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Abstract

Rationale: The ability of peripheral blood biomarkers to assess
chronic obstructive pulmonary disease (COPD) risk and progression
is unknown. Genetics and gene expression may capture important
aspects of COPD-related biology that predict disease activity.

Objectives: Develop a transcriptional risk score (TRS) for
COPD and assess the contribution of the TRS and a polygenic
risk score (PRS) for disease susceptibility and progression.

Methods: We randomly split 2,569 COPDGene (Genetic
Epidemiology of COPD) participants with whole-blood RNA
sequencing into training (n=1,945) and testing (n=624) samples and
used 468 ECLIPSE (Evaluation of COPD Longitudinally to Identify
Predictive Surrogate End-points) COPD cases with microarray data
for replication. We developed a TRS using penalized regression (least
absolute shrinkage and selection operator) to model FEV1/FVC and
studied the predictive value of TRS for COPD (Global Initiative for
Chronic Obstructive Lung Disease 2–4), prospective FEV1 change
(ml/yr), and additional COPD-related traits. We adjusted for potential

confounders, including age and smoking. We evaluated the predictive
performance of the TRS in the context of a previously derived PRS
and clinical factors.

Measurements and Main Results: The TRS included 147
transcripts and was associated with COPD (odds ratio, 3.3; 95%
confidence interval [CI], 2.4–4.5; P, 0.001), FEV1 change (b,217
ml/yr; 95% CI, 228 to 26.6; P=0.002), and other COPD-related
traits. In ECLIPSE cases, we replicated the association with FEV1

change (b, 28.2; 95% CI, 215 to 21; P=0.025) and the majority of
other COPD-related traits. Models including PRS, TRS, and clinical
factors were more predictive of COPD (area under the receiver
operator characteristic curve, 0.84) and annualized FEV1 change
compared with models with one risk score or clinical factors alone.

Conclusions: Blood transcriptomics can improve prediction of
COPD and lung function decline when added to a PRS and
clinical risk factors.
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Chronic obstructive pulmonary disease
(COPD) is characterized by airflow
obstruction and primarily develops in the
setting of cigarette smoking exposure (1).
Only a minority of smokers develop the
disease (2), and only certain individuals with
the disease experience rapidly progressive
lung function decline (3), exacerbations (4),
and higher mortality (5). Identifying
individuals at high risk of COPD and COPD
progression is crucial for focusing public
health interventions and drug development.

Genetic studies have identified
hundreds of variants associated with COPD
and low lung function (6). Although
genome-wide significant variants are
important in COPD pathobiology, individual
variants account for a small amount of
phenotypic variability and are poor for risk
prediction. By contrast, aggregating genome-
wide significant variants into a risk score or,
even more powerfully, millions of variants
including those not reaching genome-wide
significance, into a polygenic risk score (PRS)
can identify those at high risk for COPD (7);
yet the variants most important for
prediction are not necessarily the most

biologically relevant variants. Despite these
advances in genetics-based risk prediction, a
majority of COPD risk is nongenetic (6, 7),
and an individual’s genetic makeup does not
change in response to environmental stimuli.
Other omics data, such as gene expression,
can change in response to environmental
stimuli (e.g., cigarette smoking), andmay
correlate with the onset and timing of disease
progression.

Gene expression, or transcriptome-
based, risk scores have shown promise in
complex diseases (8–10). A transcriptome-
based risk score was more predictive of
disease progression than a traditional PRS in
inflammatory bowel diseases (8). Serial
sampling of blood transcriptomic profiles
was used to develop a risk score predictive of
lung function decline in idiopathic
pulmonary fibrosis (10). In COPD,
transcriptomic profiles from peripheral
blood have been associated with COPD
susceptibility (11) and exacerbations (12, 13),
although with limited capacity to predict
lung function decline. A lung gene
expression signature for IL-17A was
associated with FEV1 decline in a subset of
patients on inhaled glucocorticoids (14).
These results support the value of gene
expression data in predicting COPD and
COPD progression.

We hypothesized that a peripheral blood
transcriptional risk score (TRS) trained on
spirometry baseline FEV1/FVCwould be
complementary to our previously published
PRS (15) and be predictive of COPD in the
COPDGene (Genetic Epidemiology of
COPD) (16) study and FEV1 decline in
COPDGene and COPD cases from the
ECLIPSE (Evaluation of COPD
Longitudinally to Identify Predictive Surrogate
End-points) study (17).We used FEV1/FVC
as it represents the main diagnostic criteria for
COPD and has been associated with worse
outcomes (18). In addition to studying
subjects with COPD, we also included
smokers without airflow obstruction because
this group has been shown to have
emphysema and airway pathology on
computed tomography (CT) scans,
respiratory symptoms, exacerbations, FEV1

decline, and rapid progression (19).
Identifying individuals without substantial
airflow obstruction who are likely to
experience accelerated lung function decline
may allow for early intervention. The TRS was
developed using data frommore than 2,500
individuals fromCOPDGene (16) with RNA
sequencing (RNA-seq) data, nearly 1,000 of

whom also had 5-year follow-up spirometry
data.We sought replication of our results in
microarray data from the ECLIPSE study (17).

Methods

Study Populations
Written informed consent was obtained
from all study participants, and institutional
review board approval was obtained at all
study centers. We included non-Hispanic
White and African American participants
with whole-blood RNA-seq data from the
5-year follow-up of the COPDGene study
(16). We also included participants with
whole-bloodmicroarray data and at least two
FEV1 measurements from the ECLIPSE
study (17). Additional details regarding study
populations are in the SUPPLEMENTARY

METHODS in the online supplement.

Preparation of Gene Expression Data

RNA-seq data. Details regarding generation
of RNA-seq data were previously published
(20). Details regarding RNA processing and
preparation of count data are in the
SUPPLEMENTARY METHODS. Counts were
adjusted for library depth, and batch effects
were removed using the limma
removeBatchEffects function (21).

Microarray data. Details regarding
microarray processing were previously
published (22) and are further described in
the SUPPLEMENTARY METHODS. Batch effects
were removed using the limma
removeBatchEffects function (21).

After the above processing steps were
performed, we took two additional steps to
facilitate transportability across RNA-seq and
microarray data platforms. First, we limited
transcripts to those present in both data sets
based on HUGOGene Nomenclature
Committee symbols. Second, we scaled and
centered the RNA-seq count and microarray
gene expression data.

Statistical Analyses

Overview of study design. We randomly
split COPDGene participants into training
(75%) and testing (25%) samples (Figure 1).
Model development was performed
exclusively within the training sample. We
tested associations with cross-sectional and
longitudinal outcomes in the testing sample
and replicated our results in ECLIPSE.

Derivation of a TRS. To develop a
TRS, we applied a penalized regression

At A Glance Commentary

Current Scientific Knowledge on the
Subject: Genetics and gene
expression may capture important
aspects of chronic obstructive
pulmonary disease (COPD)–related
biology that predict disease activity.
Whether a blood-based gene
expression or transcriptional risk
score (TRS) for COPD adds value to
a polygenic risk score for predicting
disease susceptibility and progression
is unknown.

What This Study Adds to the
Field: A TRS was predictive of
COPD, COPD-related traits, and
prospective FEV1 decline in two
cohorts of smokers. Models
including polygenic risk score, TRS,
and clinical factors were more
predictive of COPD and annualized
FEV1 change than models with one
risk score or clinical factors alone.
These results demonstrate that blood
transcriptomics can improve
prediction of COPD and lung
function decline.
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framework using the glmnet R package (23)
to construct a transcriptome-based regression
model for FEV1/FVC.We trained ourmodel
to FEV1/FVC because it is a lung function
measurement used to define COPD, reflects
emphysema and airway wall pathology, has
been associated with worse outcomes (18), is
easily obtainable, and was available in all
participants. Furthermore, prediction on a
continuous variable offers greater power than
that on dichotomized variables and baseline
lung function is a major predictor of lung
function decline (24).

For model training, we used least
absolute shrinkage and selection
operator (25), which shrinks coefficients
toward zero and provides automated
feature selection. The model was tuned
within the training sample using 10-fold
cross-validation, minimizing the mean
squared error (MSE) on the left-out fold.
The regression model with the
minimum MSE was used to calculate a
TRS in participants in the testing sample
and ECLIPSE replication sample. The
TRS was then centered and scaled to
facilitate statistical analyses. We also
examined the association of TRS tertiles
with primary outcomes; tertiles were
chosen to represent low-, medium-, and
high-risk categories and to mirror
categories of FEV1 decline (see
OUTCOMES). We trained an additional
risk score in the subset of participants
from the COPDGene training sample
with 5-year follow-up spirometry data
optimized to the outcome of prospective
FEV1 change in milliliters per year
(TRSdeltaFEV1). We tested the predictive
performance of this score and the TRS
for annualized FEV1 decline using MSE
in the COPDGene testing sample. Gene
enrichment analyses with respect to
Reactome (26) pathways were performed
with the sigora R package (27).

Model specifications and performance
evaluations. We adjusted all linear and
logistic regression models for age, sex,
race, height, pack-years of cigarette
smoking, and current smoking status. For
annualized change in FEV1, we
additionally adjusted models for baseline
FEV1. Additional adjustments based on
outcomes are detailed in the
SUPPLEMENTARY METHODS. We examined
the association of the TRS with
exacerbation frequency and severe
exacerbations using negative binomial
regression models (pscl R package (28,

29)), adjusted for age, sex, race, smoking
pack-years, current smoking status, and6
baseline FEV1. We performed stratified
analyses in COPD cases and controls to
examine whether the TRS has differential
effects in these strata.

We compared models with clinical risk
factors alone (see PREDICTORS), PRS alone,
TRS alone, and all three predictors together.
We assessed predictive performances of
models for binary outcomes using area under
the receiver operator characteristic curve
(AUC) metrics and compared AUCs with
the DeLong test (30) using the pROC R
package (31). Further details regarding
performance metrics are in the
SUPPLEMENTARY METHODS.

Predictors. We evaluated the
associations and predictive performances of
clinical risk factors, the TRS, and a previously
published PRS (15) with respect to each
outcome. “Clinical” risk factors included age,
sex, race, height, pack-years of cigarette
smoking, and current smoking status. For
FEV1 change between Phases 2 and 3 (see
OUTCOMES), baseline FEV1 (i.e., at phase 2)
was also included as a clinical risk factor.
Further details regarding the PRS are in the
SUPPLEMENTARY METHODS.

Outcomes. We examined two primary
outcomes: 1) moderate to very severe
COPD (Global Initiative for Chronic
Obstructive Lung Disease [GOLD]

spirometry grades 2–4: post-
bronchodilator FEV1/FVC,0.7 and
FEV1% predicted,80%) compared with
smokers with normal spirometry (post-
bronchodilator FEV1/FVC>0.7 and
FEV1% predicted>80% [formerly known
as GOLD 0]), as previously reported (15),
and 2) prospective annualized change in
FEV1 in milliliters per year. In addition to
examining the continuous measure of
decline, we also examined a rapid decline
phenotype by comparing the highest
versus the lowest tertiles of FEV1 decline
(3). Secondary outcomes are described in
the SUPPLEMENTARY METHODS.

Differential gene expression analyses.
We grouped participants from the overall
COPDGene sample based on TRS tertiles
(chosen to mirror the groupings of annualized
FEV1 decline [3] above) and examined
differential gene expression between the top
versus middle and the bottom versus middle
TRS tertiles using limma (21). After
performing differential expression analyses,
we usedmitch (32) to performmulticontrast
gene set enrichment analyses.We also used
limma to perform differential gene expression
analyses (adjusting for age, sex, race, pack-
years of smoking, and current smoking status)
in the COPDGene training sample according
to previously describedmethods (33) and
determined which transcripts overlapped with
TRS transcripts.

COPDGene
Participants with

RNASeq data
(n = 2,569)

Training set
(n = 1,945)

Testing set
(n = 624)

75% 25%

Log-CPM normalization

LASSO model in training data
10-fold cross-validation
(n = 1,945; 147 genes)

Test
performance

Filter: > 1 CPM in 99% of samples
(~11,000 genes remain)

ECLIPSE
Participants with
Microarray and

FEV1 decline data
(n = 468)

Figure 1. Schematic of study design. COPD=chronic obstructive pulmonary disease;
COPDGene=Genetic Epidemiology of COPD; CPM=counts per million; ECLIPSE=Evaluation
of COPD Longitudinally to Identify Predictive Surrogate End-points; LASSO= least absolute
shrinkage and selection operator; RNAseq=RNA sequencing.
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Results

Characteristics of Study Populations
Characteristics of the study populations are
shown in Table 1. In total, we included 3,037
(2,569 COPDGene; 468 ECLIPSE)
participants. Anthropometric, spirometric,
and CT imaging measures are evenly
distributed among COPDGene training
(n=1,945) and testing (n=624) samples (all
P. 0.05). Characteristics of the subset of
individuals with FEV1 measurements
collected prospectively at the 10-year follow-
up of the COPDGene study (i.e., phase 3) are
shown in Table E1 in the online supplement.
In total, 937 participants had 5-year follow
up spirometry measures, 209 of which were
in the testing sample.

Development and Characterization
of a TRS
A schematic of the study design is shown in
Figure 1. Using the COPDGene training
sample, we trained a least absolute
shrinkage and selection operator model
using FEV1/FVC and used 10-fold cross-
validation to identify the lambda
(l= 0.00485) that minimized the MSE
(Figure E1). This approach identified 147
transcripts (Table E2). Density plots in
COPD cases and controls for the
transcripts most negatively (GPR15) and
positively (PTPN13) associated with

FEV1/FVC are shown in Figure E2. In
Reactome (26) gene enrichment analyses,
these 147 transcripts implicate
immunoregulatory interactions between
lymphoid and nonlymphoid cells, PPAR-a
(peroxisome proliferator-activated receptor
a)–activated gene expression, and
chondroitin sulfate biosynthesis
(Table E3). The final regression model was
used to calculate a TRS for each individual.
The TRS was weakly correlated with our
previously developed PRS; this correlation
reached statistical significance in the
training (r= 0.06, P= 0.01) but not the
testing (r= 0.07, P= 0.094) sample of
COPDGene (Figure E3).

A TRS Is Associated with COPD and
Is a Predictor of Prospective Loss of
Lung Function
Our primary goal was to develop a blood-
based TRS to predict COPD and accelerated
FEV1 decline in individuals who smoke. The
association of the TRS with moderate to very
severe COPD and FEV1 decline (milliliters
per year [ml/yr]) is demonstrated in Figure 2.
Compared with the bottom tertile, being in
the top tertile of the TRS was associated with
odds ratios of 11.0 (95% confidence interval
[CI], 5.4–21.0) and 2.0 (95% CI, 1.1–3.4) for
COPD and rapid FEV1 decline (i.e., top vs.
bottom tertile of decline), respectively.
Clinical characteristics of COPDGene

participants grouped by TRS tertile are
shown in Table E4. Participants in higher
tertiles were more likely to be older, male,
and non-HispanicWhite, have more pack-
years of smoking, lower baseline spirometry
measures, more emphysema, and thicker
airways, and experience greater FEV1

decline.
For moderate to very severe COPD, the

results of multivariable analyses of the TRS in
the COPDGene testing sample is shown in
Table 2. In the COPDGene testing sample,
one SD increment in the TRS was associated
with COPD (odds ratio, 3.4; 95% CI, 2.5–4.5;
P, 0.001). In ECLIPSE, both microarray
and follow-up FEV1 data were not available
in spirometrically normal (formerly GOLD
0) subjects, so we could not evaluate the
association of the TRS with moderate to very
severe COPD.

We also examined the association of the
TRS with related cross-sectional outcomes in
the COPDGene testing sample and ECLIPSE
(Table 2). In the COPDGene testing sample,
the TRS was associated with higher St.
George’s Respiratory Questionnaire scores
(b=0.4; SE, 0.05; P, 0.0001), lower 6-
minute-walk distance (b=2140; SE, 19;
P, 0.0001), twomeasures of emphysema
(% low attenuation area,2950 HU and
15th percentile of the lung density histogram
on inspiratory scans; both P, 0.0001), and
two measures of airway pathology (square

Table 1. Characteristics of Participants Included in This Study

Characteristic

COPDGene

ECLIPSE (n=468) P ValueTraining Sample (n=1,945) Testing Sample (n=624)

Age, yr, mean (SD) 65.31 (8.70) 66.05 (8.28) 64.43 (6.09) 0.006
Sex, F, n (%) 942 (48.4) 299 (47.9) 156 (33.3) ,0.001
Race, n (%) 486 (25.0) 156 (25.0) 0 (0.0) ,0.001
Height, cm, mean (SD) 169.56 (9.56) 169.46 (9.49) 169.31 (8.61) 0.874
BMI, kg/m2, mean (SD) 28.83 (6.19) 29.25 (6.69) 27.11 (5.46) ,0.001
Pack-years of smoking, mean (SD) 43.92 (23.71) 44.27 (24.04) 49.33 (26.87) ,0.001
Current smoking, n (%) 700 (36.0) 216 (34.6) 70 (15.0) ,0.001
FEV1% predicted, mean (SD) 78.84 (24.25) 77.79 (24.08) 44.22 (14.64) ,0.001
FEV1/FVC, mean (SD) 0.68 (0.15) 0.68 (0.15) 0.44 (0.11) ,0.001
% LAA ,2950 HU, median (IQR)* 1.63 (0.51–5.20) 1.51 (0.45–5.31) 17.66 (9.98–26.74) ,0.001
Perc15, mean (SD)* 2916.40 (29.14) 2914.72 (31.03) 2959.03 (49.24) ,0.001
Pi10, mean (SD) 2.25 (0.57) 2.26 (0.58) 4.40 (0.20) ,0.001
WA%, mean (SD) 49.85 (8.24) 50.10 (8.56) 65.37 (3.76) ,0.001
Primary outcomes
Moderate to severe COPD, n (%) 658 (33.8) 209 (33.5) 468 (100.0) ,0.001
FEV1 decline, ml/yr, mean (SD) 242.09 (55.30) 242.52 (59.08) 230.58 (71.82) 0.004

Definition of abbreviations: % LAA=% low-attenuation area; BMI=body mass index; COPD=chronic obstructive pulmonary disease;
COPDGene=Genetic Epidemiology of COPD; ECLIPSE=Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points;
HU=Hounsfield units; IQR= interquartile range; Perc15=15th percentile of the lung density histogram on inspiratory scans; Pi10=square root of
wall area of a hypothetical airway with internal perimeter of 10 mm; WA%=wall area percent.
P values indicate comparisons across COPDGene samples and ECLIPSE.
*% LAA ,2950 HU and Perc15 were calculated using Thirona at phase 2 (5-yr follow-up) in COPDGene and Slicer in ECLIPSE.
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root of wall area of a hypothetical airway
with internal perimeter of 10 mm [Pi10] and
wall area percent; both P, 0.0001). In
ECLIPSE, we were able to replicate
associations of the TRS with a majority of
COPD-related outcomes. Compared with
COPDGene, we observed concordant
directions of effects and P values for all
outcomes in ECLIPSE, except for Pi10. By
comparison, the PRS was associated with
COPD, CT imaging traits, and St. George’s
Respiratory Questionnaire total score (all
P, 0.05; Table E5), although with smaller
effect sizes than the TRS. The PRS was not
associated with 6-minute-walk distance.

Having demonstrated the association
between the TRS and COPD-related cross-
sectional measures, we then tested whether
the TRS is associated with prospective
changes in lung function. In multivariable

analyses, including the PRS and other
potential confounders (Table 3), the TRS was
significantly associated with change in FEV1

in the COPDGene testing sample (b=217
ml/yr; 95% CI,228 to26.6; P=0.002) and
ECLIPSE (b=28.2 ml/yr; 95% CI,215 to
21; P=0.025). In stratified analyses, the TRS
was associated with prospective annualized
FEV1 decline in participants with COPD
(b=226 ml/yr; 95% CI,248 to23.1;
P=0.031). In control participants, the
association of the TRS with annualized FEV1

decline trended toward significance (b=217
ml/yr; 95% CI,233 to20.24; P=0.051).
Adjusting for cell counts (Table E6)
demonstrated similar results in COPDGene;
the association of the TRS with FEV1 decline
was attenuated and did not reach statistical
significance in ECLIPSE after adjusting for
cell counts. A risk score trained to FEV1

decline (TRSdeltaFEV1) had lower predictive
performance for annualized FEV1 decline
(MSE=3,474.19) than the TRS
(MSE=3,408.51) (Table E7). The TRS was
associated with exacerbation frequency and
severe exacerbations in the COPDGene
testing sample, but these associations were
attenuated after adjusting for baseline FEV1

and did not replicate in ECLIPSE (Table E8).
We then studied the relative utility of

the PRS, TRS, and clinical risk factors for
predicting COPD and annualized change in
FEV1.We constructed a series of models to
predict COPD or FEV1 decline using the
PRS, TRS, and/or clinical factors (age, sex,
race, height, pack-years of cigarette smoking,
current smoking status,6 baseline FEV1

[as appropriate]). In the COPDGene training
sample, the TRS predicted moderate to very
severe COPD with an AUC of 0.80. Figure 3
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Figure 2. (A) A box plot with interquartile ranges demonstrating the association of the TRS with moderate to very severe COPD. The P value
represents the results of a Student’s t test. (B) Participants were grouped into tertiles of the TRS, and the effects of being in the middle and top
tertiles compared with the bottom tertile of the TRS on COPD affection status are reported as odds ratios and 95% confidence intervals. Models
were adjusted for age, sex, race, pack-years of smoking, and current smoking status. (C) The TRS was linearly associated with FEV1 decline.
Pearson correlation coefficient and associated P value are displayed above the plot. (D) Participants were grouped into tertiles of the TRS, and
the effects of being in the middle and top tertiles compared with the bottom tertile of the TRS on rapid FEV1 decline (defined as top vs. bottom
tertile of FEV1 decline) are reported as odds ratios and 95% confidence intervals. Models were adjusted for age, sex, race, pack-years of
smoking, current smoking status, and baseline FEV1. COPD=chronic obstructive pulmonary disease; OR=odds ratio; TRS= transcriptional
risk score.
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shows that in the COPDGene testing sample,
the TRS (AUC 0.79) performed significantly
better than both the PRS (AUC 0.64) and
clinical factors (AUC 0.72) for predicting
COPD (P [TRS vs. PRS], 0.0001; P [TRS vs.
clinical factors] = 0.0058). Adding the PRS
and clinical factors into a model with the
TRS did not significantly improve the AUC
(AUC 0.84; P [PRS1TRS1 clinical factors
vs. TRS]=0.08). For annualized change in
FEV1, a model with all predictors again had
the best performance based onMSE in the
COPDGene testing sample and ECLIPSE
(Figure E4). There was no significant
evidence of miscalibration (Figure E5,

Hosmer-Lemeshow P values.0.05).
Performance metrics for COPD and FEV1

decline are shown in Table E9.

Transcriptomic Characterization of
TRS-defined Risk Groups
To gain biological insight into why TRS-
defined subgroups have distinct disease-
related characteristics, we performed
multicontrast pathway enrichment analyses
comparing the top versus middle and bottom
versus middle tertiles of the TRS (Figure 4).
The top tertile group demonstrated
upregulation of IL-6/JAK/STAT3, TNF-a
[tumor necrosis factor a] via NFKB (nuclear

factor-kB), peroxisome, complement, and
IFN-a and -g signaling. Contrast ranks for
IFN-a signaling are shown in Figure 4B. In
the bottom tertile, we observed upregulation
of signaling inMYC Targets, G2M
Checkpoint, IL-2/STAT5, andWnt/
b-catenin. Contrast ranks forWnt/b-catenin
signaling are shown in Figure 4C.

In differential gene expression analyses
for FEV1/FVC in the COPDGene training
sample, 43 of the 147 TRS transcripts had a
false discovery rate [FDR] P value,0.05
(Table E10), and 216 transcripts were
associated with FEV1/FVC (FDR P, 0.05)
(Table E11).

Table 2. Associations of the TRS with Moderate to Severe COPD and Outcomes Related to COPD Heterogeneity

Outcome

COPDGene Testing Sample ECLIPSE

TRS P Value TRS P Value

Moderate to severe COPD, OR (95% CI) 3.35 (2.48–4.53) ,0.0001 N/A N/A
SGRQ total score 0.4 (0.053) ,0.0001 3.2 (0.85) 0.00021
6-min-walk distance 2140 (19) ,0.0001 261 (19) 0.0015
% LAA ,2950 HU 0.53 (0.078) ,0.0001 0.12 (0.04) 0.0033
Perc15 27.7 (1.2) ,0.0001 25.4 (2.5) 0.033
Pi10 0.19 (0.026) ,0.0001 0.0023 (0.0092) 0.8
WA% 2.1 (0.37) ,0.0001 0.58 (0.18) 0.0018

Definition of abbreviations: % LAA=% low-attenuation area; CI =confidence interval; COPD=chronic obstructive pulmonary disease;
COPDGene=Genetic Epidemiology of COPD; CT=computed tomography; ECLIPSE=Evaluation of COPD Longitudinally to Identify Predictive
Surrogate End-points; HU=Hounsfield units; N/A=not applicable; OR=odds ratio; Perc15=15th percentile of the lung density histogram on
inspiratory scans; Pi10= square root of wall area of a hypothetical airway with internal perimeter of 10 mm; TRS= transcriptional risk score;
SGRQ=St. George’s Respiratory Questionnaire; WA%=wall area percent.
Data are shown as b (SE) unless otherwise indicated. Multivariable models were constructed in the testing sample of COPDGene and ECLIPSE.
Covariates included age, sex, race, pack-years of smoking, and current smoking status. The model for 6-minute-walk distance was additionally
adjusted for height and weight. Models for CT imaging variables (% LAA ,2950 HU, Perc15, Pi10, and WA%) were additionally adjusted for CT
scanner and body mass index. Bonferroni-adjusted significance level is P, 0.05/7 outcomes=0.007. ECLIPSE included 468 individuals with
microarray and follow-up FEV1 data; all of these participants had moderate to severe COPD, so replication of this outcome could not be
performed.

Table 3. Multivariable Models Including Clinical Factors, PRS, and TRS for Moderate-to-Severe COPD and Change in FEV1

Variable

COPDGene Testing Sample ECLIPSE

Moderate to Severe COPD Change in FEV1 (ml/yr) Change in FEV1 (ml/yr)

OR (95% CI) P Value b (95% CI) P Value b (95% CI) P Value

PRS 1.67 (1.31 to 2.13) ,0.0001 24.2 (214 to 5.1) 0.37 1.3 (25.3 to 8) 0.69
TRS 3.27 (2.38 to 4.5) ,0.0001 217 (228 to 26.6) 0.002 28.2 (215 to 21) 0.025
Baseline FEV1, L N/A N/A 224 (238 to 29.9) 0.0011 234 (250 to 219) 1.903 1025

Definition of abbreviations: CI = confidence interval; COPD=chronic obstructive pulmonary disease; COPDGene=Genetic Epidemiology of
COPD; ECLIPSE=Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points; N/A=not applicable; OR=odds ratio;
PRS=polygenic risk score; TRS= transcriptional risk score.
Multivariable models including clinical factors (age, sex, race, pack-years of smoking, current smoking status, and baseline FEV1 [for change in
FEV1]), PRS, and TRS for moderate to severe COPD and change in FEV1 (ml/yr) were constructed in the testing sample of COPDGene and
replicated in ECLIPSE. Models were also adjusted for principal components of genetic ancestry. Bonferroni-adjusted significance level is 0.05/3
(2 outcomes in COPDGene, 1 outcome in ECLIPSE) =0.017. The COPDGene testing data set included 624 individuals, of whom 209 had 5-year
follow-up spirometric data. ECLIPSE included 468 individuals with microarray and follow-up FEV1 data; all of these participants had moderate to
severe COPD, so replication of this outcome could not be performed.
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Discussion

In this study of more than 3,000 smokers in
two cohorts, we demonstrate that a TRS is
associated with COPD and can predict lung
function decline, is complementary to a PRS
and clinical predictors, and is enriched for
specific biologic pathways that may be
relevant for COPD pathogenesis. These
results suggest that blood-based omics risk
scores can risk-stratify individuals with
cigarette smoking exposure.

The TRS and PRS were only weakly
correlated, yet both risk scores were
significantly associated with and predictive of
COPDwhen included in a single model.
These data suggest that the two blood-based
omics risk scores may reflect different aspects
of COPD pathobiology. PRS variants may
have more representation of biological
pathways important for lung growth and
development (15, 34, 35), and the TRS
may indicate activation of specific
inflammatory pathways (discussed below).
In addition, the two risk scores were
differentially associated with COPD-
related outcomes. The TRS was associated
with 6-minute-walk distance, CT imaging
traits, and FEV1 decline. The PRS has
demonstrated robust associations with
COPD affection status across multiple

general population and case–control
cohorts (15), but it had smaller
associations with CT imaging traits and
was not associated with 6-minute walk
distance or FEV1 decline. Thus, the PRS
and TRS appear to offer different, yet
complementary, predictive value for
COPD-related traits and outcomes and
may be useful for risk stratification and
subtyping. All CT imaging traits
replicated in ECLIPSE, except for Pi10.
The reason for this lack of replication may
be accounted for by differences in imaging
techniques; significant differences in CT
measures between COPDGene and
ECLIPSE have been reported despite
matching clinical characteristics (36).

The TRS also improved upon clinical
risk factors and the PRS for prediction of
COPD and FEV1 decline. We were interested
in identifying individuals at high risk of
accelerated lung function decline across a
range of baseline spirometric values, as
certain smokers with normal lung function
may rapidly progress to COPD (19).
Whereas individuals with higher baseline
FEV1 tend to have a greater rate of decline
(3, 37–39), individuals in the top TRS tertile
had greater FEV1 decline despite lower
baseline FEV1, suggesting that the TRS can
identify subgroups particularly prone to lung

function loss. For every SD increase in the
TRS, an additional�8–17 ml of FEV1 is lost
per year. Although the minimally clinically
importance difference in FEV1 has been
debated (40), a change in FEV1 of�100 ml is
generally perceivable by patients (41). Thus,
the TRS appears to be associated with a
clinically meaningful FEV1 decline over a 5-
to 10-year period. These results demonstrate
the potential utility of transcriptomics in
predicting COPD progression.

We observed that the TRS, which was
trained to the outcome of FEV1/FVC,
predicted FEV1 decline as well as or better
than one trained to FEV1 decline. There are
several plausible explanations for this result,
such as the smaller sample of participants
with 5-year follow-up spirometry data and
the inherent noisiness of repeated measure
spirometry data over time. Regardless, it
appears that, at least in our data sets, a
transcriptional model built on cross-sectional
lung function may actually predict
longitudinal decline as well as or better than
one trained to longitudinal change in lung
function.

Compared with prior studies, our
results corroborate that transcriptome-based
risk scores can improve prediction of
complex disease susceptibility and
progression (8–10, 14, 42). Christenson and
colleagues developed an airway-derived
IL-17A gene expression risk score from 238
smokers with and without COPD and
demonstrated an association of this gene
signature with FEV1 decline in 79 patients
receiving inhaled glucocorticoids (14). By
contrast, we developed a TRS with 1,945
COPDGene participants using cross-
sectional lung function data, applied the risk
score to an independent test set of 624
COPDGene participants, and replicated our
results in 468 individuals from the ECLIPSE
study.We applied the TRS to risk stratify a
heterogeneous group of smokers and
identified those at high risk for severe disease
and progression.We then compared groups
at a molecular level, identifying multiple
previously described and several novel
pathways that require further validation.

Becker and colleagues (43) recently used
microarray data from bronchial brushings to
identify 171 differentially expressed genes
that were associated with FEV1 decline.
These genes were involved in mucin
production and unfolded protein
endoplasmic reticulum responses. Gene
expression profiles derived from the lung
compartment are appealing because the lung
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is the site of injury (i.e., the site of cigarette
smoking exposure), yet obtaining lung tissue
is challenging in clinical practice. By contrast,
our TRS appears to reflect systemic
inflammatory and immune system
responses, and blood is routinely obtained in
clinical care. Comparing these two gene
expression profiles, only one transcript,
CCDC170, was present in both scores and
had opposite directions of effects. Therefore,
a systematic integration of gene expression
profiles from lung and blood is needed to
facilitate clinical use and disentangle the local
and systemic gene expression changes
associated with COPD.

Using gene expression data to construct
the TRS can also identify biological pathways

that are activated or repressed in the
peripheral blood and predictive of
FEV1/FVC.We note that lasso selects
features to optimize prediction, but these are
not necessarily the most biologically
important transcripts, so biological
mechanisms must be interpreted with
caution. Out of 147 TRS transcripts, 43 had
FDR-significant P values in traditional gene
expression analyses. This result reinforces the
notion that the transcripts most important
for risk prediction are not necessarily the
same transcripts identified by differential
gene expression. The 147 TRS transcripts are
enriched for genes involved in
immunoregulatory interactions between
lymphoid and nonlymphoid cells and

PPAR-a signaling. B-cell–activating factor
expression has been associated with COPD
severity and expansion of pulmonary
lymphoid follicles (44), and lung gene
expression suggests that B-cell activation is
increased in emphysema (45). PPAR-a
signaling may be important for
antiinflammatory processes in the airways
(46) and has been suggested as a therapeutic
target for airway diseases (47).

To gain insight into the molecular
differences between those in the highest and
lowest risk groups defined by the TRS, we
performed multicontrast enrichment
analyses, using the middle tertile as the
reference group. Individuals in the top tertile
of TRS risk had higher activation of
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pathways implicated in COPD pathogenesis,
such as IL-6 (48–50), TNF-a (51, 52),
transforming growth factor b (53, 54), and
IFNs (55). Those in the top tertile had lower
activation ofWNT-b-catenin signaling.
This finding is consistent with murine and
human studies that suggest that COPD
genome-wide association study–identified
variants in FAM13A can decreaseWNT-
b-catenin signaling and increase
emphysema risk (56, 57). Other pathways
identified by multicontrast enrichment
analyses offer avenues for follow-up
functional studies.

Strengths of this study include that we
leverage a large, deeply phenotyped cohort
with extensive genetic and transcriptomic
data, which allowed us to develop a TRS in a
training sample and evaluate performance in
a held-out testing sample. We replicated
many findings in ECLIPSE, which represents
an external cross-technology replication
(i.e., RNA-seq to microarray). The TRS was

derived using automated feature selection
and added information to known clinical risk
factors and spirometric measures. We were
able to identify those at high risk for FEV1

decline, despite two heterogeneous cohorts.
The extent to which technical issues in
transcriptome analysis (e.g., use of
microarray vs. globin depleted RNA-seq)
may have attenuated our ability to identify a
stronger replication signal is unknown.
ECLIPSE also did not have control subjects
with microarray data and follow-up FEV1

measures, so the association of the TRS with
COPD could not be assessed. A second
measurement of gene expression may
improve stable prediction of longitudinal
outcomes (10). As low lung function may
reflect lung structural abnormalities, the
association of a lung function–based genetic
risk score with FEV1/FVC was attenuated by
CT imaging measures of emphysema and
airway pathology (58). Whether the
associations of the TRS with COPD and

FEV1 decline are mediated through CT
imaging traits is unknown. The TRS was not
associated with exacerbations after adjusting
for baseline FEV1, suggesting that shared
gene expression profiles exist between these
outcomes. Investigating an optimal TRS for
exacerbations that adds predictive value
above FEV1 measures can be undertaken in
future studies.

In conclusion, we demonstrate that
blood-based genetic and transcriptional risk
scores combined with clinical factors can
predict COPD, CT imaging traits, and FEV1

decline in two cohorts. These and other
omics could be extended to predict
additional measures of COPD progression,
such as exacerbations, increased emphysema,
and death. This approach can lend insight
into biological mechanisms and offers the
potential for development of personalized
therapies.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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