Table 1.
Representative PTC works in different fields
Application | Catalyst | Energy source | Temperature a) [°C] | Reaction result b) (conversion rate/production rate/selectivity/efficiency) | Ref. |
---|---|---|---|---|---|
Solar fuel production | |||||
Pure water splitting | Au/N‐P25/MgO (111) | Tungsten lamp (Vis, 0.45 kW m−2) and external heating | 270 | H2: 11 mmol g−1 h−1 | [ 88 ] |
Four halogen lamps | 270 | H2: 20 mmol g−1 h−1 | |||
Ni/Cu–TiO2 | Xe lamp (<760 nm, 6 kW m−2) and external heating | 350 | H2: 13.50 µmol g−1 h−1 | [ 123 ] | |
Hydrogen production from water with sacrificial agents (SA) | Ag/MoS2/TiO2‐ x | Xe lamp (>420 nm) | / | H2: 1.98 mmol g−1 h−1 | [ 124 ] |
Au/TiO2 | Xe lamp (15 kW m−2) | 82 | H2: 56.25 mmol g−1 h−1 integrated with PV (total SE: 4.2%) | [ 120 ] | |
Cu/Al2O3/ZnO | Solar irradiation (1 kW m−2 with parabolic reflector) | 180 | CO & H2; SE: 67.49% integrated with photochemical energy storage (total SE: 75.38%) | [ 117 ] | |
/ | CO & H2; SE: 45.17% integrated with photochemical energy storage and PV (total SE: 66.95%) | [ 118 ] | |||
Cu/TiO2 | Xe lamp and external heating | 90 | H2: ≈ 15 mmol g−1 h−1 | [ 125 ] | |
Cu2‐ x S/CdS/Bi2S3 | Xe lamp (>420 nm) | / | H2: 8.012 mmol g−1 h−1 | [ 126 ] | |
NiS@g‐C3N4 | Xe lamp (>420 nm) | 82.2 | H2: 31.3 mmol g−1 h−1 | [ 127 ] | |
P25 | Xe lamp (15 kW m−2) | 90 |
H2: 1.736 mmol g−1 h−1 SE: 0.0005% |
[ 128 ] | |
Solar irradiation (Fresnel lens, 36 suns) | ≈95 |
H2: 4.716 mmol g−1 h−1 SE: 0.022% |
|||
Pt/TiO2 | LED (380–450 nm) and external heating | 90 | H2: ≈ 0.625 mmol g−1 h−1 | [ 88 ] | |
Pt/TiO2 | Xe lamp (320–800 nm) and external heating | 40 |
H2: 28.05 mmol g−1 h−1 QE: 203% |
[ 87 ] | |
Pt/TiO2 | Xe lamp | 54 |
H2: 27.07 mmol g−1 h−1 SE: 0.36% |
[ 129 ] | |
Pt@STO | Xe lamp (5.3 kW m−2) | 150 |
95.5%/15 min CO: 11.44 mmol g−1 h−1; H2: 18.616 mmol g−1 h−1 syngas: 94.4% |
[ 130 ] | |
Water–gas shift reaction (WGSR) | CuO x /ZnO/Al2O3 | Simulated sunlight (1 kW m−2) | 297 | H2: 192.33 mmol g−1 h−1 | [ 113 ] |
Solar irradiation (0.16–0.42 kW m−2, 4.2 m2) | 270–410 |
H2: 580–1240 L h−1 SE: 2.86% |
|||
Dehydrogenation of ammonia borane (AB) | Ag/W18O49 | Xe lamp (>750 nm, 54 W m−2) | 55 | 10.8 µmol h−1 | [ 131 ] |
Solar irradiation (5.50 kW m−2) | – | 2.76 µmol h−1 | |||
RGO/Na2Ti3O7 | Xe lamp (2.2 kW m−2) | ΔT = ≈40 | H2: 189.7 mol g−1 h−1 | [ 132 ] | |
Ti2O3 | Xe lamp (19 kW m−2) | ≈195 | H2: AB = 2.0/30 min | [ 133 ] | |
Xe lamp (1 kW m−2) and waste heat of 70 °C and CuCl2 promoter | 93 | H2: AB = 2.0/30 min | |||
TiN–Pt | Simulated sunlight (AM 1.5G, 10 kW m−2) | ≈50 | H2: 106.4 mol gPt −1 h−1 | [ 94 ] | |
CO2 reduction with H2O | 3DOM‐LaSrCoFeO6‐ x | Xe lamp (>420 nm) and external heating | 350 |
CH4: 69.735 µmol g−1 h−1 SE: 1.933% |
[ 73 ] |
AuCu/g‐C3N4 | Xe lamp (>420 nm) and external heating | 120 |
CH3OH: 0.14 mmol g−1 h−1; CH3CH2OH: 0.89 mmol g−1 h−1, 93.1% |
[ 50 ] | |
Bi2S3/UiO‐66 | Xe lamp (6.5 kW m−2) | 150 | CO: 25.60 µmol g−1 h−1, 99.0% | [ 134 ] | |
Bi4TaO8Cl/W18O49 | Xe lamp (<780 nm, 1.80 kW m−2) and external heating | 120 | CO: 23.42 µmol g−1 h−1 | [ 135 ] | |
Cu0/Cu2O | Xe lamp (4 kW m−2) and external heating | 110 | CO: 13.2 µmol g−1 h−1; CH3OH: 2.6 µmol g−1 h−1 | [ 136 ] | |
Cu/TiO2‐C | Xe lamp and external heating | 250 | CH4: 60 µmol g−1 h−1 | [ 55 ] | |
Fe2O3/Fe3O4 | Solar irradiation (Fresnel lens, CR = 600) | 560 |
CH4: 1470.7 µmol g−1 h−1; C2H4: 736.2 µmol g−1 h−1; C2H6: 277.2 µmol g−1 h−1 SE: 0.05% |
[ 137 ] | |
H‐Ov‐TiO2(AB) | Xe lamp (1 kW m−2) and external heating | 120 | CO: 38.99 µmol g−1 h−1; CH4: 11.93 µmol g−1 h−1 | [ 85 ] | |
m‐WO3‐ x | Xe lamp (>420 nm) and external heating | 250 |
CH4: 2.148 µmol g−1 h−1 SE: 0.82% |
[ 47 ] | |
Pd/WN‐WO3 | Xe lamp (AM 1.5G, 4 kW m−2) | 154 |
H2: 368.5 µmol g−1 h−1; CO: 15.2 µmol g−1 h−1; CH4: 40.6 µmol g−1 h−1 |
[ 138 ] | |
TiO2‐ x /CoO x | UV lamp (0.2 kW m−2) and external heating | 120 | CO: 16.403 µmol g−1 h−1; CH4: 10.051 µmol g−1 h−1 | [ 139 ] | |
TiO2‐G | Xe lamp (4.38 kW m−2) | 96.5 | CO: 5.2 µmol g−1 h−1; CH4: 26.7 µmol g−1 h−1 | [ 75 ] | |
TiO2 PC | Xe lamp | ΔT = ≈2 | CH4: 35.0 µmol h−1 m−2 | [ 68 ] | |
CO2 hydrogenation | Co/Al2O3 | Xe lamp (13 kW m−2) | 292 |
CO: 0.1392 mmol g−1 h−1, 2.3%; CH4: 6.036 mmol g−1 h−1, 97.7% |
[ 43 ] |
Co@CoN&C | Xe lamp | 518 |
41.3%/30 min CO: 132 mmol g−1 h−1, 91.1% |
[ 54 ] | |
CoFe–Al2O3 | Xe lamp | 310 |
82.2%/2 h CO: 2.97%; CH4: 60.61%; C2+: 36.42% |
[ 71 ] | |
Cu‐HAP | Xe lamp (40 kW m−2) | ≈220 | CO: 12 mmol g−1 h−1, >99% | [ 38 ] | |
Fe3O4 | Xe lamp (20.5 kW m−2) | 350 | CO: 11.3 mmol g−1 h−1, >99% | [ 51 ] | |
Fe3C | 310 | CH x : 10.9 mmol g−1 h−1, 97.5% | |||
FeO–CeO2 | Xe lamp (22 kW m−2) | 419 |
44.33% CO: 19.61 mmol g−1 h−1, 99.87% |
[ 140 ] | |
Ga–Cu/CeO2 | Xe lamp (19.52 kW m−2) | 280 |
CO: 111.2 mmol g−1 h−1, 100% SE: 0.83% |
[ 141 ] | |
In2O3‐ x | Xe lamp | ≈350 | CO: 103.21 mmol g−1 h−1 | [ 142 ] | |
In2O3‐ x | Xe lamp (≈20 kW m−2) | 262 | CO: 1.875 mmol h−1 m−2 | [ 143 ] | |
In2O3‐ x (OH) y | LED (380 nm, 43.4 kW m−2) | 300 | CO: 15.4 mmol g−1 h−1 | [ 115 ] | |
In2O3‐ x (OH) y /SiNW | Xe lamp (20 kW m−2) | 150 | CO: 22.0 µmol g−1 h−1 | [ 61 ] | |
Ni/BaTiO3 | Xe lamp (2.93 kW m−2) | 376 |
94.4%/10 min CH4: 257.0 mmol g−1 h−1, ≈100% |
[ 144 ] | |
Pd@Nb2O5 | Xe lamp (25 kW m−2) | 160 | CO: 1.8 mmol g−1 h−1 | [ 145 ] | |
Ru/Al2O3 | Simulated sunlight (6.2 kW m−2) and external heating | 220 | CH4: 5.09 mol g−1 h−1 | [ 83 ] | |
Ru@FL‐LDH | Xe lamp (10 kW m−2) | 350 |
96.3% CH4: 99.3% |
[ 70 ] | |
Ru/i‐Si‐o | Xe lamp (24.7 kW m−2) | ∼150 | CH4: 2.8 mmol g−1 h−1 | [ 44 ] | |
Dry reforming of methane (DRM) | MgO/Pt/Zn–CeO2 | Simulated sunlight (30 kW m−2) and external heating | 600 | CO: 516 mmol g−1 h−1; H2: 356 mmol g−1 h−1 | [ 39 ] |
NiCo/Co–Al2O3 | Xe lamp | 762 |
CO: 4231.8 mmol g−1 h−1; H2: 3807.6 mmol g−1 h−1 SE: 29.7% |
[ 146 ] | |
Ni–La2O3/SiO2 | Xe lamp (8068.6 mW) | 697 |
CO: 2574.0 mmol g−1 h−1; H2: 2286.6 mmol g−1 h−1 SE: 20.3% |
[ 57 ] | |
Pt–Au/SiO2 | Xe lamp (300–800 nm, 6 kW m−2) and external heating | 400 | CO: ≈7.2 mmol g−1 h−1; H2: ≈5.7 mmol g−1 h−1; syngas: ≈100% | [ 36 ] | |
Pt/TaN | Xe lamp (420–780 nm, 4.20 kW m−2) and external heating | 500 | CO: ≈75 mmol g−1 h−1; H2: ≈66 mmol g−1 h−1; syngas: ≈100% | [ 147 ] | |
CO2 splitting | Cu–TiO2 | Hg lamp and external heating | 500 | CO: 5.40 µmol g−1 h−1 | [ 148 ] |
PNT | Hg lamp and external heating | 500 | CO: 11.05 µmol g−1 h−1 | [ 41 ] | |
Fischer–Tropsch synthesis (FTS) | Co/TiO2 | Hg lamp and external heating | 220 |
63.9% CO2: 3.1%; CH x : 96.9% (CH4: 35.0%; C2–C4: 36.3%; C5+: 28.7%) |
[ 42 ] |
CoAl‐LDH | Xe lamp (200–800 nm) | 210 |
35.4% CO2: 17.3%; CH x : 82.7% (CH4: 34.6%; C2–C4: 22.7%; C5+: 42.7%) |
[ 149 ] | |
CoMn x /MnO2‐ x | Xe lamp (34–39 kW m−2) | 250 |
13.9%/30 min CO2: 22.6%; CH4: 28.4%; C2–C4 (olefins): 27.0%; C2–C4 (paraffins): 8.4%; C5+: 13.6% |
[ 150 ] | |
Chemical synthesis | |||||
Selective hydrogenation | Pd1/N‐G | Xe lamp | 125 |
99% Acetylene to ethylene: 93.5% |
[ 72 ] |
Pt–Fe/SiC | LED (400–800 nm, 0.4 kW m−2) and temperature controlling | 20 |
100%/15 min 3‐Nitrostyrene to 3‐aminostyrene: 91.3% |
[ 151 ] | |
Selective oxidation | SnO2:Sb | Xe lamp (>300 nm, 26 W m−2 at 320–400 nm) | / | Benzylamine to benzaldehyde: ≈90% / 24h | [ 81 ] |
ZnO@ZIF‐8 | Xe lamp (3 kW m−2) and external heating | 200 |
39.8% Ethanol to aldehyde: 91.5% |
[ 76 ] | |
MnO x /TiO2 | Xe lamp (5.439 kW m−2) | 206 |
59.1% Ethanol to aldehyde: 18.828 mmol g−1 h−1, 89.7% |
[ 152 ] | |
Pt/PCN‐224(M) | Xe lamp (>400 nm) | 36 | Aromatic alcohol to aldehyde: ≈100%/50 min | [ 33 ] | |
WO3–Au | Xe lamp and external heating | 120 |
9.0%/8 h CHA to KA oil c) : 99.0% |
[ 45 ] | |
WO3‐NCDs | Xe lamp and external heating | 120 |
7.88%/8 h CHA to KA oil: 98.9% |
[ 153 ] | |
MoO3–Ag | Xe lamp and external heating | 120 |
8.6%/8 h CHA to KA oil: 99.0% |
[ 53 ] | |
Au–Pt/Cu7S4–Cu9S8 | Xe lamp (>400 nm) | 50 | Amine to imine: ≈100%/120 min | [ 154 ] | |
Coupling reaction | Cu7S4@ZIF‐8 | laser (1450 nm, 500 mW) | 94 | Cyclocondensation: 97.2%/6 h | [ 63 ] |
M@CCOF‐CuTPP | Xe lamp (>400 nm, 25 kW m−2) | 58 |
Asymmetric one‐pot Henry and A3‐coupling: TOF = 9.8 h−1 Enantiomeric excess: 98% |
[ 49 ] | |
Au–CuO | Xe lamp (420–780 nm) and external heating | 60 | 1,3‐dipolar azide–alkyne cycloaddition: 90.6% / 2 h | [ 56 ] | |
Pd–TiO2/CNF | Xe lamp and external heating | 50 |
Suzuki coupling: 93.62% / 5 h selectivity: 94.80% |
[ 155 ] | |
Cu@Ni@ZIF‐8 | Xe lamp | – | C–C coupling reaction of boric acid: 62% | [ 79 ] | |
Environmental remediation | |||||
Gaseous contaminant treatment | CuO HCs | Xe lamp | ≈200 | CO: 99.3%/20 min, 482.1 μmolCO g−1 h−1 | [ 62 ] |
Fe3Si/Co3O4 | Solar irradiation (0.3–0.35 kW m−2) | 160 | CO: >95% | [ 112 ] | |
AlN x + W/Fe2O3 | Solar irradiation (CR = 4) | 270 | NO x SCR: 90% | [ 111 ] | |
TiO2(B) | Halogen lamp (365 nm, 10 W m−2) and external heating | 60 |
NO x SCR: 70.01% Non‐NO2 selectivity: 93.73% |
[ 80 ] | |
Pt/TiO2–WO3 | Xe lamp (with IR filter, 10 kW m−2) and external heating | 90 | C3H8: 70% | [ 40 ] | |
Ag/Ag3PO4/CeO2 | Xe lamp | 135 | Benzene: 90.18%/3 h; CO2: 46.72%; TOC: 74.17% | [ 156 ] | |
Pt/TiO2(001) | Xe lamp (3.998 kW m−2) | 209 | Benzene: 45.195 mmolCO2 g−1 h−1 | [ 76 ] | |
Pt/γ‐Al2O3 | Simulated sunlight (3.2 kW m−2) | 169 | Toluene: 94%/10 min | [ 157 ] | |
CeO2/LaMnO3 | IR lamp (2.8 kW m−2) | 275 |
Toluene: 89%/120 min, 11.88 μmoltoluene g−1 h−1; CO2: 425.4 μmol g−1 h−1, 87% |
[ 158 ] | |
Pt/SrTiO3‐ x | Xe lamp (420–780 nm, 1.5 kW m−2) and external heating | 150 | Toluene: ≈ 100%/60 min | [ 159 ] | |
A‐LaTi1‐ x Mn x O3+ δ | Xe lamp (6.5 kW m−2) | 227.5 | Toluene: 96%; CO2: 72% | [ 52 ] | |
ARCeO2 | Xe lamp (300–780 nm, 2 kW m−2) and external heating | 226 | Styrene: 90% | [ 160 ] | |
495 | n‐hexane: 90% | ||||
563 | Cyclohexane: 90% | ||||
Water treatment | MnO2‐G | Xe lamp | 80 | Formaldehyde: 87.2%/40 min; CO2: ≈100% | [ 161 ] |
GO/MnO x /CN | Xe lamp | ≈85 | Formaldehyde: > 90%/12 min | [ 162 ] | |
Co x O/TiO2 | LED (470 nm, 2 kW m−2) and external heating | 60 | Acetaldehyde: ≈100% | [ 46 ] | |
H‐Ov‐TiO2(AB) | Xe lamp (350–400 nm, 30 W m−2) and external heating | 70 | Acetaldehyde: ≈100%/40 min | [ 85 ] | |
ZnxCd1‐ x S/Bi2S3 | Xe lamp (15 kW m−2) | 46.7 | RhB c) : 100%/30 min | [ 162 ] | |
C@TiO2 | Xe lamp (>420 nm) and external heating | 60 | RhB: 92.7%/150 min | [ 64 ] | |
Flower‐like CuS | Xe lamp (10 kW m−2) | ≈65 | MB c) : ≈100%/25 min | [ 78 ] | |
Zr‐Fc MOF | Xe lamp (AM 1.5G, 1.0 kW m−2) | 90 | MB: > 99%/35 min integrated with water evaporation | [ 121 ] | |
B‐TiO2 | Xe lamp | 78 | MB: ≈100%/40 min | [ 164 ] | |
Ag/TiO2 | Xe lamp (>420 nm) | 25 | 4‐NP c) : ≈ 100%/150 s | [ 165 ] | |
Ag‐MBTH | Xe lamp (>420 nm, 1 kW m−2) and external heating | 40 | 4‐NP:100%/26 s | [ 166 ] | |
Ag/MoS2/TiO2‐ x | Xe lamp (>420 nm) | – | BPA c) : 96.7%/120 min | [ 124 ] | |
Bi5O7I/Ag/CdS | Xe lamp (>420 nm) | ΔT ≈ 7 | BPA: ≈97%/180 min | [ 65 ] | |
2,6‐DCP c) : ≈93%/180 min | |||||
Ag/Bi2S3/MoS2 | Xe lamp (>420 nm) | / | 2,4‐DCP: 99.2%/210 min | [ 67 ] | |
Cu2‐ x S/CdS/Bi2S3 | Xe lamp (>420 nm) | / | 2,4‐DCP: 99%/150 min | [ 126 ] | |
α‐Fe2O3/MoS2/Ag | Xe lamp (>420 nm) | / | 2,4‐DCP: ≈100%/120 min | [ 66 ] | |
Xe lamp (420–780 nm) | / | Salicylic acid: 97%/135 min | |||
AC/CN | Xe lamp | ≈45 | Sulfamerazine: 98%/60 min | [ 167 ] | |
Solar irradiation (0.7 kW m−2) | 35 | Sulfamerazine: 99%/90 min | |||
Bi‐BN/Ag–AgCl | Xe lamp | / | Ceftriatone sodium: 98.9%/210 min | [ 168 ] | |
/ | Cr(VI): 98.3%/210 min |
The symbols of “/” in the Temperature column represent the unspecified reaction temperatures
Necessary unit conversions have been made. In the “Solar Fuel Production” section, the percentages without additional information represent the conversion rates of the reactants, while the data of product selectivity are labeled with the product names and the data of energy efficiency are labeled with SE (solar efficiency)
Compound abbreviations: CHA (cyclohexane), RhB (Rhodamine B), MB (methylene blue), NP (nitrophenol), BPA (bisphenol A), DCP (dichlorophenol).