Skip to main content
. 2021 Nov 26;9(3):2103926. doi: 10.1002/advs.202103926

Table 1.

Representative PTC works in different fields

Application Catalyst Energy source Temperature a) [°C] Reaction result b) (conversion rate/production rate/selectivity/efficiency) Ref.
Solar fuel production
Pure water splitting Au/N‐P25/MgO (111) Tungsten lamp (Vis, 0.45 kW m−2) and external heating 270 H2: 11 mmol g−1 h−1 [ 88 ]
Four halogen lamps 270 H2: 20 mmol g−1 h−1
Ni/Cu–TiO2 Xe lamp (<760 nm, 6 kW m−2) and external heating 350 H2: 13.50 µmol g−1 h−1 [ 123 ]
Hydrogen production from water with sacrificial agents (SA) Ag/MoS2/TiO2‐ x Xe lamp (>420 nm) / H2: 1.98 mmol g−1 h−1 [ 124 ]
Au/TiO2 Xe lamp (15 kW m−2) 82 H2: 56.25 mmol g−1 h−1 integrated with PV (total SE: 4.2%) [ 120 ]
Cu/Al2O3/ZnO Solar irradiation (1 kW m−2 with parabolic reflector) 180 CO & H2; SE: 67.49% integrated with photochemical energy storage (total SE: 75.38%) [ 117 ]
/ CO & H2; SE: 45.17% integrated with photochemical energy storage and PV (total SE: 66.95%) [ 118 ]
Cu/TiO2 Xe lamp and external heating 90 H2: ≈ 15 mmol g−1 h−1 [ 125 ]
Cu2‐ x S/CdS/Bi2S3 Xe lamp (>420 nm) / H2: 8.012 mmol g−1 h−1 [ 126 ]
NiS@g‐C3N4 Xe lamp (>420 nm) 82.2 H2: 31.3 mmol g−1 h−1 [ 127 ]
P25 Xe lamp (15 kW m−2) 90

H2: 1.736 mmol g−1 h−1

SE: 0.0005%

[ 128 ]
Solar irradiation (Fresnel lens, 36 suns) ≈95

H2: 4.716 mmol g−1 h−1

SE: 0.022%

Pt/TiO2 LED (380–450 nm) and external heating 90 H2: ≈ 0.625 mmol g−1 h−1 [ 88 ]
Pt/TiO2 Xe lamp (320–800 nm) and external heating 40

H2: 28.05 mmol g−1 h−1

QE: 203%

[ 87 ]
Pt/TiO2 Xe lamp 54

H2: 27.07 mmol g−1 h−1

SE: 0.36%

[ 129 ]
Pt@STO Xe lamp (5.3 kW m−2) 150

95.5%/15 min

CO: 11.44 mmol g−1 h−1; H2: 18.616 mmol g−1 h−1

syngas: 94.4%

[ 130 ]
Water–gas shift reaction (WGSR) CuO x /ZnO/Al2O3 Simulated sunlight (1 kW m−2) 297 H2: 192.33 mmol g−1 h−1 [ 113 ]
Solar irradiation (0.16–0.42 kW m−2, 4.2 m2) 270–410

H2: 580–1240 L h−1

SE: 2.86%

Dehydrogenation of ammonia borane (AB) Ag/W18O49 Xe lamp (>750 nm, 54 W m−2) 55 10.8 µmol h−1 [ 131 ]
Solar irradiation (5.50 kW m−2) 2.76 µmol h−1
RGO/Na2Ti3O7 Xe lamp (2.2 kW m−2) ΔT = ≈40 H2: 189.7 mol g−1 h−1 [ 132 ]
Ti2O3 Xe lamp (19 kW m−2) ≈195 H2: AB = 2.0/30 min [ 133 ]
Xe lamp (1 kW m−2) and waste heat of 70 °C and CuCl2 promoter 93 H2: AB = 2.0/30 min
TiN–Pt Simulated sunlight (AM 1.5G, 10 kW m−2) ≈50 H2: 106.4 mol gPt −1 h−1 [ 94 ]
CO2 reduction with H2O 3DOM‐LaSrCoFeO6‐ x Xe lamp (>420 nm) and external heating 350

CH4: 69.735 µmol g−1 h−1

SE: 1.933%

[ 73 ]
AuCu/g‐C3N4 Xe lamp (>420 nm) and external heating 120

CH3OH: 0.14 mmol g−1 h−1;

CH3CH2OH: 0.89 mmol g−1 h−1, 93.1%

[ 50 ]
Bi2S3/UiO‐66 Xe lamp (6.5 kW m−2) 150 CO: 25.60 µmol g−1 h−1, 99.0% [ 134 ]
Bi4TaO8Cl/W18O49 Xe lamp (<780 nm, 1.80 kW m−2) and external heating 120 CO: 23.42 µmol g−1 h−1 [ 135 ]
Cu0/Cu2O Xe lamp (4 kW m−2) and external heating 110 CO: 13.2 µmol g−1 h−1; CH3OH: 2.6 µmol g−1 h−1 [ 136 ]
Cu/TiO2‐C Xe lamp and external heating 250 CH4: 60 µmol g−1 h−1 [ 55 ]
Fe2O3/Fe3O4 Solar irradiation (Fresnel lens, CR = 600) 560

CH4: 1470.7 µmol g−1 h−1; C2H4: 736.2 µmol g−1 h−1; C2H6: 277.2 µmol g−1 h−1

SE: 0.05%

[ 137 ]
H‐Ov‐TiO2(AB) Xe lamp (1 kW m−2) and external heating 120 CO: 38.99 µmol g−1 h−1; CH4: 11.93 µmol g−1 h−1 [ 85 ]
m‐WO3‐ x Xe lamp (>420 nm) and external heating 250

CH4: 2.148 µmol g−1 h−1

SE: 0.82%

[ 47 ]
Pd/WN‐WO3 Xe lamp (AM 1.5G, 4 kW m−2) 154

H2: 368.5 µmol g−1 h−1;

CO: 15.2 µmol g−1 h−1; CH4: 40.6 µmol g−1 h−1

[ 138 ]
TiO2‐ x /CoO x UV lamp (0.2 kW m−2) and external heating 120 CO: 16.403 µmol g−1 h−1; CH4: 10.051 µmol g−1 h−1 [ 139 ]
TiO2‐G Xe lamp (4.38 kW m−2) 96.5 CO: 5.2 µmol g−1 h−1; CH4: 26.7 µmol g−1 h−1 [ 75 ]
TiO2 PC Xe lamp ΔT = ≈2 CH4: 35.0 µmol h−1 m−2 [ 68 ]
CO2 hydrogenation Co/Al2O3 Xe lamp (13 kW m−2) 292

CO: 0.1392 mmol g−1 h−1, 2.3%;

CH4: 6.036 mmol g−1 h−1, 97.7%

[ 43 ]
Co@CoN&C Xe lamp 518

41.3%/30 min

CO: 132 mmol g−1 h−1, 91.1%

[ 54 ]
CoFe–Al2O3 Xe lamp 310

82.2%/2 h

CO: 2.97%; CH4: 60.61%; C2+: 36.42%

[ 71 ]
Cu‐HAP Xe lamp (40 kW m−2) ≈220 CO: 12 mmol g−1 h−1, >99% [ 38 ]
Fe3O4 Xe lamp (20.5 kW m−2) 350 CO: 11.3 mmol g−1 h−1, >99% [ 51 ]
Fe3C 310 CH x : 10.9 mmol g−1 h−1, 97.5%
FeO–CeO2 Xe lamp (22 kW m−2) 419

44.33%

CO: 19.61 mmol g−1 h−1, 99.87%

[ 140 ]
Ga–Cu/CeO2 Xe lamp (19.52 kW m−2) 280

CO: 111.2 mmol g−1 h−1, 100%

SE: 0.83%

[ 141 ]
In2O3‐ x Xe lamp ≈350 CO: 103.21 mmol g−1 h−1 [ 142 ]
In2O3‐ x Xe lamp (≈20 kW m−2) 262 CO: 1.875 mmol h−1 m−2 [ 143 ]
In2O3‐ x (OH) y LED (380 nm, 43.4 kW m−2) 300 CO: 15.4 mmol g−1 h−1 [ 115 ]
In2O3‐ x (OH) y /SiNW Xe lamp (20 kW m−2) 150 CO: 22.0 µmol g−1 h−1 [ 61 ]
Ni/BaTiO3 Xe lamp (2.93 kW m−2) 376

94.4%/10 min

CH4: 257.0 mmol g−1 h−1, ≈100%

[ 144 ]
Pd@Nb2O5 Xe lamp (25 kW m−2) 160 CO: 1.8 mmol g−1 h−1 [ 145 ]
Ru/Al2O3 Simulated sunlight (6.2 kW m−2) and external heating 220 CH4: 5.09 mol g−1 h−1 [ 83 ]
Ru@FL‐LDH Xe lamp (10 kW m−2) 350

96.3%

CH4: 99.3%

[ 70 ]
Ru/i‐Si‐o Xe lamp (24.7 kW m−2) ∼150 CH4: 2.8 mmol g−1 h−1 [ 44 ]
Dry reforming of methane (DRM) MgO/Pt/Zn–CeO2 Simulated sunlight (30 kW m−2) and external heating 600 CO: 516 mmol g−1 h−1; H2: 356 mmol g−1 h−1 [ 39 ]
NiCo/Co–Al2O3 Xe lamp 762

CO: 4231.8 mmol g−1 h−1; H2: 3807.6 mmol g−1 h−1

SE: 29.7%

[ 146 ]
Ni–La2O3/SiO2 Xe lamp (8068.6 mW) 697

CO: 2574.0 mmol g−1 h−1; H2: 2286.6 mmol g−1 h−1

SE: 20.3%

[ 57 ]
Pt–Au/SiO2 Xe lamp (300–800 nm, 6 kW m−2) and external heating 400 CO: ≈7.2 mmol g−1 h−1; H2: ≈5.7 mmol g−1 h−1; syngas: ≈100% [ 36 ]
Pt/TaN Xe lamp (420–780 nm, 4.20 kW m−2) and external heating 500 CO: ≈75 mmol g−1 h−1; H2: ≈66 mmol g−1 h−1; syngas: ≈100% [ 147 ]
CO2 splitting Cu–TiO2 Hg lamp and external heating 500 CO: 5.40 µmol g−1 h−1 [ 148 ]
PNT Hg lamp and external heating 500 CO: 11.05 µmol g−1 h−1 [ 41 ]
Fischer–Tropsch synthesis (FTS) Co/TiO2 Hg lamp and external heating 220

63.9%

CO2: 3.1%; CH x : 96.9%

(CH4: 35.0%; C2–C4: 36.3%; C5+: 28.7%)

[ 42 ]
CoAl‐LDH Xe lamp (200–800 nm) 210

35.4%

CO2: 17.3%; CH x : 82.7%

(CH4: 34.6%; C2–C4: 22.7%; C5+: 42.7%)

[ 149 ]
CoMn x /MnO2‐ x Xe lamp (34–39 kW m−2) 250

13.9%/30 min

CO2: 22.6%; CH4: 28.4%; C2–C4 (olefins): 27.0%; C2–C4 (paraffins): 8.4%; C5+: 13.6%

[ 150 ]
Chemical synthesis
Selective hydrogenation Pd1/N‐G Xe lamp 125

99%

Acetylene to ethylene: 93.5%

[ 72 ]
Pt–Fe/SiC LED (400–800 nm, 0.4 kW m−2) and temperature controlling 20

100%/15 min

3‐Nitrostyrene to 3‐aminostyrene: 91.3%

[ 151 ]
Selective oxidation SnO2:Sb Xe lamp (>300 nm, 26 W m−2 at 320–400 nm) / Benzylamine to benzaldehyde: ≈90% / 24h [ 81 ]
ZnO@ZIF‐8 Xe lamp (3 kW m−2) and external heating 200

39.8%

Ethanol to aldehyde: 91.5%

[ 76 ]
MnO x /TiO2 Xe lamp (5.439 kW m−2) 206

59.1%

Ethanol to aldehyde: 18.828 mmol g−1 h−1, 89.7%

[ 152 ]
Pt/PCN‐224(M) Xe lamp (>400 nm) 36 Aromatic alcohol to aldehyde: ≈100%/50 min [ 33 ]
WO3–Au Xe lamp and external heating 120

9.0%/8 h

CHA to KA oil c) : 99.0%

[ 45 ]
WO3‐NCDs Xe lamp and external heating 120

7.88%/8 h

CHA to KA oil: 98.9%

[ 153 ]
MoO3–Ag Xe lamp and external heating 120

8.6%/8 h

CHA to KA oil: 99.0%

[ 53 ]
Au–Pt/Cu7S4–Cu9S8 Xe lamp (>400 nm) 50 Amine to imine: ≈100%/120 min [ 154 ]
Coupling reaction Cu7S4@ZIF‐8 laser (1450 nm, 500 mW) 94 Cyclocondensation: 97.2%/6 h [ 63 ]
M@CCOF‐CuTPP Xe lamp (>400 nm, 25 kW m−2) 58

Asymmetric one‐pot Henry and A3‐coupling: TOF = 9.8 h−1

Enantiomeric excess: 98%

[ 49 ]
Au–CuO Xe lamp (420–780 nm) and external heating 60 1,3‐dipolar azide–alkyne cycloaddition: 90.6% / 2 h [ 56 ]
Pd–TiO2/CNF Xe lamp and external heating 50

Suzuki coupling: 93.62% / 5 h

selectivity: 94.80%

[ 155 ]
Cu@Ni@ZIF‐8 Xe lamp C–C coupling reaction of boric acid: 62% [ 79 ]
Environmental remediation
Gaseous contaminant treatment CuO HCs Xe lamp ≈200 CO: 99.3%/20 min, 482.1 μmolCO g−1 h−1 [ 62 ]
Fe3Si/Co3O4 Solar irradiation (0.3–0.35 kW m−2) 160 CO: >95% [ 112 ]
AlN x + W/Fe2O3 Solar irradiation (CR = 4) 270 NO x SCR: 90% [ 111 ]
TiO2(B) Halogen lamp (365 nm, 10 W m−2) and external heating 60

NO x SCR: 70.01%

Non‐NO2 selectivity: 93.73%

[ 80 ]
Pt/TiO2–WO3 Xe lamp (with IR filter, 10 kW m−2) and external heating 90 C3H8: 70% [ 40 ]
Ag/Ag3PO4/CeO2 Xe lamp 135 Benzene: 90.18%/3 h; CO2: 46.72%; TOC: 74.17% [ 156 ]
Pt/TiO2(001) Xe lamp (3.998 kW m−2) 209 Benzene: 45.195 mmolCO2 g−1 h−1 [ 76 ]
Pt/γ‐Al2O3 Simulated sunlight (3.2 kW m−2) 169 Toluene: 94%/10 min [ 157 ]
CeO2/LaMnO3 IR lamp (2.8 kW m−2) 275

Toluene: 89%/120 min, 11.88 μmoltoluene g−1 h−1;

CO2: 425.4 μmol g−1 h−1, 87%

[ 158 ]
Pt/SrTiO3‐ x Xe lamp (420–780 nm, 1.5 kW m−2) and external heating 150 Toluene: ≈ 100%/60 min [ 159 ]
A‐LaTi1‐ x Mn x O3+ δ Xe lamp (6.5 kW m−2) 227.5 Toluene: 96%; CO2: 72% [ 52 ]
ARCeO2 Xe lamp (300–780 nm, 2 kW m−2) and external heating 226 Styrene: 90% [ 160 ]
495 n‐hexane: 90%
563 Cyclohexane: 90%
Water treatment MnO2‐G Xe lamp 80 Formaldehyde: 87.2%/40 min; CO2: ≈100% [ 161 ]
GO/MnO x /CN Xe lamp ≈85 Formaldehyde: > 90%/12 min [ 162 ]
Co x O/TiO2 LED (470 nm, 2 kW m−2) and external heating 60 Acetaldehyde: ≈100% [ 46 ]
H‐Ov‐TiO2(AB) Xe lamp (350–400 nm, 30 W m−2) and external heating 70 Acetaldehyde: ≈100%/40 min [ 85 ]
ZnxCd1‐ x S/Bi2S3 Xe lamp (15 kW m−2) 46.7 RhB c) : 100%/30 min [ 162 ]
C@TiO2 Xe lamp (>420 nm) and external heating 60 RhB: 92.7%/150 min [ 64 ]
Flower‐like CuS Xe lamp (10 kW m−2) ≈65 MB c) : ≈100%/25 min [ 78 ]
Zr‐Fc MOF Xe lamp (AM 1.5G, 1.0 kW m−2) 90 MB: > 99%/35 min integrated with water evaporation [ 121 ]
B‐TiO2 Xe lamp 78 MB: ≈100%/40 min [ 164 ]
Ag/TiO2 Xe lamp (>420 nm) 25 4‐NP c) : ≈ 100%/150 s [ 165 ]
Ag‐MBTH Xe lamp (>420 nm, 1 kW m−2) and external heating 40 4‐NP:100%/26 s [ 166 ]
Ag/MoS2/TiO2‐ x Xe lamp (>420 nm) BPA c) : 96.7%/120 min [ 124 ]
Bi5O7I/Ag/CdS Xe lamp (>420 nm) ΔT ≈ 7 BPA: ≈97%/180 min [ 65 ]
2,6‐DCP c) : ≈93%/180 min
Ag/Bi2S3/MoS2 Xe lamp (>420 nm) / 2,4‐DCP: 99.2%/210 min [ 67 ]
Cu2‐ x S/CdS/Bi2S3 Xe lamp (>420 nm) / 2,4‐DCP: 99%/150 min [ 126 ]
α‐Fe2O3/MoS2/Ag Xe lamp (>420 nm) / 2,4‐DCP: ≈100%/120 min [ 66 ]
Xe lamp (420–780 nm) / Salicylic acid: 97%/135 min
AC/CN Xe lamp ≈45 Sulfamerazine: 98%/60 min [ 167 ]
Solar irradiation (0.7 kW m−2) 35 Sulfamerazine: 99%/90 min
Bi‐BN/Ag–AgCl Xe lamp / Ceftriatone sodium: 98.9%/210 min [ 168 ]
/ Cr(VI): 98.3%/210 min
a)

The symbols of “/” in the Temperature column represent the unspecified reaction temperatures

b)

Necessary unit conversions have been made. In the “Solar Fuel Production” section, the percentages without additional information represent the conversion rates of the reactants, while the data of product selectivity are labeled with the product names and the data of energy efficiency are labeled with SE (solar efficiency)

c)

Compound abbreviations: CHA (cyclohexane), RhB (Rhodamine B), MB (methylene blue), NP (nitrophenol), BPA (bisphenol A), DCP (dichlorophenol).

HHS Vulnerability Disclosure