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Abstract

Biomolecular condensates that form via phase separation are increasingly regarded as coordinators 

of cellular reactions that regulate a wide variety of biological phenomena. Mounting evidence 

suggests that multiple steps of the RNA lifecycle are organized within RNA-binding protein 

(RBP)-rich condensates. In this review, we discuss recent insights into the influence of phase 

separation on RNA biology, which has implications for basic cell biology, pathogenesis of human 

diseases, and the development of novel therapies.

Introduction

Cells need to orchestrate an enormous number of chemical reactions that allow life to 

persist. During the last decade, macromolecular condensation that often occurs via phase 

separation has emerged as a mechanism for organizing these chemical reactions (Box 1). 

Membrane-less compartments that house biomolecules can be visualized as cellular speckles 

or foci by fluorescent microscopy and will be broadly referred to here as “condensates”. 

Proteomic studies have revealed that these condensates are often rich in RNA-binding 

proteins (RBPs)1,2. RBPs are critical regulators of all steps of the mRNA lifecycle, 

which includes transcription, pre-mRNA processing, localization, translation and decay, and 

therefore they have a large impact on gene expression patterns. This, in turn, can affect 

cellular fate determination, tissue identity, and organism development3–5.

Biomolecular condensates range in size from 20 nm (interchromatin granules) to up to 

1–6 μm (P granules) in diameter6,7. One potential function of these condensates is to 

organize RNA synthesis, processing, metabolism, expression, and silencing, in different 

cellular regions, mediated at least in part by the RBPs contained within them1,8–11 (Fig. 1). 
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The coordination of RBP function through phase separation presents a new framework for 

understanding how gene expression is regulated in the cell. In the following sections, we 

will discuss the contribution of RBPs and RNA to condensate formation, and evidence for a 

functional interplay between RNA processing and phase separation.

RBP sequence features contribute to their phase separation capacity

A central feature of phase-separating biomolecules is their ability to orchestrate multiple 

weak noncovalent interactions12–14. RBPs achieve this multivalency through intrinsically 

disordered regions (IDRs), RNA-binding domains (RBDs), and dynamic post-translational 

modifications (PTMs) (Fig. 2).

Intrinsically disordered regions (IDRs)

‘IDR’ is a broad term that refers to a stretch of amino acids with low sequence complexity, 

low hydrophobic amino acid content, and lack of a well-defined 3D structure15. IDRs exist 

as an ensemble of conformations that facilitate multivalent interactions, which bolster phase 

separation capacity (Fig. 2a). Compared to the entire proteome, RBPs are enriched in IDRs 

and low complexity sequences16,17. IDRs in RBPs are repetitive and have an unusually high 

prevalence of glycine, arginine, lysine, and tyrosine residues, which are commonly found 

in domains that interface with RNA17. One specific type of IDR often present in RBPs 

are prion-like domains (PrLDs), which share sequence similarities with prion proteins18. 

Computationally, PrLDs have been identified based on the enrichment of glutamine and/or 

aspargine (Q/N) residues19. Cation-π interactions between tyrosine residues in PrLDs and 

arginine residues are the primary drivers of PrLD-mediated phase separation in several 

RBPs14,20. Glycine content increases condensate fluidity while glutamines and serines 

decrease dynamics within condensates14. PrLD containing proteins can form liquid-like 

condensates but also have the propensity to form solid or gel-like condensates, that may 

irreversibly aggregate21,22 (Fig. 2b).

RNA-binding domains (RBDs)

RBPs interact with RNA through multiple types of RBDs, including RNA-recognition 

motifs (RRM), K-homology domains (KH), arginine-glycine-glycine (RGG) motifs, and 

zinc finger domains23,24. Interestingly, proteins that contain both RBDs and PrLDs 

are predicted to have a particularly high phase separation propensity, suggesting that 

interactions between these domains can cooperate to increase the ability of an RBP to 

condense14,25. Indeed, while IDRs are often sufficient to trigger phase separation, well-

structured RRMs can modulate the effect, especially in the presence of RNA22. In contrast 

to RRMs, low complexity RGG motifs are poorly structured sequences often found within 

IDRs26. Because RGG motifs are typically repetitive, they can greatly expand multivalent 

interactions among protein and RNA substrates26 (Fig. 2c).

Post-translational modifications (PTMs)

PTMs change the physical or chemical properties of amino acids, altering their 

hydrophobicity, bulkiness, or charge, and thereby strengthen or impair the multivalent 

interactions that underlie phase separation27,28 (Fig. 2d). Arginine methylation and 
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phosphorylation of serine, tyrosine, and threonine residues are the best-studied PTMs 

that tune RBP phase separation. In general, arginine methylation impairs phase separation 

by reducing cation-π interactions between arginine and aromatic amino acids14,20,29–31. 

Accordingly, hypomethylation can induce the formation of pathological hydrogels and 

inhibits the dynamic properties of condensates20. Phosphorylation, on the other hand, can 

either enhance or block phase separation of RBPs. The introduction of a negatively charged 

phosphate group may promote electrostatic interactions that drive phase separation32,33. 

Alternatively, phosphorylation can weaken intermolecular interactions and may introduce 

electrostatic repulsion34,35. Therefore, the effects of phosphorylation are highly context 

specific and the modification of two different sites on a single protein may have opposite 

effects. Other PTMs including PARylation, ubiquitination, lysine acetylation, SUMOylation, 

and O-linked GlncNAc have been linked to phase separation in other proteins and may 

also impact RBPs36–39. Given that a single PTM can strongly suppress or promote phase 

separation, it will be interesting to determine how different PTMs cooperate to regulate RBP 

phase separation.

Alternative splicing affects the ability of RBPs to phase separate

Alternative splicing of RBPs can alter the presence of domains capable of multivalent 

interactions, thereby affecting the phase-separation propensity of the protein29,40–43 (Fig. 

3). For example, within the family of heterogeneous nuclear ribonucleoproteins A and D 

(HNRNPA and HNRNPD), five out of six members have mammalian-specific alternative 

exons that harbor IDRs40. Inclusion of these exons increases the number of glycine-tyrosine 

motifs, which enhances phase separation and promotes multimeric assembly of the proteins 

on pre-mRNA40 (Fig. 3a).

Splice isoforms can also produce condensates with unique dynamics. Each of the three 

splice variants of HNRNPDL exhibits a different propensity of phase separation41. The 

longest HNRNPDL isoform contains an arginine-rich and tyrosine-rich IDR and has the 

highest tendency to phase separate in human cells, whereas the isoform that lacks these two 

IDRs does not phase separate under any condition41. Interestingly, the HNRNPDL isoform 

that only lacks the N-terminal IDR has the tendency to form amyloid aggregates (Fig. 3b), 

possibly due to the loss of electrostatic repulsion provided by the excluded IDR41.

Furthermore, isoform expression can change the morphology of condensates. The shortest 

splice variant of the RBP FMR1 autosomal homolog-1 (FXR1) forms large, spherical 

condensates in U2OS cells, while the isoform containing a larger IDR is found in small, 

irregularly shaped condensates42 (Fig. 3c). This may be explained by the fact that a longer 

IDR presents more sites for PTMs, which can discourage condensate fusion42. Indeed, the 

loss of low complexity sequences in RBPs through alternative splicing does not always 

lead to a reduction in phase separation. A short splice isoform of TAR DNA binding 

protein 43 (TDP-43) that lacks the C-terminal low complexity sequence is highly insoluble 

and has the ability to translocate full length TDP-43 into the cytoplasm where these two 

protein isoforms form aggregates43 (Fig. 3d). Overall, these observations suggest that phase 

separation can be regulated by controlling expression of RBP isoforms, which might adjust 

the physical properties of a condensate and protect from pathological aggregation.
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RNA sequence, structure, and concentration tune the properties of phase 

separated condensates

RNA itself can also nucleate the formation of condensates44–47, possibly by acting as a 

scaffold that allows higher order assembly of RNAs and proteins. RNAs can recruit multiple 

copies of a single RBP or different RBPs48–51 (Fig. 4a). For example, the long noncoding 

RNA Xist (X-inactive specific transcript) contains an E-repeat element that triggers 

condensate formation by multivalent interactions between four RBPs: polypyrimidine tract 

binding protein 1 (PTBP1), matrin-3, TDP-43, and CUGBP Elav-like family member-150. 

The formation of this condensate, termed the Xi compartment, might contribute to Xist-
dependent X-chromosome inactivation50.

RNA is particularly important in dictating condensate composition44–46 (Fig. 4a–b). RNA 

secondary structure can control the physical properties of a condensate and, even in the 

absence of protein, promote gel-like phase separation52 (Fig. 4c). RNAs can alter protein 

conformation to induce phase separation in response to environmental stimuli. During 

cellular stress, mRNAs bind to the stress granule assembly factor G3BP1 and induce a 

conformational change which frees the RBD of this RBP to interact with RNA and promote 

protein clusters, eventually leading to condensate formation53–55 (Fig. 4d).

RNA concentration also buffers phase separation56,57. A lack of RNA can lead to 

pathological liquid-to-solid phase transitions and RBP aggregation; however, high RNA 

concentrations can inhibit liquid-liquid phase separation56,58 (Fig. 4e). For example, in vitro, 

the RBP FUS undergoes phase separation in the absence of RNA and the addition of 50 

ng/μL of total RNA increases the amount of FUS incorporated into the condensates56. 

Increasing the RNA concentration inhibits the phase separation of FUS, as evidenced by 

decreased condensate size and reduced FUS levels in the condensates56. Nuclear RNA 

concentrations are estimated to be over ten times higher than the threshold required to 

dissolve these condensates in vitro56. These results may explain why RBPs that are soluble 

in the nucleus are often found as aggregates in the cytoplasm, where RNA concentrations are 

relatively lower56.

The mechanisms by which RNA can promote and inhibit phase separation is an area 

of active investigation. One hypothesis is that RNA promotes RBP solubility either by 

competitive or allosteric inhibition of interactions between low complexity domains57. 

Another possibility is that at low levels, RNA facilitates phase separation by expanding 

electrostatic interactions between positively charged protein side chains and the negatively 

charged phosphate backbone of the RNA59. In this model, high levels of negatively charged 

RNAs would destabilize condensates due to increased electrostatic repulsion59.

Distinct cellular condensates containing RBPs

Condensates allow creation of diverse, transient microenvironments without the costly 

process of generating a lipid membrane. Under this framework, sequestering or 

concentrating related RBPs and RNAs in condensates can modulate interactions between 
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these molecules. In fact, different steps of RNA biogenesis, processing, and decay appear to 

occur in unique condensates1,8–11.

Nuclear condensates

Functional specialization of compartments is thought to expedite interactions between RBPs 

and their target RNAs. For example, histone pre-mRNA processing factors and histone 

mRNAs are concentrated within histone locus bodies that are distinct from nuclear speckles 

where other mRNAs are spliced8–10,60 (Fig. 1). Less is known about the function of other 

nuclear condensates, including the perinucleolar compartment, nuclear stress bodies, and 

cleavage bodies. The perinucleolar compartment (PNC) is located on the edge of the 

nucleolus and harbors RNA splicing factors, especially PTBP1, and newly synthesized RNA 

polymerase III (pol III) transcripts. This led to the hypothesis that the PNC functions in pol 

III RNA processing51,61. Recent work has demonstrated that sequestration of PTBP1 in the 

PNC by the long noncoding RNA PNCTR can control splicing patterns of RNA polymerase 

II transcripts51. Like the PNC, nuclear stress bodies have long been thought to regulate 

splicing, but mechanistic details have been unclear until recently. Emerging evidence now 

indicates that nuclear stress bodies contain both RBPs as well as kinases, and can serve as 

a platform for the phosphorylation of splicing factors, ultimately blocking intron retention 

in over 400 transcripts62. Cleavage bodies are known to contain 3’ processing factors 

that aid in post-transcriptional pre-mRNA processing. Their presence increases during S 

phase, suggesting that these condensates regulate gene expression during the cell cycle63,64. 

Still, no studies have conclusively demonstrated that processing actually occurs in these 

condensates, and the identity of regulated RNAs is unknown. New technologies that allow 

a more thorough characterization of the composition and physical properties of these 

condensates will help in determining their cellular function.

Cytoplasmic condensates

Several cytoplasmic condensates regulate mRNA translation and degradation1,11,65. TIS 

granules form a mesh-like structure with the endoplasmic reticulum and are mainly 

composed of the RBP ZFP36 ring finger protein like-1 (ZFP36L or TIS11B)11. Although the 

mechanism is unknown, the assembly of TIS granules promotes the translation of AU-rich 

mRNAs11. In contrast, P-bodies sequester untranslated mRNAs and prevent access of the 

translational machinery, resulting in gene repression1,66. After temporary storage, some 

mRNAs are degraded while others are eventually released to be translated1,65. In response to 

cellular demands, P-bodies disassemble, possibly to provide a reservoir of mature mRNAs1. 

Release of their contents bypasses transcription to facilitate quick responses to stimuli.

Another function of cytoplasmic condensates may be to provide protection during cellular 

stress67–71. In response to environmental insults, such as heat, pH fluctuations, hyperosmotic 

stress, or UV radiation, RBPs translocate from the nucleus to the cytoplasm and interact with 

resident cytoplasmic proteins to promote the formation of stress granules, which contain 

stalled translation initiation complexes2,54,72. Stress granules are composed of over 100 

different proteins and approximately two thousand mRNAs73, and the mechanism by which 

they assemble is not fully understood. Nevertheless, G3BP1 has emerged as an essential 

protein for initiating stress granule formation. G3BP1 coordinates multivalent interactions 
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between RNAs and proteins to propel the system past the saturation threshold, resulting 

in phase separation53–55. Stress granule assembly may also be enhanced by interactions 

between stalled mRNAs74. Studies of individual stress granule components have revealed 

that some RBPs, such as the poly(A) binding protein cytoplasmic 1 (PABPC1) and the 

eukaryotic peptide chain release factor GTP-binding subunit (SUP35), are “stress sensors” 

that adapt their function to specific cellular environments68,70. SUP35 induces translational 

termination under normal conditions but forms liquid-like condensates in response to low 

pH70. Sequestration of SUP35 in these condensates inhibits protein production and protects 

the SUP35 catalytic domain from denaturation70. Upon the cessation of stress, SUP35 

condensates disassemble and quickly shift the cellular metabolic program towards growth70. 

In this manner, the temporary storage of RBPs in condensates can allow rapid cellular 

recovery.

Sequestration of RBPs within stress granules can also alter gene expression programs to 

favor cell survival71. For example, the yeast DEAD-box RNA helicase (DED1P) moves 

into stress granules in response to heat. Because DED1P is thought to initiate scanning of 

housekeeping genes that contain complex 5’UTR structures, DED1P sequestration in stress 

granules silences housekeeping gene expression71. Functionally, this process is thought to 

promote the production of stress response proteins containing simple 5’ UTRs71. DED1P 

condensation is readily reversible when the stressor is removed, illustrating a switch-like 

nature of regulation by stress granule formation71.

Given that condensates can regulate the processing, expression, and decay of RNAs, one 

open question is how RNAs translocate between condensates and whether a network of 

condensates exists to guide RNAs through various steps of their lifecycle. In one model, 

RNAs shuttle between polysomes, P-bodies, and stress granules to regulate gene expression 

in response to cellular demands, but the molecular details of this process are still unclear75.

Recent evidence connecting phase separation and RBP activity

Although the functional relevance for RBP-mediated phase separation is still uncertain, 

there are indications that the phase separation propensity of RBPs correlates with their 

activity35,76–78. For example, mutations of the conserved glycine residues in the low 

complexity domain of TDP-43 increase both its phase separation and splicing activity78. 

Inversely, disruption of TDP-43 condensates through an N-terminal phosphomimetic 

substitution reduces its splicing function35. However, systematic mutagenesis of the TDP-43 

IDR revealed several mutations that prevent TDP-43 phase separation but appear to have 

no effect on its splicing activity79. Therefore, additional studies are required to determine 

the role of TDP-43 phase separation and whether condensation per se enhances splicing. 

There is also evidence that phase separation of deadenylation factors is associated with 

acceleration of RNA decay76,77. Phosphorylation of the FMRP translational regulator-1 

(FMR1) and the cell cycle associated protein-1 (CAPRIN1) drives phase separation which 

results in accelerated RNA deadenylation and repression of translation in vitro77. In cellular 

lysates, eukaryotic translation initiation factor 4E was excluded from these condensates, 

suggesting that translational inhibition may occur due to the physical separation of 

translation initiation factors from the target RNA77.
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Functional importance of condensate formation is further supported by recent studies 

demonstrating that removal or mutation of protein domains that promote phase separation 

in RBPs alters mRNA processing35,40,80–82. Both the RNA-binding fox-1 homolog-1 and 

HNRNPA/HNRNPD family members require formation of IDR-mediated higher order 

assemblies to promote exon inclusion in target RNAs40,80. Similarly, the PrLD of flowering 

control locus A (FCA) in Arabidopsis thaliana facilitates the formation of nuclear phase-

separated bodies containing 3’-end processing factors which promote the use of proximal 

polyadenylation sites on target RNAs82.

Pathological roles of RBP-mediated phase separation and therapeutic 

strategies

Dysregulation of condensates can cause gain or loss of RBP function, which can contribute 

to disease pathology. Indeed, aberrant RBP phase separation has been observed in the 

context of cancer and neurodegenerative diseases, as discussed below.

Cancer

Because phase separation influences gene expression and cell survival, it is unsurprising 

that condensates can be co-opted by cancer cells. For example, overexpression of the 

splicing regulator A-kinase anchoring protein-8 (AKAP8, also known as AKAP95) enhances 

the formation of condensates that are necessary for AKAP8-mediated intron retention in 

cyclin A2 (CCNA2), blocking nonsense-mediated decay of this transcript81. Ultimately, this 

results in upregulation of the CCNA2 oncogene which promotes cancer cell proliferation81. 

Oncogenic gene expression patterns can also be achieved by localizing spliceosome factors 

to condensates to promote aberrant isoform expression60.

Oncogenic chromosomal translocations can give rise to a variety of RBP fusion proteins 

with altered phase separation properties. In Ewing’s sarcoma, gene translocation of 

EWS RNA-binding protein-1 (EWSR1) and Fli-1 proto-oncogene (FLI1) gives rise to a 

EWSR1-FLI1 fusion protein. EWSR1-FLI1 recruits chromatin remodelers to tumor-specific 

microsatellites83. Interestingly, the domain responsible for EWSR1-FLI1 phase separation 

is also required for the regulation of cancer gene expression programs83. Recent work 

has illustrated that condensates formed by the FUS/EWS/TAF15 (FET) fusion protein 

recruit RNA-pol II to DNA which initiates aberrant gene expression84. This suggests the 

physical properties of oncogenic fusion proteins can drive cancer genome reprogramming, 

but whether phase separation is a common trait of fusion proteins remains to be determined.

Cancer cells can also hijack the formation of stress granules. This aids survival in harsh 

environments and allows the cells to outcompete the native cell population85. In metastatic 

tumors, the Y-box binding protein-1 is upregulated and stimulates translation of G3BP1 

by binding to its 5’UTR86. G3BP1 expression initiates stress granule assembly and is 

correlated with poor survival in human sarcoma54,86. Whether stress granules enhance tumor 

metastasis directly is unknown, but one hypothesis is that they repress expression of genes 

that inhibit metastasis by sequestering their mRNAs.
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These studies are only beginning to indicate links between phase separation-mediated 

processes and cellular proliferation and metastasis. An interesting topic of future 

investigation will be the contribution of phase separation to cancer hallmarks, including 

immune system modulation and maintenance of the tumor microenvironment.

Neurodegenerative diseases

Certain RBPs are commonly mutated in ALS and frontotemporal lobar degeneration87,88. 

These diseases are characterized by aggregation of proteins in the nucleus or cytosol. While 

FUS, TDP-43, HNRNPA1, and HNRNPA2 all undergo liquid-liquid phase separation under 

physiological conditions, ALS-associated mutations in these RBPs promote the formation 

of dense, pathological aggregates22,89–91. In ALS, mutations in the PrLDs of HNRNPA1 

and HNRNPA2 strengthen their steric zipper motif, which increases polymerization and 

fibrillization89. Atomic structures of TDP-43 low complexity domain segments suggest that 

mutations associated with familial ALS may favor irreversible aggregation and promote the 

formation of amyloid fibrils92. Therefore, mutations that alter RBP structure may promote 

aberrant phase transitions, but pathological aggregates are also often found in patients 

without mutations in these RBPs93. In these cases, improper protein folding, or aberrant 

PTM deposition may govern the presence of aggregates94–98.

How RBP-associated condensates transition to dense aggregates and how this contributes to 

neurodegenerative disease pathology is still uncertain99. Neuronal death may result from the 

failure to clear toxic aggregates, possibly due to a decline of protein degradation pathways99. 

Another hypothesis is that the incorporation of RBPs into aggregates blocks their ability 

to access their RNA targets and leads to dysregulated gene expression. Since a single RBP 

regulates thousands of transcripts, RBP loss-of-function can have profound consequences for 

gene expression; however, the identity of dysregulated genes that drive pathology in these 

neurodegenerative diseases is unknown, and represents an area of intense study.

Therapeutic strategies

Given the relevance of phase separation and protein aggregation to human health, strategies 

to prevent aberrant aggregation might offer therapeutic options. RNA oligonucleotides with 

high affinity for the TDP-43 RRM can block phase transitions and reduce neuronal cell 

death in tissue culture57, suggesting that pathological aggregate formation may be targeted 

by RNA-based therapies. There has also been interest in identifying small molecules that can 

inhibit pathological aggregation100–102. One caveat is that several of these molecules inhibit 

aggregation by blocking liquid-liquid phase separation, which might impact physiological 

processes mediated by phase separation. Recently, a class of small molecules have been 

identified that induce TDP-43 liquid-liquid phase separation at low concentrations and 

promote the disassembly of condensates at a high concentration102. It remains to be 

determined if these compounds behave similarly in vivo and how they interact with other 

RBP condensates.

It has also been demonstrated that certain small molecules preferentially interact with 

specific condensates due to their physiochemical properties103. This kind of partitioning 

can impact concentration and pharmacodynamic properties of the drug103. This knowledge 
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can be harnessed to engineer compounds that are incorporated into particular condensates in 

order to increase target engagement.

Controversies and open questions

From the time that intracellular phase separation was first described, its application to 

explain diverse cellular phenomena, including signal transduction, transcription, RNA 

processing, and intracellular trafficking, has rapidly expanded. The sudden rise in popularity 

of phase separation has created challenges. What precisely constitutes phase separation 

in a biological setting is vaguely defined, exacerbated by a lack of clear standards for 

rigorous experimental characterization of phase-separation processes104. Analysis of phase 

separation has traditionally relied on qualitative observations of the physical properties of 

droplets (for example their roundness and tendency to fuse)105. Such qualities have recently 

been observed in systems that do not form via phase separation, underscoring the need 

to discriminate between alternative mechanisms106. These findings have evoked skepticism 

about the biological reality of phase separation in certain settings.

A further challenge is that condensate function is difficult to determine. Condensates are 

transient, and their extremely complex composition makes them difficult to reconstitute. 

Optogenetic platforms that allow inducible assembly and disassembly of condensates are 

now being used to probe their biological function107,108. High resolution microscopy 

techniques provide another approach for elucidating condensate function by tracking their 

protein and RNA constituents.

It is also important to consider whether the experimental methods used to manipulate 

phase separation also influence RBP function independent of condensate formation. 

Current studies often rely on mutagenesis of multivalent domains to alter phase separation 

and subsequently assess function. An important caveat to this approach is that loss of 

multivalency itself may alter RBP function. Recent work has demonstrated that transcription 

factor activation is enhanced by multivalency, but not via formation of phase-separated 

condensates109. Further studies dissecting the contributions of multivalency versus phase 

separation to RBP function are required to address this question.

Crucially, many RNAs and RBPs have only been studied in vitro, and their ability to phase 

separate in a physiological context is unknown. Experimental findings of in vitro studies are 

greatly influenced by the concentration of proteins and RNAs as well as buffer conditions. 

Another problem with in vitro studies is that they typically rely on bacterial expression 

systems A lack of physiological PTMs in the bacterially-expressed proteins may change 

their ability to phase separate. Furthermore, since high enough concentrations can cause 

virtually any protein to aggregate, it is important to consider whether the conditions of an 

assay are physiologically relevant. An attractive strategy to circumvent these issues may 

be to use cellular extracts, coupled with phase separation and functional assays104. These 

points underscore an urgent need for studies addressing the biological purpose of phase 

separation within the constraints of the cellular and organismal environment. Understanding 

the properties of condensates in vivo will be essential for harnessing their power as a 

therapeutic target.
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Box 1.

Phase separation: from colloidal chemistry to biological importance

Simply put, a phase is a system that is chemically homogenous and has distinguishing 

physical properties. Often, the term “phase” is used to refer to states of matter (i.e. 

solids, liquids, and gases); however, two substances in the same state of matter can exist 

in distinct phases. In biological systems, phase separation can occur when interactions 

between specific proteins and/or RNAs are energetically favored over other interactions. 

Such interactions must overcome the loss of entropy due to demixing110. The tendency 

for a system to phase separate is dependent on a multitude of chemical factors including 

temperature, ion concentration, pH, and macromolecular concentration (a). Mixtures 

containing a droplet phase and a continuous phase, separated by a phase boundary, are 

known as colloids (b). Before colloids were recognized in the cellular environment, the 

properties of such multi-phase systems were rigorously analyzed by the physicists Josiah 

Willard Gibbs and Johannes Diderik van der Waals111. William Hardy and Edmund 

Wilson were among the first to postulate that colloids could serve as a convenient 

way to compartmentalize the cell112,113. Still, phase separation was largely ignored by 

cell biologists until the late 20th century when new microscopy techniques permitted 

the high-resolution visualization of droplets within the nucleus and cytoplasm of the 

cell. These have been broadly termed “biomolecular condensates” which encompass a 

variety of physical interactions, with the most biologically relevant being liquid-solid and 

liquid-liquid phase separation (c).
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Figure 1. Distinct condensates impact various aspects of the RNA lifecycle.
Depiction of cellular condensates and descriptions of their proposed functions.
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Figure 2. Protein domains and post-translational modifications coordinate multivalent 
interactions to drive RBP phase separation.
a, Intrinsically disordered regions (IDRs) adopt multiple conformations and often associate 

with other regions of low complexity. b, Prion-like domains (PrLDs) can form liquid-

like droplets that may transition to aggregated or fibril-like condensates. c, RNA-binding 

domains (RBDs) allow RBPs to bind RNA motifs. Repeated RBD motifs coordinate 

RNA:RNA, protein:protein, and RNA:protein interactions to promote phase separation. d, 

Post-translational modifications (PTMs) can alter the charge of local protein stretches or 

induce conformational changes that strengthen interactions between proteins.
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Figure 3. Alternative splicing changes the propensity of RBPs to phase separate and the physical 
characteristics of their condensates.
a, Mammalian isoforms of the HNRNPA and HNRNPD families include a glycine-tyrosine-

rich intrinsically disordered region (GY-rich IDR, orange) that increases their ability to 

form high order assemblies. The IDR is skipped in the non-mammalian isoforms which 

do not form self-assemblies. b, Different isoforms of HNRNPDL display altered degrees 

of phase separation, likely due to the inclusion or skipping of two IDRs. c, FXR1 

condensate morphology can be altered by alternative splicing. d, Alternative splicing 

shifts the reading frame of the short TDP-43 isoforms which generates a putative nuclear 
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export signal (PNES). The PNES alters the localization of granules from being primarily 

nuclear to cytoplasmic. AA, amino acids; RRM, RNA recognition motif (purple); R-rich 

IDR, arginine-rich IDR (green); Y-rich IDR, tyrosine-rich IDR (brown); KH, K-homology 

domain (yellow); RGG, arginine-glycine-glycine containing motif (red); IDR, intrinsically 

disordered region (pink); G-rich LCD, glycine rich low complexity domain (blue).
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Figure 4. RNA influences phase separation and condensate composition through inter- and 
intramolecular interactions.
a, RNAs orchestrate the assembly of multiple RBPs to concentrate proteins, favoring 

multivalent interactions. b, Secondary RNA structure, such as RNA hairpins, can prevent 

binding of complementary RNAs and single stranded RNA binding proteins (ssRBPs) while 

promoting interactions with double stranded RNA binding proteins (dsRBPs). Therefore, 

RNA structure influences the composition of condensates and tunes their biophysical 

properties. c, G-quadraplexes form in guanine-rich sequences. Repeated poly(G) RNA 

sequences form gel-like condensates in the absence of protein. d, Protein-RNA interactions 

can alter protein conformation, allowing for additional interactions that promote or inhibit 

phase separation. e, RNA can increase the propensity for RBPs to form condensates, but 

high RNA concentrations inhibit phase separation.
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