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Low socioeconomic status (SES) in childhood is associated with deficits in executive function and changes in cortical morphology.
Furthermore, rates of childhood obesity are greater among low SES children and childhood obesity is also associated with cortical
alterations and impaired neurocognition, specifically in the domain of executive function. To investigate the influence of BMI on the
relationships between SES and both neurocognition and brain morphology, we used data from the Adolescent Brain Cognitive
Development (ABCD) study to construct multiple linear regression models and conduct mediation analyses. Overall, SES as
measured by household income, highest level of parental education, and area deprivation, was associated with lower BMI, greater
total and prefrontal cortical volume, and better performance on assessments of executive function. Mediation analysis indicated
that BMI had a significant indirect effect on associations between area deprivation and both total and prefrontal cortical volumes.
BMI also played a mediating role in the associations between area deprivation and composite neurocognitive scores, which were
driven by performance on tasks of working memory and cognitive flexibility, but not cognitive control. These findings suggest that
BMI should be considered in future studies investigating the relationship between low SES and poor neurodevelopmental

outcomes.
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INTRODUCTION

Socioeconomic disadvantage among children predicts a series of
negative outcomes in cognition and academic achievement [1-3].
Children from low socioeconomic backgrounds are predisposed to
a number of negative health risks early on and later in life [4-6].
Particularly, rates of childhood obesity are prevalent among
children from lower socioeconomic backgrounds in the United
States and other industrialized countries where low socioeco-
nomic status (SES) populations have access to energy-dense diets
[7, 8]. There are several complex factors that could be driving this
relationship. Higher parental education is associated with more
participation in sports and consumption of fruits and vegetables,
and less screen time and consumption of soft drinks and fast food
among children [9]. Neighborhood factors have also been
suggested to play a mechanistic role. Nutritional and physical
characteristics of deprived areas, such as fast-food outlet density
and crime rates, may facilitate excessive calorie intake and
discourage physical activity among low SES youth [10-12].
Childhood and adolescent obesity is also associated with a
number of deficits in brain structure and cognition. Together,
these findings suggest that body weight is an important target for
understanding neurodevelopmental outcomes in low socioeco-
nomic youths. However, the neurodevelopmental consequences
of elevated BMI in the context of low SES children are not well
characterized.

Several studies have investigated the association between
greater BMI and lower scores on tests of neurocognition,
specifically in the domain of executive function [13-16]. Sub-
domains of executive function, including working memory,

cognitive flexibility, and cognitive control (or attention), may play
a role in food-related behaviors and several theories regarding the
directionality of this relationship have been proposed [17-19]. For
example, Wu et al. [20]. found that obese children perform
significantly worse on working memory tasks than their lean
counterparts, and that working memory ability mediated the
negative association between obesity and academic performance.
Higher BMI has also been associated with lower cortical volumes
and other morphological alterations relative to lean children, most
notably in regions of the prefrontal cortex responsible for
executive function [17, 18]. Differences in prefrontal metabolic
activity in both resting state and during cognitive tasks have also
been reported among obese individuals. Both brain structural and
functional alterations are suggested to underlie the relationship
between BMI and cognition [19, 21-24].

Similar to obesity, low SES has been associated with both
structural and functional differences in the cortex as well as
deficits in neurocognition in children [25-29]. For instance,
Lawson et al. [27]. found that parental education predicted
prefrontal cortical thickness, particularly in the right anterior
cingulate gyrus and the left superior frontal gyrus. Low SES
children perform significantly worse than higher-SES controls on
neurocognitive tasks, with the most pronounced differences
observed in executive functions, including working memory and
cognitive control [30]. Several factors have been suggested to
facilitate these relationships, such as linguistic exposure and
chronic stress as measured by cortisol levels [31, 32].

A number of studies have leveraged the large sample sizes
provided by the Adolescent Brain Cognitive Development (ABCD)
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study to explore the aforementioned relationships in adolescents.
Investigators using this dataset have found greater BMI to be
associated with lower prefrontal cortical thickness and lower
scores on tasks of executive function, with morphological
differences partially mediating the relationship between BMI and
executive cognition [19, 24]. Similarly, ABCD studies have
demonstrated that low SES, and most specifically neighborhood
disadvantage, is related to worse neurocognitive scores and
reduced structural measures in frontal regions. Cortical deficits
once again played a mediating role in the relationship between
the other two variables [29, 33, 34]. Lastly, ABCD studies have
shown that neighborhood disadvantage and individual measures
of SES are associated with alterations in both task-based and
resting-state functional connectivity related to reward anticipation
and cognitive function [35-37].

In sum, many studies have observed significant relationships
between BMI, SES, brain structure, and cognitive function, but they
often measure only two of these variables and have done so in
relatively limited samples. Few studies have examined how BMI
and SES interact regarding their effects on brain structure and
cognition, which could help disentangle some of these complex
interdependencies. Here, we take advantage of the ABCD dataset,
and investigate a potential model where BMI influences the
associations between childhood SES and neurocognitive devel-
opment. We hypothesize that the relationships between low
childhood SES and both cortical volume and cognitive perfor-
mance are partially mediated/moderated by BMI. Such a relation-
ship would highlight the importance of improving accessibility of
healthy food options and opportunities for physical activity in low-
income areas and would suggest that developmental outcomes in
low SES demographics could be improved through interventions
aimed at maintaining a healthy body weight.

METHODS

Data source

This investigation used data from the Adolescent Brain Cognitive
Developments'\’l (ABCD) Study (https://abcdstudy.org), held in the NIMH
Data Archive (NDA). This is a large-scale, longitudinal study following over
11,000 9-10-year olds for 10 years throughout development. Participants
were recruited through school systems associated with 21 data collection
sites across the United States. The recruitment protocol was designed to
result in a study sample that is representative of the sociodemographic
variation of the US population [38]. Ethical review and approval of the
research protocol have been previously described [39].

The current study uses data from ABCD release 2.0, containing baseline
data for 11,876 children. Participants lacking data for any of the variables of
interest were not included in the statistical analyses. Furthermore, only one
individual from each family was selected at random to remove any
possible effects of relatedness between subjects, resulting in a sample size
of 7607 participants.

Measures

BMI.  The height and weight of each subject was measured up to three
times and averaged. BMI was calculated by multiplying 703 by mean
weight in pounds divided by mean height in inches squared.

Socioeconomic status. Measures used to characterize SES in this study
included Area Deprivation Index (ADI), highest level of parental education
(PE), and annual household income (HI). ADI is a measure of socioeconomic
disadvantage at the neighborhood level. It is based on 17 metrics derived
from Census data describing poverty, education, employment, and
housing quality, with a higher score indicating greater neighborhood
deprivation [40, 41]. The weighted mean ADI of each subject was
calculated based on the time spent at each reported address of residence
and the corresponding ADI score.

PE and HI are widely used measures of SES and are considered essential
for all mental health research by the National Institute of Mental Health
[42]. These were measured based on parental questionnaires included in
the ABCD study’'s demographic battery [43]. The original survey item
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assessing PE had 21 different response options which were re-coded into 5
levels (Less than High School, High School Grad/GED, Some College,
Associate’s/Bachelor’'s Degree, and Postgraduate Degree). If PE for both
parents was reported, the highest value of the two was used. The original
survey item assessing HI had nine different response options with varying
increments of income between them. As such, household income could
not reliably be implemented as a continuous variable and was instead re-
coded into three levels (<50 K, 50-<100 K, 2100 K), roughly reflecting lower,
middle, and upper class. These transformations have been implemented in
previous studies using the ABCD data set and were implemented here to
simplify our statistical models as much as possible without losing nuance
[44].

Physical activity. Physical activity was measured by self-report as the
number of days in the week prior to the interview that each subject was
physically active for a total of at least 60 minutes per day. This data was
collected via questionnaire from the Youth Risk Behavior Survey as part of
the ABCD Study’s baseline physical health battery [43].

Neurocognition. A detailed description of the ABCD baseline neurocog-
nitive battery is described by Luciana et al. [45]. Among other assessments,
the baseline battery included the NIH Toolbox, a collection of seven tasks
assessing different domains of cognitive function [46]. For our analyses we
selected the age-corrected composite score on the NIH Toolbox as well as
the age-corrected scores on three of its executive function subtests: The
Flanker Task (a measure of cognitive control/attention), the List Sorting
Test (a measure of working memory), and the Dimensional Change Card
Sort Task (@ measure of cognitive flexibility).

Structural neuroimaging. A detailed description of the complete imaging
procedures of the ABCD study is described by Casey et al. [47]. The
scanning protocol was designed to be implemented with three different
3T scanners (Siemens, General Electric, and Philips), allowing for data
harmonization across 21 different imaging sites.

For the current study, we used the structural MRI data acquired from 3D
T1-weighted images with a 1 mm isotropic resolution. The 3D T1-weighted
images were acquired while the participant watched a child-friendly
movie. Centralized processing and analyses of MRI data were conducted
by the ABCD Data Analysis and Informatics Center. Real-time motion
detection and correction were utilized on General Electric and Siemens
Scanners. Signal-to-Noise Ratio and head motion statistics were auto-
matically calculated for quality control. For manual quality control, images
were reviewed by trained technicians, and those deemed unacceptable
due to artifacts were not included in the data set [48].

Cortical volumes were constructed using FreeSurfer version 5.3.0 and
segmented according to the Desikan-Killiany atlas [49]. Total Cortical
Volumes for the prefrontal cortex (our primary region of interest) and
occipital cortex (a control region) were calculated by summing the
volumes of the regions of interest included in these areas. We also used
bilateral total cortical volume.

Statistical analyses

For each of the following analyses, a two-tailed alpha set to 0.05 was used
for all inferences and false discovery rate was used to adjust for multiple
comparisons.

Multiple linear regressions

To begin exploring the role of BMI in the association between SES and
Neurocognition/Cortical Morphology, we first established the relationship
between SES and BMI and the relationships between SES and our different
measures of Neurocognition/Cortical Morphology. Specifically, these
relationships are a precondition for traditional mediation analysis [50]. To
do this we generated different sets of multiple linear regression models
using the Im function in R version 4.0.2 [51]. Our eight response variables
included BMI, Total Cortical Volume, Prefrontal Cortical Volume, Occipital
Volume, Total Composite Neurocognitive Score, and scores on the three
selected Toolbox subtests: The Flanker Task, the List Sorting Working
Memory Test, and the Dimensional Change Card Sort Task. Independent
variables of interest included our measures of SES (ADI, PE, and HI).
Covariates included age, sex, race, ethnicity, physical activity, and total
intracranial volume. These covariates were selected as age, sex, race, and
ethnicity were shown to be significantly associated with BMI, and it is
important to control for intracranial volume in imaging studies [52-54].
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Furthermore, other publications using ABCD data have set a precedent of
including these covariates in their analyses [19, 24, 35].

We first generated separate models that each contained a single
measure of SES (ADI, PE, or HI) along with covariates to individually assess
the relationship between each of these measures and our outcome
variables. These models were used for further analyses investigating the
influence of BMI on the relationships. PE and HI were dummy coded
categorical variables with Less than High School and <50K acting as the
respective reference categories. All three measures were then implemen-
ted into expanded models to maximize the amount of variance potentially
explained by SES. Calculation of the generalized variation inflation factors
for each of our predictors did not demonstrate the presence of substantial
multicollinearity in our extended models (max gVIF = 1.951), indicating
that the inclusion of all measures of SES in these models was not
problematic for the interpretation of regression coefficients [55]. We also
included physical activity as an additional covariate in these models to
account for any variance potentially explained by levels of fitness. This was
done after investigating the influence of fitness levels on BMI using an
additional model with physical activity as the independent variable of
interest. All of the data meet the assumptions of these models. While the
distribution of the error terms of the SES vs BMI model was not fully
normal, the assumption of normality can be relaxed for large sample sizes
due to the central limit theorem [56].

It is important to account for site differences in the ABCD sample,
especially with regards to imaging measures. However, because ADI is
based on geographic location, ADI and study site are highly confounded in
the ABCD sample (F = 158.4, P < 0.001). As this confound makes it difficult
to disentangle the individual effects of ADI and study site on our outcome
measures, we did not include the study site in our primary regression
models. However, we did generate supplementary linear mixed effect
models that include site location as a random effect using the Imer
function from the Ime4 package in R [57]. The initial calculation of the
intraclass correlation coefficients for our outcome measures indicated that
the proportion of the variance attributed to the study site was minimal
(Table S1). However, as a low ICC does not necessarily mean a multilevel
approach is unwarranted, we still calculated the mixed effect models.
Including the study site as a random effect abolishes the significant
relationships of our morphological measures with ADI, but not with HI or
PE (which are not inherently tied to location).

Race/ethnicity is also strongly related to ABCD site location [chi-squared
test for independence of categorical variables; x*(60) = 2026.1, P < 0.001;
N =7607], and the confound between race/ethnicity and socioeconomic
status is well-documented in the US [58]. Thus, we also generated
additional multilevel models with site as a random effect that did not
include race/ethnicity as covariates. Notably, our morphological measures
were once more significantly related to ADI in these models. Results for all
SES variables in our additional mixed effect models can be found in the
supplementary materials (Tables S2-54).

Comparing correlated coefficients

We also sought to determine if SES associations were specific to certain
domains of cognitive function. To assess the differential association of the
three NIH Toolbox subtests with ADI, we compared the correlation
coefficients (Pearson’s R) of each direct relationship using the paired.r
function from the “psych” package in R [59]. This command generates a
t-test of the difference between two dependent correlations by first
converting the correlation coefficients to z-scores using a Fisher's R to Z
transformation [60].

Assessing the role of BMI in the relationship between SES and
neurocognition/cortical morphology

Traditional mediation analysis requires either a continuous or binary
categorical explanatory variable [50]. As ADI is continuous, we investigated
the mediating role of BMI in the relationships between ADI and our
independent variables of interest using the “mediation” package in R [61].
Because ADI was the explanatory variable of interest, we used models with
ADI as the sole measure of SES to keep our analyses as parsimonious as
possible. In the context of mediation models, the direct and total effects
refer to the beta coefficients of the explanatory variable of interest in
models with and without the mediator respectively. In these models, the
indirect effect is equal to the reduction in the direct effect of the primary
variable of interest on the dependent variable due to a third, mediating
variable and is the quantification of the amount of mediation. 1000 Monte
Carlo Simulations were used to generate Quasi-Bayesian 95% Cl for the
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average indirect (mediating) effects, the average direct effects, and the
total effects [62].

As PE and HI are non-binary categorical variables, mediation analyses
were not conducted with these variables. Rather, we investigated the
possible moderating role of BMI in the relationship between these
variables and composite neurocognition and total cortical volume by
testing for interaction effects between BMI and the different categorical
levels of PE and HI in the respective individual models.

RESULTS

The current study used a sample of 7607 subjects (age =9.91 +
0.613 years, 52.9% male). Descriptive demographic information of
the study sample can be found in Table 1. Overall, greater SES was
associated with lower BMI, higher composite neurocognitive
scores, and greater total cortical volume. BMI played a significant
mediating role in the relationship between ADI and both
neurocognitive scores and total cortical volume.

SES is associated with BMI, composite neurocognitive score,

and total cortical volume in multiple linear regression models
In our individual models, greater ADI was significantly related to
greater BMI (B = 0.0135, P<0.001), lower total cortical volume

Table 1. Participant characteristics.

Demographic No. of participants® (%) (N = 7607)

Sex

Male 4023 (52.9)
Female 3584 (47.1)
Race

White 5285 (69.5)
Black 1408 (18.5)
Asian 478 (6.28)
Other 436 (5.72)
Ethnicity

Non-Hispanic 6053 (79.6)
Hispanic 1554 (20.4)

ADI (Mean, SD)

Annual household income

92.15 (24.6) Range: 0-125.75

<50K 2227 (29.3)
50K -<100K 2186 (28.7)
<100K 3194 (42.0)
Highest level of parental education

Less than High School 411 (5.40)
High School Graduate/GED 586 (7.70)
Some College 918 (12.1)
Associates/Bachelor’s Degree 2947 (38.7)
Postgraduate Degree 2745 (36.1)
BMIP

Mean (SD) 18.6 (3.85)
Underweight (<5%) 301 (3.96)
Healthy Range (5% - <85%) 5044 (66.3)
Overweight (85% - <95%) 1129 (14.8)
Obese (295%) 1133 (14.9)

a All subjects are adolescents with a mean sample age of 9.91+
0.621 years.

b Weight Status categories based on CDC guidelines. National BMI
percentiles were determined using CDC BMI-for-Age Growth Charts for
boys and for girls. Age of 10 years was used (Centers for Disease Control
and Prevention).
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ADI is associated with predicted BMI, cortical volume, and neurocognitive score. ADI vs predicted values of (A) BMI, (B) Cortical

Volume, and (€) Composite Neurocognitive Score. Extended linear regression models follow the formula: Dependent Variable = 8,5, ADI +
Bpe PE -+ By HI+ Bpa Physical Activity + Bage Age -+ Brace Race + Beennicity Ethnicity + B, Sex + By, Intracranial Volume + B,. The x-axis
position of each data point is determined by the corresponding subject’s ADI value. The position on the y-axis corresponds to the resultant
dependent variable value after the independent variable values of a given subject are inserted into the equation above. The curve on each
graph represents the line of best fit for predicted values vs ADI using ordinary least squares regression and demonstrates the direction of the
relationships between ADI and BMI, Cortical Volume, and Neurocognitive Score (positive, negative, and negative respectively). The color of
each data point represents the corresponding subject’s highest level of parental education.

(B = —57.3, P<0.001), and lower composite neurocognitive scores
(B = —0.105, P<0.001), establishing the relationships necessary
for mediation analysis. Each category of increasing SES for HI was
significantly related to lower BMI, greater composite neurocogni-
tive scores, and greater total cortical volume. Additionally, every
category of PE except “High School Grad/GED” was associated
with lower BMI and greater neurocognitive scores. However, only
“Postgraduate Degree” was significantly related to increased total
cortical volume (Tables S5-S7).

Largely, the significance and direction of these relationships
remained consistent in our extended models that incorporated
all of our measures of SES simultaneously for BMI and composite
neurocognitive score. However, only “Postgraduate Degree” and
annual household income greater than 100 K were significantly

SPRINGER NATURE

associated with total cortical volume in the extended model.
(Tables S5-S7). The directions of these relationships are
visualized in Fig. 1 using scatter plots of ADI vs predicted
response variable measures based on the extended regression
models. Additionally, the model predicting BMI based on
physical activity in the week prior to the interview indicated
that physical activity was negatively correlated with BMI (B =
—0.084, P <0.001) (Table S8).

In the models that included interaction terms between BMI and
the different levels of PE and HI individually, the only significant
interaction was between BMI and annual household income of 50-
<100K (B = —0.27, P =0.044) for neurocognitive score (Table S9,
S10). Full statistical summary data of all models can be found in
the Supplement.

Translational Psychiatry (2022)12:33
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Fig. 2 Neurocognitive subtests of different domains of executive function are differentially associated with ADI. A ADI vs. predicted
values on the Flanker (Cognitive Control), Card Sort (Cognitive Flexibility), and List Sort (Working Memory) tasks based on our extended linear
regression models as described in Fig. 1. B Statistic comparison of correlation coefficients. Bars indicate magnitude of Pearson’s correlation
coefficient (p) for ADI and each subtest. Fisher’s R-to-Z transformation was used to generate a t-test statistic for the difference between each
pair of correlations. The correlation between ADI and Working Memory (List Sort Task) was significantly greater in magnitude than the
correlations with the other two tasks. Cognitive Flexibility (Card Sort) and Cognitive Control (Flanker Task) correlations with ADI were not

significantly different from one another.

SES is associated with specific cortical regions and
neurocognitive subdomains in multiple linear regression
models

Because greater BMI has previously been associated with impaired
executive function specifically, we investigated the relationship of
SES with prefrontal cortex volume as well as with three NIH
Toolbox subtests assessing different components of executive
function. We also included an analysis of the relationship between
SES and occipital cortex volume as a reference region of interest to
compare with our prefrontal cortical analysis.

In our individual models, ADI was significantly associated with
lower volume in our primary region of interest, prefrontal cortex
(B = —15.3, P=10.003), but not our control region, occipital cortex
(B = —2.92, P =0.206). In the individual models of PE and HI, only
“Postgraduate Degree” was significantly related to greater
prefrontal cortex volume, while none of the measures of parental
education were significantly related to occipital cortex volume.
Both levels of increasing HI were associated with greater volume
in both regions (Table S11, $12). In the extended model predicting
prefrontal volume, the relationships with ADI and “50-<100 K"
were no longer significant. Full statistical summary data of all
models can be found in the Supplement.

Greater ADI was significantly associated with lower scores on all
three neurocognitive subtests (Flanker [Cognitive Control]: B =
—0.0411, P<0.001; List Sort [Working Memoryl: § = —0.0616, P <
0.001; Card Sort [Cognitive Flexibilityl: B = —0.0439, P <0.001).
The direction of these relationships are visualized in Fig. 2A. Each
category of increasing SES for PE and HI was significantly
associated with better performance on all three subtests except
“High School/GED” on all three tasks, and “Some College” on the
Card Sort task. All relationships remained true in the extended
models as shown in the Supplement (Tables S13-515).

Analyses of regression models where ADI predicted neurocog-
nitive subtests scores indicated that all three models significantly
fit the data (Flanker: F8,7598: 2749, P<0.001; List Sort: F8,7598 =
84.02, P < 0.001; Card Sort: Fgs598 =41.27, P <0.001). However, as
the F-test statistic and Beta-coefficient for ADI were greater in
magnitude for the List Sort task, we used a Fisher's R-to-Z
transformation to statistically compare the correlations of ADI with
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the different subtests. Pearson’s correlation coefficients of ADI
with the Flanker, List Sort, and Card Sort Subtests were p =
—0.110, p = —0.165, p = —0.118, respectively. Comparison of
correlated coefficients revealed that the correlation between ADI
and scores on the List Sort task was significantly greater in
magnitude than the correlation of ADI with the Flanker (t = 3.94, P
<0.001) and Card Sort (t =3.41, P<0.001) tasks. Additionally, the
correlations with the Flanker task and the Card Sort task were not
significantly different from each other (t = 0.66, P = 1.00) (Fig. 2B).

Mediation analysis of ADI, BMI and neurocognition/cortical
volume

In the following models, ADI is the primary independent variable
of interest, with BMI serving as the potential mediator responsible
for the indirect effect. Significant indirect effects attributed to BMI
were associated with the relationship between ADI and both total
cortical volume (Indirect Effect=—7.01, P<0.001) (Fig. 3) and
prefrontal cortex volume (Indirect Effect=—2.58, P<0.001).
Mediation analysis of the relationship between ADI and occipital
cortex volume is unnecessary because our multiple linear
regression model did not indicate a significant association
between these two variables. BMI also partially mediated the
relationship between ADI and Composite Neurocognitive Score,
with a significant indirect effect of —0.0039 (P<0.001). The
indirect effect of BMI was significant in the relationship between
ADI and both the Card Sort (Indirect Effect = —0.0025, P < 0.001)
and List Sort (Indirect Effect = —0.0026, P < 0.001) tasks, but not
the Flanker Task (Indirect Effect = —0.00079, P =0.17) (Fig. 4). Full
statistical summary data can be found in the Supplement (Table
S16).

DISCUSSION

The results of the present study broadly indicated a significant
negative association between measures of SES (PE, ADI, Hl) and
BMI, as well as significant positive associations between SES
measures and both neurocognition and cortical volume in a
diverse sample of 7607 9-10-year-old children. These results are
consistent with prior findings [29, 63]. The relationship between

SPRINGER NATURE
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when BMI is included as a mediator. Inset graphs are from Fig. 1 and are used to illustrate the relationships that must be established to

conduct mediation analysis.

Proportion Mediated= 0.019"
Indirect Effect = - 0.00079"¢

a=.0135"* =-0.056"°
c’=-0.040**

=-0.041**

Proportion Mediated= 0.041***
Indirect Effect = - 0.0026***

0.193***

c'=-0.0592***

=-0.0618***

Proportion Mediated= 0.0565***
Indirect Effect = - 0.0025***

c'=-0.0416"

0.186™**

=-0.0441%
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Characteristics are identical to those described in Fig. 3, without insets. The indirect effects of BMI are significant for the Card Sort and List Sort

tasks, but not for the Flanker task.

SES and cortical brain volume differed across brain regions
(prominent in prefrontal but not occipital cortex). Additionally, SES
appears to have a differential role across domains of executive
function (with a more prominent impact on working memory than
cognitive control and cognitive flexibility). Notably, BMI had a
significant indirect effect in the associations between ADI and
various measures of brain structure and cognition.

BMI was significantly associated with all SES measures we
assessed, barring the “High School Grad/GED” category of PE. At
the neighborhood level, a greater ADI value predicted greater BMI,
while categories of increasing SES for both HI and PE predicted
lower BMI at the individual level. Several studies had previously
shown associations of childhood obesity with both household
income and parental education, citing the affordability of highly
processed, calorically dense foods, as well as different cultural
attitudes among educated families towards healthy dietary habits
and obesity as possible causal factors [9, 52, 64, 65]. Childhood
obesity is also associated with neighborhood SES [66]. This
relationship has partially been attributed to the higher density of
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unhealthy fast-food outlets in low-income areas and low access to
healthy foods (food deserts) [67-69]. Additionally, fewer recrea-
tional facilities and higher crime rates in deprived neighborhoods
contribute to decreased physical activity and subsequent
increased obesity among children residing in these areas [70].
Greater total and prefrontal cortical volumes were observed
with greater SES, though the exact nature of this relationship is
unclear. Prior studies using this dataset have shown that higher
SES at the neighborhood level is positively correlated with greater
cortical thickness in regions of the prefrontal cortex as well as
greater hippocampal volume, consistent with our findings [29, 331.
Several studies have shown that greater cortical volume and gray
matter thickness in certain brain regions correlate with greater
parental education, especially in the prefrontal cortex [25, 71, 72].
However, in the present study only the “Postgraduate Degree”
educational category was significantly associated with total and
prefrontal cortical volumes. Sample sizes in the cited publications
were limited in comparison to that of the ABCD dataset (largest
sample of 283) and the large sample size of the present study may
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allow for a more accurate representation of the relationship
between parental education and cortical structure.

SES was positively associated with composite neurocognitive
performance, as well as performance on subtests assessing
specific domains of executive function. These results are
consistent with previous studies describing the relationship
between SES and neurocognition/executive function on both
the individual and neighborhood level [32, 73-75]. Further
investigation revealed that the negative correlation between ADI
and the List Sort Task measuring working memory was
significantly greater in magnitude than that of the other two
subtests. Prior studies similarly observed stronger associations
between SES and working memory than SES and cognitive
control, though these studies did not assess cognitive flexibility
[30, 76]. However, Sarsour et al. [77] did investigate the association
between SES and the three cognitive domains assessed in the
present study in 60 children, and found that the impact of SES was
weakest on working memory. Differences in sample size and
demographics as well as differences in tasks used to measure
cognitive domains may account for these discrepancies. Chronic
stress in childhood as well as enrichment of the childhood home
environment have been shown to partially mediate the relation-
ship between SES and working memory [78-80]. This finding is
particularly notable since working memory is considered a
foundational cognitive function, providing the basis for many
higher-order cognitive processes [81]. However, the reason
working memory would be affected more than cognitive flexibility
or cognitive control is unclear. It is likely that these domains of
executive function have distinct neural correlates within prefrontal
circuits. For example, the dorsolateral prefrontal cortex is critical
for working memory, while it is the anterior prefrontal and anterior
cingulate regions that are activated during the Flanker task
[80, 82, 83]. Therefore, future studies specifically examining how
each of these regions relate to SES in the context of various
cognitive domains could provide more insight.

Our results indicated that BMI partially mediated the relation-
ships between neighborhood SES as measured by ADI and both
neurocognition and cortical volume. Several neurobiological
consequences of high BMI could potentially lead to lower cortical
volume. The brain relies on the cerebrovascular system to supply
oxygen and glucose necessary for healthy neuronal function and
vascular dysfunction in the brain can lead to reduced cerebral
perfusion and subsequent neuronal atrophy [84]. Childhood
obesity has been associated with endothelial dysfunction, and it
was suggested that deficits in endothelial-dependent vasodilation
may lead to inadequate glucose supply in the brain and a
suboptimal neuronal environment [85, 86]. Furthermore, it is also
possible that some ABCD participants who were obese might have
had some level of insulin resistance, hypoglycemia, increases in
inflammatory signals and/or cardiac disruption, all of which could
negatively affect brain development [87-90]. Further, obese
children are at a higher risk of sleep apnea, which in turn could
negatively affect brain development and cognition [91, 92]. Lastly,
evidence in animal models has shown that weight gain can lead to
synaptic loss as a result of decreased dendritic spine density and
synaptic protein expression [93].

Many of these neuronal consequences of elevated BMI could
also partially explain its role as a mediator between SES and
neurocognition. For instance, increases in brain activation are
accompanied by increased blood flow and glucose and oxygen
consumption in the activated regions [94, 95]; therefore obesity-
related endothelial dysfunction and sub-optimal blood flow may
also contribute to cognitive impairments [86]. Deficits in cortical
activation itself could also underlie impaired neurocognition
related to BMI. fMRI studies have shown obesity-related differ-
ences in cortical activation during food-related cognitive tasks and
in response to food images [96, 97]. Furthermore, several studies
showing deficits in executive function related to BMI have cited
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cortical structural alterations similar to the ones observed in the
present study [14, 98]. If higher BMI is driving brain structural
deficits, which may or may not manifest in cognitive dysfunction
later on, this might explain why in the present study we observed
a greater proportion of SES-cortical structure relationships
mediated by BMI, in comparison to the number of SES-cognition
models.

On a much broader scale, a variety of sociological factors might
explain part of the relationship between childhood obesity and
cognitive performance. Regular exercise and participation in
school sports have been positively associated with academic
achievement and executive function [99, 100]. Further, exercise as
an interventional measure can improve executive function
performance and academic outcomes in overweight children
[101]. Evidence suggests that rates of participation in school sports
are lower among obese children, though the direction of this
relationship is unclear [102, 103]. As our results indicated that
physical activity is negatively correlated with BMI, future
investigations parsing the contributions of fitness and BMI to
neurodevelopmental outcomes may be useful. The larger like-
lihood of bullying victimization among obese children could also
account for part of the association between elevated BMI and
cognition, as victims of bullying tend to have poorer academic
and executive function performance [104-107].

Several limitations exist in our study, and therefore, our results
must be interpreted with care. Because of the cross-sectional
nature of the study, it is not possible to draw conclusions on the
direction of associations. While the present models consider BMI
to be the mediating variable, reverse causality is also possible,
where cognition or cortical volume facilitate the relationship
between SES and BMI. Additionally, SES could drive changes in
BMI and developmental measures independently, suggesting a
joint causative model. As such, we do not claim that our data
shows explicit evidence of causation, but that our findings lend
support to a hypothesis that may be further explored in
longitudinal studies. Future studies may also consider more
complex mediation models beyond the traditional methods that
explore exposure-mediator interactions or categorical indepen-
dent variables. Additionally, since the HI data were collected via
questionnaires that had differing increments of income between
response options, income could not effectively be modeled as a
continuous variable. Income is inherently a continuous variable
and future studies should collect actual income levels to model it
as such. Furthermore, Fisher's R-to-Z transformation allows for
the statistical comparison of correlation coefficients of only
direct relationships that do not account for covariates. Lastly, the
relationships between our morphological measures and ADI are
no longer significant when including study site as a random
effect and race/ethnicity as covariates in mixed-effect models.
However, ADI is calculated based on location and there is an
inherent overlap in the meaningful variance in our outcome
measures explained by study site and ADI. Furthermore,
geographic location, race/ethnicity, and SES are highly con-
founded making it difficult to parse the individual effects of
these variables on outcome measure. Future longitudinal studies
are necessary to disentangle the complex associations between
these variables.

In conclusion, SES was positively associated with both cortical
volume and neurocognitive performance. These relationships
were distinct across brain regions and domains of executive
function, with working memory having a significantly stronger
correlation with ADI than the other two domains. Evidence from
this study suggests that the relationships between ADI and both
cortical volume and neurocognition could be partially mediated
by BMI. While we do not infer causation, these findings suggest a
hypothesis on which future longitudinal studies could be based.
Such studies could further elucidate the exact directionality of
these associations and support interventional measures aimed at
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facilitating healthy body weight to improve outcomes in brain
development in low SES populations.
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