the answer column.
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