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Abstract
Metabolic disorders, such as obesity, type 2 diabetes melli-
tus, and nonalcoholic fatty liver disease, are characterized by 
chronic low-grade tissue and systemic inflammation. During 
obesity, the adipose tissue undergoes immunometabolic 
and functional transformation. Adipose tissue inflammation 
is driven by innate and adaptive immune cells and instigates 
insulin resistance. Here, we discuss the role of innate im-
mune cells, that is, macrophages, neutrophils, eosinophils, 
natural killer cells, innate lymphoid type 2 cells, dendritic 
cells, and mast cells, in the adipose tissue in the healthy 
(lean) and diseased (obese) state and describe how their 
function is shaped by the obesogenic microenvironment, 
and humoral, paracrine, and cellular interactions. Moreover, 
we particularly outline the role of hypoxia as a central regu-
lator in adipose tissue inflammation. Finally, we discuss the 
long-lasting effects of adipose tissue inflammation and its 
potential reversibility through drugs, caloric restriction, or 
exercise training. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

Immune mechanisms and metabolism are inextricably 
connected and mutually co-regulate each other [1, 2]. Im-
mune responses require metabolic adaptation at the cel-
lular and organismal level [1, 3, 4], while metabolic dys-
regulation, for example, in obesity, leads to immune acti-
vation [1, 2, 5, 6]. The adipose tissue comprises immune 
cells, which shape its function in health and disease [1, 2, 
5–7]. In the healthy state, immune mechanisms contrib-
ute to maintenance of tissue homeostasis [1, 2, 5–7]. In 
obesity, the immune profile of the adipose tissue changes, 
shifting to a chronic low-grade inflammatory state, which 
gradually becomes systemic and drives insulin resistance 
and metabolic disease [1, 2, 5–10]. Type 2 diabetes mel-
litus, cardiovascular disease, fatty liver disease, and sev-
eral cancers are linked to obesity [10]. Recently, it became 
evident that obesity also predisposes to coronavirus dis-
ease 2019 (COVID-19) severity [11, 12]. Hence, especial-
ly but not limited to the times of the COVID-19 pandem-
ic, obesity constitutes an important public health issue 
[10]. Gaining a better understanding of the immune 
mechanisms implicated in obesity will be key in develop-
ing therapeutic strategies to prevent or restrain associated 
metabolic and immune disturbances.

Here, we describe the innate immune networks in the 
adipose tissue and how these change in obesity. We also 
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discuss the interplay of innate immune cells with the en-
dothelium and particularly focus on the role of hypoxia 
in this context. We highlight recent knowledge on the 
molecular and metabolic pathways regulating the func-
tion of innate immune cells in the adipose tissue and their 
interaction with their surrounding tissue. Finally, we dis-
cuss the long-lasting character and potential reversibility 
of adipose tissue inflammation.

The Adipose Tissue Niche

The white and brown adipose tissue are two different 
types of adipose tissue, which are functionally and devel-
opmentally distinct [7, 13]. The brown adipose tissue is 
located in specific depots, as the interscapular region, and 
is responsible for thermogenesis. Functional brown adi-
pose tissue is found primarily in mice and human new-
borns but is also present in human adults inversely cor-
relating with BMI [7, 13–15]. The white adipose tissue 
can be present in almost every nonnervous tissue, and 
although it can also produce to some extent heat upon 
cold exposure, it mainly functions as an energy storage 
tissue, which also exerts multiple immune, metabolic, 
and endocrine functions [7, 13]. For the purposes of the 
present review, we focus on the immunological milieu of 
the white adipose tissue.

The white adipose tissue is organized in anatomically 
distinct depots, which can be broadly categorized into 
subcutaneous and intra-abdominal/visceral depots [16]. 
The subcutaneous and visceral adipose tissue differ in 
their growing and adipogenic capacity, as well as their 
metabolic, endocrine, and immune functions [16–18]. 
The adipose tissue niche is composed of mature adipo-
cytes, fibroblast-like cell populations including adipocyte 
precursors, the vasculature, and immune cells, which all 
spatially and functionally interact [2, 6, 19]. The vascula-
ture runs through the adipose tissue, providing oxygen 
and nutrients to tissue cells [20]. Adipocyte progenitors 
reside mainly in the perivascular space and exhibit adipo-
genic capacity [16, 21, 22]. Fibroblast-like cells generate 
connective tissue and can be pro-fibrotic and pro-inflam-
matory [16, 23–25]. Essentially, the adipose tissue also 
comprises a broad spectrum of immune cells. Innate im-
mune cells present in the adipose tissue are macrophages, 
neutrophils, eosinophils, dendritic cells (DCs), mast cells, 
innate lymphoid cells (ILCs), and natural killer (NK) 
cells; adaptive immune cells are T and B lymphocytes [2, 
6, 26–28]. While in the lean, that is, healthy, adipose tis-
sue these components harmonically co-function, upon 

overnutrition, metabolic pressure disrupts homeostasis, 
leading to an oversized inflamed, hypoxic and fibrotic ad-
ipose tissue [16, 19, 29–31].

Immune Reprogramming of the Adipose Tissue in 
Obesity

The adipose tissue has the capacity to expand at a re-
markable extent through adipocyte size increase (hyper-
trophy) and formation of new adipocytes (hyperplasia) 
[18, 19, 32–34]. Both visceral and subcutaneous adipose 
tissue display hyperplastic capacity in a gender- and age-
dependent manner [16–19, 33]. Evolutionarily, the capa-
bility of the adipose tissue to store lipids and expand in 
size at the cellular and tissue level was developed as a 
mechanism of energy storage during periods of nutrition-
al excess, while during less propitious times, the adipose 
tissue confers energy supply [19]. This relies on the abil-
ity of adipocytes to synthesize triglycerides during times 
of excess of food supply (lipogenesis) and liberate free 
fatty acids from triglycerides through lipolysis, when food 
is scarce [19, 35]. In addition, sequestration of lipids in-
side the adipocytes protects other tissues, such as the liv-
er, muscle and heart, from lipotoxicity [19].

However, overnutrition extended over long periods of 
time in combination with physical inactivity leads to obe-
sity [19]. The expansion of adipocytes outpaces the grow-
ing capacity of the vasculature, resulting in inadequate 
vascularization and hypoxia in the obese adipose tissue 
[20, 36]. Adipocyte expansion also creates mechanical 
stress due to contact with the surrounding matrix and 
cells [19, 37]. Hypoxia and mechanical stress on lipid-
overloaded adipocytes are associated with increased adi-
pocyte cell death, leading to recruitment of pro-inflam-
matory macrophages and fibrotic tissue deposition [16, 
19, 29–31, 38, 39]. Fibrosis develops through adipocyte 
progenitor-driven extracellular matrix remodeling and 
disturbs adipose tissue plasticity and metabolic function 
[23].

Adipocytes secrete a broad spectrum of factors, in-
cluding proteins, termed as adipokines, through which 
they influence their neighboring cells, as well as establish 
intra-organ communication [40]. Altered adipokine se-
cretion and function contributes to development of obe-
sity and associated complications [40, 41]. Essentially, hy-
pertrophic adipocytes contribute to the establishment of 
adipose tissue and systemic chronic inflammation 
through secretion of cytokines and pro-inflammatory ad-
ipokines [40, 41]. Hypertrophic adipocytes secrete in-
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creased amounts of tumor necrosis factor (TNF), inter-
leukin (IL)-6, monocyte chemoattractant protein 1 
(MCP-1), IL-1 and IL-8, thereby activating and attracting 
immune cells [42, 43]. Although secretion of many cyto-
kines, such as IL-1, IL-6 and TNF, is shared by adipocytes 
and immune cells, the cellular origin of the cytokines 
might determine their effects; for instance, while myeloid 
cell-derived IL-6 restrains macrophage accumulation in 
the adipose tissue, adipocyte-derived IL-6 has the oppo-
site effect [43, 44]. Leptin is a pro-inflammatory adipo-
kine, the serum levels of which increase proportionally to 
the adipose tissue mass [45]. Besides its role in the regula-
tion of food intake and energy expenditure [41, 46], it also 
triggers pro-inflammatory responses in immune and en-
dothelial cells and promotes insulin resistance [45, 47]. 
Other adipokines such as resistin and chemerin also dis-
play proinflammatory properties, while others such as 
adiponectin, omentin, C1q/TNF-related proteins, and se-
creted frizzled-related protein 5 have anti-inflammatory 
effects [47]. Out of these, the best described is adiponec-
tin, which inhibits leptin-induced TNF production in 
macrophages [48].

Moreover, adipose tissue is a significant source of mi-
croRNAs, which are secreted in exosomes and regulate 
gene expression in distant tissues, such as fibroblast 
growth factor 21 expression in the liver [49]. Circulating 
exosomal miRNAs of obese animals promote insulin tol-
erance, adipose tissue inflammation, and hepatic steatosis 
in lean animals [50]. Moreover, exosomal miRNAs might 
mediate communication of adipocytes with adipose tis-
sue macrophages (ATM); for instance, miR-34a is secret-
ed by adipocytes and inhibits alternative activation (M2-
like) macrophage [51]. Adipocytes also release lipid-filled 
vesicles, which transport lipids to local ATM determining 
their differentiation and function [52]. On the other 
hand, ATMs in the obese adipose tissue also secrete exo-
somes loaded with miRNAs, such as miR-155, promoting 
insulin resistance in the liver and muscle [53].

The lean adipose tissue predominantly contains non-
inflammatory cells, including alternatively activated 
macrophages, eosinophils, regulatory T cells (Tregs) and 
ILC2 cells [2, 54–60]. Cytokines such as IL-4, IL-13, IL-5 
and the alarmin IL-33 mediate type 2 immune responses 
in the adipose tissue [2, 54–60]. Type 2 immunity is 
thought to mitigate inflammation and may support met-
abolic health through the effects of IL-4, IL-13 and IL-10 
[2, 54–67]. In obesity, the immune profile of the adipose 
tissue shifts to a pro-inflammatory state through recruit-
ment of macrophages, neutrophils and cytotoxic CD8+ T 
cells [5, 6, 26, 28, 68–71]. Adipocyte-derived pro-inflam-

matory factors, such as MCP-1, IL-6, TNF and leptin, hy-
poxia and adipocyte cell death stimulate activation and 
recruitment of immune cells [6, 20, 42–45, 47, 72–76]. 
Although inflammatory signals are required for proper 
adipose tissue remodeling and expansion and are there-
fore an adaptation that allows nutrient storage [27, 77], 
obesity-associated low-grade chronic inflammation in 
the adipose tissue and other organs, such as the liver, 
muscle and colon, is linked to metabolic disorders and is 
therefore termed “meta-inflammation” [2, 5, 7, 26, 78, 
79]. In obese patients and mice, inflammation exempli-
fied by macrophage abundance is greater in omental 
compared to subcutaneous adipose tissue [80–82]. In 
general, increased subcutaneous relative to visceral adi-
posity is associated with a favorable metabolic state [16, 
32]. Indeed, “metabolically healthy” obese individuals 
may have lower visceral adiposity, display greater insulin 
sensitivity and have a lower risk for development of type 
2 diabetes mellitus and cardiovascular disease [83, 84].

In essence, adipose tissue chronic inflammation signif-
icantly contributes to the development of insulin resis-
tance [1, 5, 6, 26, 85]. Obese subjects display hyperinsu-
linemia and insulin resistance and are predisposed to the 
development of type 2 diabetes mellitus [86]. Specifically, 
IL-6 and TNF perpetuate insulin resistance [85, 87–90]. 
Mechanistically, the c-Jun N-terminal kinase (JNK) sig-
naling pathway, a central mediator of inflammatory re-
sponses in obesity and type 2 diabetes, is activated in adi-
pose tissue of obese humans and mice and promotes insu-
lin resistance through phosphorylation of insulin receptor 
substrate (IRS) [87, 91–93]. In accordance with this, ge-
netic deficiency or pharmacological inhibition of JNK 
confers metabolic protection [91, 92, 94]. Moreover, IκBα 
kinase Komplexes (IKK), the upstream activator of nucle-
ar factor “kappa-light-chain-enhancer” of activated B cells 
(NF-κB), phosphorylates IRS-1 and thereby blocks insulin 
signaling [95]. Obese mice display elevated levels of IKKε 
in the liver, adipocytes and ATM, while IKKε deficiency 
protects against diet-induced obesity, chronic inflamma-
tion, hepatic steatosis and insulin resistance [96]. Treat-
ment of obese diabetic patients with an inhibitor of IKKε 
can improve blood glucose levels and increase energy ex-
penditure [97]. Additionally, suppressor of cytokine sig-
naling (SOCS) proteins, which are upregulated during in-
flammation, induce proteolytic degradation of IRS pro-
teins, thereby contributing to insulin resistance [98–100].

Adipose tissue chronic inflammation and insulin re-
sistance can drive the development of nonalcoholic ste-
atohepatitis and cardiovascular disease [101, 102]. JNK1 
deletion in the adipose tissue of mice protects from high-
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fat diet-induced insulin resistance and liver steatosis [87]. 
IL-6 secretion from the visceral adipose tissue can direct-
ly target the liver through the portal circulation and in-
duce SOCS3 protein expression in the liver, which medi-
ates insulin resistance [87]. IL-6 may also induce hepatic 
production of C-reactive protein (CRP) and serum amy-
loid A (SAA) [103–106]. Both CRP and SAA are associ-
ated with development of insulin resistance and cardio-
vascular disease [84]. However, mice with liver-specific 
IL-6 receptor deficiency display greater hepatic inflam-
mation and insulin resistance, suggesting that IL-6 may 
also have protective functions in the liver [107]. Innate 
immune cells populating the adipose tissue and playing a 
role in its chronic inflammation are macrophages, neu-
trophils, NK cells, eosinophils, ILC2, DCs, and mast cells 
(Fig. 1, 2).

Macrophages
Macrophages constitute an abundant cell population 

in the adipose tissue, which expands in obesity [5, 6, 39, 
68, 85, 108]. Due to their abundance as well as their func-

tional flexibility, they are major determinants of adipose 
tissue inflammation in metabolic disease. Resident mac-
rophages are already present in the adipose tissue of 
young mice and are thought to play a role in adipose tis-
sue development [109, 110]. During obesity, their num-
bers increase through recruitment, proliferation and re-
tention [39, 68, 108, 111–117] (Fig. 1). Recruitment was 
shown to be driven by myeloid C-C motif chemokine re-
ceptor-2 (CCR2), the receptor of MCP-1 [112, 117], al-
though other studies reported MCP-1-independent mac-
rophage infiltration [118, 119]. This discrepancy could 
rely on the fact that MCP-1 is not the sole ligand of CCR2, 
which also binds other chemokines such as MCP-2 
(CCL2) and MCP-3 (CCL7), and CCR2 is not the only 
receptor for MCP-1 [119, 120]. Interestingly, MCP-3 ex-
pression increases in the adipose tissue of obese mice in 
an MCP-1-dependent manner [119]. CD8+ T cells can 
also promote macrophage infiltration in the adipose tis-
sue during obesity, most probably through secretion of 
factors that induce macrophage migration, such as inter-
feron-inducible protein-10, MCP-1, and MCP-3 [108]. 

Fig. 1. ATM accumulation through prolif-
eration, recruitment, and retention. Mac-
rophages accumulate in the adipose tissue 
through cell division, recruitment and re-
tention. Recruitment can be driven by 
MCP-1 [112, 117]. Local proliferation oc-
curs especially in the early stage of obesity 
[111, 113, 114] and is induced by IL-4, IL-6 
and MCP-1 [111, 113, 128]. Retention is 
mediated by direct adhesion of macro-
phages to adipocytes through the interac-
tion of α4 on macrophages with VCAM-1 
on adipocytes [115, 116] and netrin-1, the 
expression of which is induced in macro-
phages by palmitate [115]. ATM, adipose 
tissue macrophage; MCP-1, monocyte che-
moattractant protein 1; IL, interleukin; 
VCAM-1, vascular cell adhesion mole-
cule-1.
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Fig. 2. Innate immune cells in the lean and obese adipose tissue. 
The lean adipose tissue predominantly contains non-inflammato-
ry cells, including alternatively activated (M2-like) macrophages, 
eosinophils, regulatory T cells and ILC2 cells, and type 2 cytokines, 
such as IL-4, IL-13, IL-5 and IL-33 [2, 54–60]. ILC2 are maintained 
in the adipose tissue by IL-33 and IL-25 [56, 58–60, 215] and pro-
duce IL-5, which is a key cytokine for maintenance of eosinophil 
and consequently M2-like macrophage populations [54, 56, 57, 
59]. ILC2 also produce IL-13, which induces macrophage alterna-
tive activation [215]. Moreover, they secrete methionine-encepha-
lin, which promotes adipose tissue thermogenesis (beiging) [60]. 
Eosinophils are a major cell source of IL-4 in the adipose tissue 
[57]. IL-4 maintains M2-like macrophages through STAT6 signal-
ing and attenuates adipocyte hypertrophy [55–57]. IL-6 upregu-
lates the expression of the IL-4 receptor, thereby supporting mac-
rophage alternative activation [128, 171]. Adipokines, such as adi-
ponectin, omentin, CTRPs and SFRP5, and sphingolipids also 
have anti-inflammatory effects [47, 179]. Hallmarks of M2-like 
ATM are KLF4, arginase 1, Retnla and Chi3l3 and GPS2 expres-
sion [170, 174]. In obesity, the immune profile of the adipose tissue 
shifts to a pro-inflammatory state through recruitment of macro-
phages, neutrophils and NK cells [5, 6, 26, 28, 68–71]. Adipocyte-
derived pro-inflammatory factors, such as MCP-1, IL-6, TNF and 
leptin, chemerin and resistin, stimulate activation and recruitment 
of immune cells [6, 20, 42–45, 47, 72–76]. Extracellular matrix 
components, such as versican and biglycan derived from adipo-

cytes and macrophages, respectively, promote macrophage pro-
inflammatory activation [143, 144]. NCR1 ligation on NK cells 
triggers IFN-γ release, which also instigates macrophage activation 
[71]. Macrophages are retained in the adipose tissue through the 
interaction of α4 with VCAM-1 [116]. Pro-inflammatory macro-
phages are featured by increased expression of TNF, IL-6, iNOS, 
inflammasome activation, IL-1β production, and enhanced ER 
stress [68, 132–136, 149–154, 156–159, 163, 164]. Macrophages 
within crown-like structures surrounding dying adipocytes are 
CD9+, highly phagocytic, lipid-laden, Trem2+ and can form mul-
tinucleated giant cells through cell fusion [76, 181, 191, 193]. 
ATMs outside of crown-like structures are pro-inflammatory and 
marked by CD11c [191]. Pro-inflammatory macrophages via IL-
1β and neutrophils through elastase perpetuate insulin resistance 
[69, 149–154, 159, 166, 167, 230]. In contrast, PAHSA, DHA, and 
EPA decrease macrophage-mediated adipose tissue inflammation 
and promote insulin sensitivity [187, 188]. IL, interleukin; ILC, in-
nate lymphoid cell; CTRP, C1q/TNF-related protein; NK, natural 
killer; MCP-1, monocyte chemoattractant protein 1; SFRP5, se-
creted frizzled-related protein 5; VCAM-1, vascular cell adhesion 
molecule-1; TNF, tumor necrosis factor; iNOS, inducible nitric ox-
ide synthase; ATM, adipose tissue macrophage; KLF4, Krüppel-
like factor 4; GPS2, G protein pathway suppressor 2; ER, endoplas-
mic reticulum; Trem2, triggering receptor expressed on myeloid 
cells 2; PAHSA, palmitic acid-9-hydroxystearic acid; DHA, doco-
sahexaenoic acid; EPA, eicosapentaenoic acid.
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Also CCL5 (RANTES) was suggested to promote mono-
cyte recruitment in the human adipose tissue [121]. In 
accordance with this, CCR5−/− mice have reduced ATM 
numbers and are protected against insulin resistance 
when fed a high-fat diet [122]. Other adipocyte-derived 
factors produced in high amounts in obesity, such as 
SAA3 and hyaluronic acid, might contribute to monocyte 
recruitment and retention [123–125]. Formyl peptide re-
ceptor 2 expression was shown to be increased in the 
obese adipose tissue, and its deletion restrained ATM 
abundance and activation, obesity and insulin resistance, 
and enhanced energy expenditure [126]. Vascular endo-
thelial growth factor (VEGF) mediates adipose tissue an-
giogenesis and promotes macrophage infiltration and 
M2-like polarization in mice under high-fat diet [127]. 
Moreover, ATM undergo local cell division, especially in 
the early stage of obesity [111, 113, 114]. ATM prolifera-
tion is promoted by IL-4, IL-13, IL-6, GM-CSF and MCP-
1 [111, 113, 128]. Essentially, blood monocyte depletion 
does not reduce ATM proliferation in the adipose tissue 
of obese mice, indicating that in situ proliferation signifi-
cantly contributes to the expansion of the ATM popula-
tion, especially during the early stages of obesity [111]. 
However, as obesity develops, the role of monocyte re-
cruitment in the adipose tissue becomes more significant 
[113].

While ATM recruitment has been extensively ex-
plored, their retention was only recently studied [115, 
116]. Chronic macrophage retention significantly con-
tributes to adipose tissue inflammation and involves di-
rect adhesion of macrophages to adipocytes mediated by 
the interaction of the α4 integrin of macrophages with its 
counter-receptor vascular cell adhesion molecule-1 
(VCAM-1) on adipocytes. Accordingly, VCAM-1 ex-
pression increases in the adipose tissue in obesity. Mech-
anistically, TNF increases VCAM-1 expression in adipo-
cytes and their progenitors. In essence, blockade of α4β1 
integrin with the monoclonal antibody natalizumab im-
proves the metabolic profile of mice fed a high-fat diet 
[116]. Macrophage retention is also mediated by ne-
trin-1, the expression of which is induced in macro-
phages by palmitate [115]. Netrin-1 restrains macro-
phage migration and favors macrophage retention in the 
adipose tissue, thereby contributing to development of 
insulin resistance [115]. However, not only ATM num-
bers but also their tissue localization changes in obesity. 
Characteristically, in the visceral more prominently than 
in the subcutaneous adipose tissue, ATM form crown-
like clusters surrounding dying adipocytes [81, 85, 112–
114, 117, 129, 130]. The exact signals guiding ATM at-

traction to dying adipocytes to form crown-like struc-
tures are not clear. Recently, it was postulated that 
estrogen receptor β (ERβ) might play a role in this con-
text, since ERβ-deficient mice have increased numbers of 
crown-like structures in both the subcutaneous and vis-
ceral adipose tissue, which consists of ATM highly ex-
pressing osteopontin, while treatment with an ERβ-
selective agonist reduces crown-like structure numbers 
[130].

During the course of obesity, ATM acquire pro-in-
flammatory features [68, 112, 131]. For instance, macro-
phages in the obese adipose tissue express higher CD11c, 
inducible nitric oxide synthase, TNF, IL-6 and IL-1β, 
along with lower IL-10, arginase 1, CD206 and macro-
phage galactose-type lectin-1 (MGL1) levels, compared 
to macrophages in the lean adipose tissue [68, 132–136]. 
Similar to other macrophages, ATM also undergo meta-
bolic rewiring upon activation: ATM from obese mice 
display enhanced glycolysis, succinate levels and hypox-
ia-inducible factor (HIF)-1α activation correlating with 
elevated IL-1β production [137, 138]. The pro-inflam-
matory activation of ATM is thought to be driven by dif-
ferent extracellular signals including cytokines, lipids 
and hormones such as leptin, finally resulting in activa-
tion of pro-inflammatory signaling pathways, like the 
NF-κB and JNK pathways, which mediate inflammatory 
gene transcriptional programs [5, 6, 39]. Also gut micro-
biome-derived factors, which increase in the circulation 
of obese humans and mice, could instigate ATM-medi-
ated inflammation [139, 140]. Obesity is associated with 
profound alterations in the gut microbiome, referred as 
dysbiosis and an impaired intestinal barrier, leading to 
influx of microbes and their circulating components, 
such as endotoxins [139, 141, 142]. ATM could be af-
fected by these components, as genetic depletion of 
NOD1, a bacterial peptidoglycan receptor, in hemato-
poietic cells rendered ATM less inflammatory [140]. 
Furthermore, extracellular matrix components such as 
versican and biglycan derived from adipocytes and mac-
rophages, respectively, promote macrophage accumula-
tion and pro-inflammatory activation [143, 144]. Extra-
cellular matrix deposition increases in the adipose tissue 
during the course of obesity, leading to fibrotic tissue for-
mation [145–148].

Several lines of evidence suggest that the inflamma-
some plays a central role in the development of obesity-
associated insulin resistance [149–154]. The production 
of IL-1β and IL-18 in macrophages is mediated by inflam-
masome activation [149–151, 155]. Specifically, the in-
flammasome component NLR family pyrin domain con-
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taining 3 (NLRP3) is highly expressed in macrophages of 
crown-like structures and activated by palmitate, which 
is abundantly present in the serum of high-fat diet-fed 
mice, in a Toll-like receptor (TLR)-dependent manner 
[152, 156–158]. Consistently, NLRP3 deficiency blocks 
inflammasome activation and prevents systemic inflam-
mation and insulin resistance in obese mice [149–154, 
159].

Chronic endoplasmic reticulum (ER) stress is induced 
in the adipose tissue of obese mice and humans and pro-
motes inflammation [160–162]. ER stress causes aberrant 
JNK phosphorylation, which blocks insulin signaling 
through IRS1 phosphorylation [162]. In accordance with 
this, genetic ablation of X-box-binding protein-1 (XBP-
1), a transcription factor that modulates the ER stress, 
leads to development of insulin resistance in mice fed a 
high-fat diet [162]. In accordance with this, inositol-re-
quiring enzyme 1α, a key mediator of ER stress, supports 
inflammatory activation of ATM, while its myeloid cell-
specific deletion in mice restrains diet-induced obesity 
and insulin resistance [163, 164]. Moreover, C/EBP ho-
mologous protein, a downstream component of ER stress, 
is upregulated in adipocytes of mice fed a high-fat diet, 
while C/EBP homologous protein ablation is associated 
with alternative activation of ATM and improvement of 
insulin resistance [165].

The accumulation of macrophages in the adipose tis-
sue and the switch to a pro-inflammatory macrophage 
phenotype is tightly linked to the development of insulin 
resistance [5, 6, 39, 85, 133]. Cytokines secreted by mac-
rophages promote insulin resistance in the adipose tissue, 
as well as the liver and skeletal muscles [5, 6, 26, 85, 112, 
114, 133]. IL-1β suppresses insulin signaling and glucose 
uptake through inhibition of glucose transporter type 4 
translocation to the plasma membrane [166, 167]. Mac-
rophage-secreted factors impair adipocyte insulin sensi-
tivity through downregulation of glucose transporter 
type 4 translocation to the plasma membrane and reduc-
tion of IRS-1 expression, effects which are partially re-
versed by TNF neutralization [133]. Interestingly, it was 
recently shown that myeloid-derived IL-6 suppresses in-
sulin resistance in obese mice, in contrast to adipocyte-
derived IL-6, which promotes it [44]. Macrophages also 
produce the lectin galectin-3, which is elevated in obese 
humans and mice [168]. Galectin-3 enhances macro-
phage chemotaxis and inhibits insulin signaling through 
direct binding to the insulin receptor [168]. Accordingly, 
pharmacologic inhibition or genetic deletion of galec-
tin-3 improves adipose tissue inflammation and insulin 
resistance [168, 169].

In contrast to the obesity-driven pro-inflammatory 
phenotype of ATM, an M2-like macrophage phenotype 
is considered to be protective [5, 6]. Krüppel-like factor 4 
(KLF4), a factor mediating M2-like macrophage gene 
transcription, including Arginase 1, Retnla, and Chi3l3 
expression, was found to protect mice against insulin re-
sistance in diet-induced obesity [170]. Moreover, despite 
its many pro-inflammatory functions, IL-6 was found to 
promote macrophage alternative activation through up-
regulation of the IL-4 receptor and thereby ameliorate in-
sulin sensitivity in obese mice [128, 171]. Adiponectin 
might also shift ATM toward M2-like polarization [172, 
173]. Also, the macrophage component of the co-repres-
sor complex G protein pathway suppressor 2 (GPS2) sup-
ports insulin sensitivity: its expression in macrophages 
negatively correlates with systemic and adipose tissue in-
flammation and diabetes, while GPS2-deficient mice fed 
a high-fat diet display exaggerated systemic inflammation 
and impaired glucose intolerance [174].

The inflammatory activation of ATM can be driven by 
lipids deriving from adipocyte lipolysis and death [39, 76, 
175, 176]. Although serum fatty acids also induce inflam-
matory activation of macrophages through TLR4 signal-
ing, plasma lipids may play a less significant role in ATM 
activation [177, 178]. Adipocyte-derived sphingolipids 
were shown to regulate ATM accumulation in obesity, 
evidenced by increased numbers of crown-like structures 
in the subcutaneous adipose tissue of mice with adipo-
cyte-specific deletion of serine palmitoyltransferase, the 
rate-limiting enzyme of sphingolipid biosynthesis [179]. 
Along the same line, inflammatory ATM of obese mice 
display greater lipid content and particularly relatively 
more short-chain saturated lipid species compared to 
their M2-like counterparts [180]. It is thought that inges-
tion of adipocyte debris leads to lipid accumulation in 
ATM, justified by the fact that macrophages in crown-
like structures are lipid-laden [74, 76, 176, 181]. Mecha-
nistically, fatty acids bind fetuin-1, which directly inter-
acts with TLR4, triggering its activation [182, 183]. In ac-
cordance with this, very-long-chain-GM3 gangliosides, 
the serum levels of which are elevated in obesity, were 
recently found to regulate TLR4 activation [184]. How-
ever, reduced lipid storage in ATM as a result of myeloid 
cell-specific deletion of HILPDA (hypoxia-inducible lip-
id droplet associated), a physiological inhibitor of ATGL 
(adipose triglyceride lipase)-mediated lipolysis, does not 
affect adipose tissue inflammation [185]. Moreover, fatty 
acid-mediated inflammatory macrophage activation is 
restrained by acyl CoA: diacylglycerol acyltransferase 1 
(DGAT1), which increases the capacity of macrophages 
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for triglyceride storage, as shown in mice overexpressing 
DGAT1 in macrophages and adipocytes [186]. On the 
other hand, several lipids may also negatively regulate 
ATM activation [1]. For instance, branched fatty acid es-
ters of hydroxy fatty acid isomers, such as palmitic acid-
9-hydroxystearic acid (9-PAHSA), which are endoge-
nously synthesized, increase in obesity and correlate with 
insulin sensitivity [187]. PAHSA administration to mice 
mitigates adipose tissue inflammation in obesity, lower-
ing the abundance of TNF+ and IL-1β+ ATM [187]. Also 
treatment of mice with the ω-3 fatty acids docosahexa-
enoic acid and eicosapentaenoic acid restrains ATM in-
flammatory activation and insulin resistance [188]. Both, 
PAHSA and ω-3 fatty acids mediate their effects through 
the G protein-coupled receptor 120 (GPR120) [187, 188]. 
In accordance with this, GPR120 deficiency in mice fed a 
high-fat diet aggravates obesity, liver steatosis, insulin re-
sistance and ATM accumulation, while presence of a 
GPR120 mutation in humans correlates with develop-
ment of obesity [189]. Additionally, PAHSA activates 
GPR40, which also mediates its protective effects against 
insulin resistance [190].

ATM are not a uniform cell population but consist of 
distinct cell populations, as shown by single-cell tran-
scriptomic analyses [181, 191, 192]. Macrophages with-
in crown-like structures are CD9+ and lipid-laden and 
can form multinucleated giant cells through cell fusion 
[76, 181, 191, 193]. ATM outside of crown-like struc-
tures are pro-inflammatory and marked by CD11c 
[191]. Depletion of CD11c+ cells rapidly improves adi-
pose tissue inflammation and insulin resistance [194]. 
Interferon regulatory factor 5 (IRF5) is expressed in 
CD11c+ cells and ATM in obesity, mediating pro-in-
flammatory macrophage activation [195–197]. IRF5 de-
pletion favors alternative activation of ATM and reduc-
es adipocyte hypertrophy and adipose tissue fibrosis in 
obese mice [195].

Although exhibiting pro-inflammatory features, mac-
rophages in the obese adipose tissue clearly differ from 
classically activated (M1-like) macrophages, which are 
activated upon acute inflammation [74, 198–200]. In-
stead, ATM get rather metabolically activated [199]. 
ATM in obese humans present upregulation of peroxi-
some proliferator-activated receptor gamma (PPARγ) 
and p62-driven lipid metabolism, exemplified by in-
creased ABCA1 and CD36 expression [198]. Lipid-asso-
ciated ATM are positive for triggering receptor expressed 
on myeloid cells 2 (TREM2), a key membrane protein for 
phagocytosis and lipid uptake [181]. TREM2-deficient 
mice display adipocyte hypertrophy, systemic hypercho-

lesterolemia, and glucose intolerance [181]. Accordingly, 
lipid-associated macrophages show increased transcrip-
tional programs related to phagocytosis and endocytosis, 
lysosome function, PPARγ signaling and oxidative phos-
phorylation [181]. Moreover, in the obese adipose tissue, 
macrophages are featured by enhanced lysosome biogen-
esis associated with lipid catabolism, while inhibition of 
macrophage lysosomal function interferes with their lip-
id metabolism, resulting in increased lipid accumulation 
in macrophages [201]. Lysosomal exocytosis was found 
to be required for clearance of dead adipocytes by macro-
phages, a process which is mediated by NADPH oxidase 
2 [74].

Finally, ATM were demonstrated to regulate the ther-
mogenic capacity of white and brown adipose tissue and 
thereby control whole body energy expenditure and insu-
lin resistance [54, 55, 116, 202, 203]. Mechanistically, the 
adhesive interaction of macrophages and adipocytes 
through α4 and VCAM-1 was found to downregulate 
UCP1 expression in adipocytes in an extracellular signal-
regulated kinase (ERK) 1/2-dependent manner, while ge-
netic deletion or pharmacological inhibition of α4 in mice 
resulted in increased UCP1 expression in the subcutane-
ous adipose tissue [116]. Moreover, cold exposure pro-
motes macrophage alternative activation in an eosino-
phil-IL-4-dependent manner [202]. The cold exposure-
induced M2-like macrophage accumulation and beige 
adipogenesis could be adiponectin-dependent [203]. Me-
teorin-like (Metrnl), a circulating factor released by mus-
cles after exercise and adipose tissue upon cold exposure, 
was also shown to promote M2-like polarization of ATM 
via stimulation of the eosinophil-IL-4 axis [61]. M2-like 
ATMs were actually suggested to promote thermogenesis 
via their production of catecholamines [54, 55, 202], al-
though these findings were debated by other studies [204, 
205].

In conclusion, ATM determine adipose tissue func-
tion in health and disease. They present heterogeneity 
and exert a wide spectrum of functions, ranging from lip-
id scavenging, phagocytosis and cytokine production to 
regulation of thermogenesis [2, 26, 39, 78]. Overall, they 
may exhibit both beneficial and harmful functions de-
pending on their type of activation, location and the stage 
of the metabolic disease [74, 192] (Fig. 2). Exploring the 
mechanisms governing their function will be key for the 
development of therapeutic strategies against obesity-re-
lated inflammation. To this end, changes in their meta-
bolic signature, phagocytic function and inflammatory 
activation should be analyzed in close conjunction ide-
ally using single-cell techniques.
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Eosinophils
Eosinophils are innate immune cells mediating type 2 

responses, such as allergies and responses to parasitic in-
fections [206, 207]. In the adipose tissue, their relative 
numbers are low and even more reduced in obesity [57]. 
High-fat diet feeding rapidly reduces chemotactic signals 
for eosinophils, and eosinophil numbers drop first in the 
visceral followed by the subcutaneous adipose tissue [208, 
209]. IL-5 plays a crucial role in the maintenance and ex-
pansion of eosinophil cell populations, and its overpro-
duction in transgenic mice leads to eosinophil accumula-
tion in the adipose tissue [57, 59, 210]. ILC2 are important 
producers of IL-5 in several tissues, including the adipose 
tissue, evidenced by the fact that deletion of ILC2 leads to 
decreased eosinophil numbers in the adipose tissue and 
attenuates their increase after parasitic infection [59, 
210].

Adipose tissue eosinophils play a critical role in the 
maintenance of tissue homeostasis [57, 59, 211]. They 
are a major source of IL-4 and thereby support ATM al-
ternative activation [54, 57, 59] (Fig. 2). Eosinophil-de-
ficient mice fed a high-fat diet develop more severe adi-
posity, glucose intolerance, and adipose tissue inflam-
mation [57]. Conversely, high-fat diet-fed mice with 
helminth-induced hypereosinophilia display reduced 
obesity and an improved metabolic phenotype [57, 212, 
213]. Also honeybee pollen extract-induced hypereosin-
ophilia in mesenteric and gonadal adipose tissue re-
strains insulin resistance in ob/ob mice [214]. Along the 
same line, treatment of obese mice with IL-25 induces 
infiltration of ILC2, eosinophils, and M2-like macro-
phages in the visceral adipose tissue; improves glucose 
tolerance; and induces weight loss [215]. Moreover, 
mice overexpressing eotaxin, an eosinophil chemoat-
tractant, in the adipose tissue display reduced adipose 
tissue mass and improved glucose tolerance [216]. In 
accordance with this, application of exogenous IL-4 in-
creases insulin sensitivity and attenuates weight gain 
and adipose tissue expansion in mice fed with a high-fat 
diet [62, 63]. In contrast, deficiency of STAT6, the tran-
scription factor mediating the majority of the effects of 
IL-4, decreases insulin sensitivity in mice with diet-in-
duced obesity [62]. Mechanistically, IL-4 inhibits adipo-
genesis by downregulating the expression of PPARγ and 
CCAAT/enhancer-binding protein α and favoring lipol-
ysis by enhancing the activity and translocation of hor-
mone-sensitive lipase in mature adipocytes [217, 218]. 
Moreover, IL-4 production by eosinophils was reported 
to promote thermogenesis (beiging) in the white adi-
pose tissue and thereby increase energy expenditure and 

glucose tolerance in mice [54, 56]. Although abundance 
of eosinophils in the adipose tissue was shown by many 
studies to correlate with beiging [54, 56, 213, 219], the 
involved mechanisms, such as the implication of M2-
like macrophages, have been debated [204, 205]. More-
over, restoring eosinophil numbers in obese mice to 
physiological levels through treatment with recombi-
nant IL-5 did not improve glucose tolerance, adiposity, 
or beiging [220]. In contrast, in humans, circulating and 
subcutaneous adipose tissue eosinophil counts positive-
ly correlate with obesity and associated metabolic dis-
turbances [221–223].

Finally, type 2 immunity can also have detrimental ef-
fects owing to promotion of fibrosis [31, 61, 224]. Pro-
gression of nonalcoholic fatty liver disease (NAFLD) may 
be associated with increased eosinophilic type 2 inflam-
mation in humans and mice, and IL-10/IL-4 deficiency or 
inhibition of TGF-β and IL-13 signaling confers resis-
tance to NAFLD in mice [225]. In the white adipose tis-
sue, interstitial fibrosis is destructive for adipose tissue 
elasticity and adipocyte function, and the frequency of 
profibrotic adipocyte progenitors in the adipose corre-
lates with insulin resistance [24, 31].

Neutrophils
Neutrophils accumulate in the adipose tissue within 

the first days upon start of a high-fat diet feeding in mice 
[69, 226, 227]. Metabolically activated macrophages 
might attract neutrophils through nucleotide release 
[228]. Neutrophil recruitment in the adipose tissue is also 
dependent on phospholipase A2α (cPLA2α) and neutro-
phil elastase [69, 229]. Increased neutrophil elastase activ-
ity in the adipose tissue and decreased serum levels of its 
inhibitor, serpinA1, were reported in obese humans and 
mice [69, 230]. Elastase mediates several pro-inflamma-
tory effects of neutrophils in the adipose tissue [69, 230]. 
Its genetic deletion reduces neutrophil and macrophage 
accumulation in the adipose tissue, reduces body weight 
gain and improves glucose tolerance and insulin sensitiv-
ity in mice fed with a high-fat diet [69, 230]. Neutrophil 
elastase-deficient mice also display enhanced fatty acid 
oxidation in the liver and improved liver steatosis [230]. 
In accordance with this, pharmacological inhibition of 
neutrophil elastase ameliorates insulin resistance and re-
duces obesity [230]. Mechanistically, elastase was shown 
to impair insulin signaling via degradation of IRS1 [69, 
230]. Circulating neutrophils of obese subjects also show 
inflammatory traits, such as enhanced release of myelo-
peroxidase (MPO), MMP9, and CCL2 (IL-8) [231]. In ac-
cordance with this, MPO levels and activity increase in 
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gonadal adipose tissue of mice fed with a high-fat diet 
[227]. MPO deficiency halts obesity, macrophage infiltra-
tion, and adipose tissue inflammation and improves in-
sulin sensitivity [227]. Hence, although only few studies 
have investigated the role of neutrophils in obesity, there 
is a clear consensus that they contribute to adipose tissue 
inflammation (Fig. 2).

Dendritic Cells
DC instruct adaptive immunity through antigen pre-

sentation [232]. They share many surface markers with 
macrophages such as F4/80, CD11b, MHCII, C-X3-C 
motif chemokine receptor 1, and CD11c [233, 234], al-
though in contrast to macrophages, they do not express 
CD64 [209, 235]. Due to their similarities to ATM, their 
function in the adipose tissue has been hard to distinguish 
from that of ATM [233, 234]. Adipose tissue DC can be 
conventional DC (cDC, CD11b−CD11c+) or plasmacy-
toid DC (pDC, CD11b−CD11c+B220+) [209, 235–238]. 
Although initially their numbers in adipose tissue were 
suggested to increase with obesity [234–236, 238], a later 
report showed that DC numbers normalized to adipose 
tissue mass are not altered in obesity, but they rather de-
crease as a proportion of all stromal-vascular fraction 
cells due to the massive expansion of other immune cell 
populations [209]. DC preferentially accumulate in the 
perinodal adipose tissue, where they detect antigens trav-
eling from the adipose tissue to the draining lymph node 
and thereby coordinate immunity in the adipose tissue 
[239, 240]. MHCII depletion in CD11c-expressing cells 
leads to reduced T cell receptor expression in CD4+ T 
cells, less CD4+ and more CD8+ cells in the adipose tissue 
[241].

CD11c+ cell depletion protects against chronic inflam-
mation and insulin resistance in mice with diet-induced 
obesity; however, these effects could be attributed to the 
loss of CD11c+ inflammatory macrophages [194, 234, 
236]. In accordance with this, high-fat diet-fed mice defi-
cient for FMS-like tyrosine kinase 3 ligand, which display 
low DC levels, have decreased adipose tissue mass and 
liver steatosis, improved insulin sensitivity and glucose 
tolerance, and reduced macrophage infiltration in adi-
pose tissue and the liver [236, 242]. CCR7-deficient mice 
also have decreased DC numbers in the adipose tissue and 
present reduced adipose tissue inflammation and insulin 
resistance [235]. The adipokine chemerin, which is up-
regulated in the circulation of obese compared to lean 
individuals, attracts pDC to the visceral adipose tissue 
and pDC deficiency reduces diet-induced obesity [238, 
243, 244].

In contrast, GM-CSF-deficient mice, also presenting 
stark reduction in DC numbers, show increased whole 
body adiposity [245]. Moreover, steady-state convention-
al DC in the visceral adipose tissue were shown to have 
protective functions delaying the onset of obesity and ad-
ipose tissue inflammation [246]. Specifically, activation 
of the Wnt/β-catenin in CD11chiMHCII+CD11b− cells 
(termed as cDC1) induces IL-10 production and activa-
tion of the PPARγ pathway in CD11chiMHCII+CD11b+ 
cells (cDC2) suppresses their proinflammatory activation 
[246]. In combination, these effects lead to a delay in the 
onset of inflammation and insulin resistance in mice fed 
with a high-fat, high-sugar (Western) diet [246]. How-
ever, this control mechanism is bypassed after long-term 
overnutrition through inhibition of the β-catenin and 
PPARγ pathways in DC [246]. Taken together, the role of 
DC in adipose tissue inflammation is so far unclear.

Innate Lymphoid Cell 2
ILC2 play a central role in type 2 immunity [58, 210, 

247–252]. They react in response to IL-33 or IL-25 secret-
ing IL-4, IL-5, and IL-13 [56, 58, 59, 247–252] (Fig.  2). 
They reside in the subcutaneous and visceral adipose tis-
sue and are thought to preserve tissue homeostasis [56, 
58–60]. For instance, helminth infection triggers ILC2 ac-
tivation in the mesenteric adipose tissue, which is required 
for goblet cell hyperplasia and helminth expulsion [58, 
59]. Maintenance and expansion of their population in the 
adipose tissue are driven by IL-33 [56, 58–60]. In obese 
humans and mice, the function of ILC2 in the adipose tis-
sue is severely compromised due to reduced IL-33 recep-
tor expression [60]. Moreover, IL-33 serum and adipose 
tissue levels drop in obese mice [253]. In accordance with 
this, IL-33-deficient mice have decreased ILC2 numbers 
per gram of adipose tissue and present greater adiposity 
when fed a high-fat diet [60]. Along the same line, treat-
ment of obese mice with IL-25 leads to accumulation of 
ILC2 in the visceral adipose tissue, weight loss and im-
provement of glucose tolerance [215]. In contrast, deple-
tion of ILC2 in obese Rag1-deficient mice leads to exacer-
bated weight gain and glucose intolerance, while adoptive 
transfer of ILC2 has the opposite effects [215]. Mechanis-
tically, IL-33 induces the expression of death receptor 3 
(DR3) in ILC2, which triggers their stimulation through 
activation of the NF-κB pathway [254]. On the other hand, 
TNF and IL-33 increase programmed cell death protein 1 
(PD-1) expression in ILC2 in the adipose tissue of obese 
mice [255]. PD-1 on ILC2 interacts with PD-L1 on mac-
rophages, promoting inflammatory activation of the latter 
[255]. In contrast, PD-1 inhibition partially restores eo-
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sinophil and M2-like macrophage numbers in the adipose 
tissue, thereby improving glucose tolerance [255].

ILC2 are important producers of IL-5, which is a key 
cytokine for maintenance of eosinophil and consequent-
ly M2-like macrophage populations in the adipose tissue 
[54, 56, 57, 59]. Moreover, they produce IL-13, which 
promotes macrophage alternative activation [215]. ILC2 
accumulation in response to IL-25 correlates with in-
creased numbers of adipose tissue eosinophils and M2-
like macrophages [215]. IL-33 treatment also increases 
eosinophil numbers in the adipose tissue [56]. Hence, the 
ILC2-IL-5 axis was suggested to combat adipose tissue 
inflammation and insulin resistance through supporting 
the function of eosinophils and M2-like macrophages 
[57, 59, 215] (Fig. 2).

The protective functions of ILC2 also involve induc-
tion of beige adipogenesis [56, 60]. IL-33-deficient mice 
fed a high-fat diet display reduced energy expenditure 
and beiging, while IL-33 treatment or transfer or IL-
33-elicited ILC2 have the opposite effects [56, 60, 253]. 
Whether eosinophils and IL-4/IL-13 signaling are re-
quired for ILC2-induced beiging is a matter of debate [56, 
60]. Lee et al. [56] showed that IL-4 receptor deficiency 
abrogates the IL-33-induced beiging. Moreover, they 
showed that IL-4 and IL-13 produced by ILC2 and eo-
sinophils target adipocyte progenitors, inducing their 
proliferation and metabolic reprogramming into ther-
mogenic (UCP-1-expressing) cells [56]. However, Brest-
off et al. [60] suggested that ILC2-induced beiging is eo-
sinophil- and IL-4-independent and, instead, is mediated 
by methionine-encephalin, which is produced by ILC2 
and directly promotes beiging.

ILC2 are also required for accumulation of regulatory 
T cells (Treg) in the adipose tissue in response to IL-33 or 
helminth infection [256, 257]. ILC2 and Treg cells colo-
calize and interact via association of ICOS with ICOSL 
rather than through type 2 cytokines [256]. Moreover, 
ILC2 can interact with Treg through the co-stimulatory 
molecule OX40L [258]. IL-33 induces upregulation of 
OX40L in adipose tissue ILC2 and consequently Treg ex-
pansion, while ILC2-specific OX40L deletion blunts Treg 
expansion in response to IL-33, parasite infection or al-
lergy [258]. Transgenic mice overexpressing IFN-γ pre-
sent reduced ILC2, eosinophil and Treg cell numbers in 
the adipose tissue [256], thereby providing a potential ex-
planation of the reduction in eosinophil and Treg num-
bers in the obese adipose tissue [57, 259]. In accordance, 
CD8+ T cells, being important producers of IFN-γ, pro-
mote shrinkage of ILC2 and eosinophil adipose tissue 
populations [256, 260, 261].

NK Cells
NK cells are innate immune cells with lymphoid origin 

[262, 263]. They are activated by IL-12, IL-18 and IFN-γ 
and promote type 1 immune responses [262]. Their num-
bers are more pronounced in the visceral compared to the 
subcutaneous adipose tissue and, essentially, increase in 
obesity, indicating that NK cells are involved in aggra-
vated adipose tissue inflammation [264–266]. Moreover, 
NK numbers in the circulation of obese subjects correlate 
with insulin resistance [264]. In mice with diet-induced 
obesity, NK numbers and activation are elevated in the 
gonadal but not in the subcutaneous adipose tissue [71, 
267, 268]. In accordance with this, expression of IL-15, a 
cytokine promoting NK cell proliferation and activation, 
is upregulated in visceral ATMs in obese mice [71, 267]. 
Plasma IL-15 levels also correlate with visceral adipose 
tissue mass in aged humans [269].

The cross talk between NK cells and ATM plays a crit-
ical role in adipose tissue inflammation (Fig. 2). NK cell 
ablation with neutralizing antibodies or genetic deletion 
restrains macrophage accumulation in the visceral adi-
pose tissue, while macrophage infiltration in the subcuta-
neous adipose tissue and spleen is not affected [71, 267, 
268]. This is associated with amelioration of insulin sen-
sitivity in mice with diet-induced obesity [268]. Con-
versely, IL-15 administration leading to increased NK cell 
populations or their reconstitution in NK cell-deficient 
mice, lacking E4 promoter-binding protein 4 (E4bp4), in-
creases adipose tissue inflammation and exacerbates obe-
sity-induced insulin resistance [267]. Mechanistically, it 
was shown that adipocyte-mediated production of li-
gands of the NK cell-activating receptor (NCR1) stimu-
lates NK cell proliferation and IFN-γ release, which pro-
motes ATM activation and insulin resistance in obesity 
[71]. NCR1 or IFN-γ deficiency abrogates ATM accumu-
lation in the visceral adipose tissue and improves insulin 
sensitivity [71]. Interestingly, NK cells in the subcutane-
ous adipose tissue of obese individuals display lower ex-
pression of the signaling molecules NKp30 and NKp44, 
which might suggest that they acquire a phenotype less 
efficient in the defense against neoplastic cells [270].

Mast Cells
Mast cells mediate IgE-driven type 2 immune respons-

es [271, 272], while broad pro-inflammatory functions 
were also ascribed to them [273, 274]. The adipose tissue 
contains precursors, which can differentiate to mature 
mast cells [275, 276]. Mast cells accumulate in the white 
adipose tissue of obese humans and mice [277–280]. Ac-
cordingly, tryptase and chymase levels are increased in 
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the adipose tissue of obese compared to lean individuals 
and more tryptase- and chymase-positive mast cells are 
found in both the subcutaneous and omental adipose tis-
sue in obese diabetic patients [280, 281]. Moreover, mast 
cell accumulation in subcutaneous adipose tissue posi-
tively correlates with serum glucose, leptin, IL-6, triglyc-
erides and homeostatic model of assessment-insulin re-
sistance (HOMA-IR) in patients with metabolic syn-
drome [280]. In contrast to these findings, obese 
individuals with high mast cell accumulation in visceral 
or subcutaneous adipose tissue were shown to be meta-
bolically healthier, displaying a better weight loss re-
sponse following bariatric surgery [282].

Macrophages promote the accumulation of mast cells 
in the adipose tissue [283]. In turn, mast cells were sug-
gested to produce more IL-6 and MCP-1 in obesity, there-
by contributing to adipose tissue inflammation [281]. 
Moreover, thermoneutrality also favors mast cell accu-
mulation in adipose tissue [284]. Genetic ablation of mast 
cells or pharmacological inhibition of their degranulation 
was suggested to decrease macrophage infiltration and 
activation, attenuate adipose tissue and systemic inflam-
mation, reduce body weight gain and ameliorate glucose 
tolerance and energy expenditure in mice fed with a 
Western diet [277, 279, 283]. These effects were reversed 
by reconstitution of mast cells and dependent on IL-6 and 
IFN-γ expression in mast cells [277, 279, 285]. The pro-
tective effects of blockage of mast cell degranulation were 
dependent on high dietary amounts of cholesterol pres-
ent in the Western diet [286].

Mast cells were also suggested to promote adipogene-
sis, adipose tissue fibrosis and adipocyte senescence [278, 
279, 283]. Mast cells in the lean adipose tissue express 
negligible amounts of leptin, while its expression is in-
creased in mast cells in the obese adipose tissue. Adoptive 
transfer of leptin-deficient mast cells expanded ex vivo 
restrained obesity and insulin resistance in obese mice. 
Mechanistically, leptin-deficient mast cells were found to 
promote alternative activation of macrophages [287]. 
Additionally, mast cells were demonstrated to negatively 
impact adipose tissue thermogenesis through serotonin 
synthesis [277, 284, 288], while adoptive transfer of mast 
cells deficient in tryptophan hydroxylase 1, the rate-lim-
iting enzyme regulating peripheral serotonin synthesis, 
attenuates adiposity and insulin resistance and increases 
energy expenditure and beiging [284, 288].

However, most of these findings were based on the use 
of Kit mutant mast cell-deficient mice, which have sev-
eral hematopoietic perturbations [277, 279, 289] and 
could not be reproduced in 2 other mast cell-deficient 

mouse lines, which express normal levels of functional 
Kit: the Cpa3Cre/+ mice and mice generated by crossing 
Mcpt5-Cre to the R-DTA mouse line [290, 291]. Hence, 
mast cell deficiency, in the absence of Kit mutations, 
might actually not play any role in the regulation of adi-
posity or insulin resistance [290, 291]. Overall, although 
mast cell numbers unequivocally rise in the obese adipose 
tissue, their role in the context of metabolic diseases re-
mains elusive [277–281].

In conclusion, innate immune cells in the adipose tis-
sue communicate with each other and their surrounding 
tissue through complex cytokine and other humoral fac-
tor networks, as well as through cell-to-cell contact. Pro-
inflammatory macrophages, neutrophils, and NK cells 
perpetuate adipose tissue inflammation, while alterna-
tively activated macrophages, eosinophils, and ILC2 me-
diate type 2 immune responses and sustain metabolic 
health (Fig. 2). Although the mechanisms mediating the 
crosstalk between ATM-NK cells and ILC2-eosinophil-
alternatively activated ATM have been intensively inves-
tigated, less is known on whether and how pro- and anti-
inflammatory innate immune cells suppress one another. 
For instance, TNF produced by macrophages, neutro-
phils or adipocytes could inhibit the production of IL-4 
by eosinophils and ILC2 or directly impede M2-like mac-
rophage polarization [292, 293]. Such regulatory mecha-
nisms could orchestrate the progression of adipose tissue 
inflammation and merit further investigation.

A Balancing Act: Oxygen Availability, Endothelium 
and Immune Cells

Oxygen availability in the adipose tissue is a key deter-
minant of its metabolic profile [294], with the vasculature 
being critical in maintaining oxygen homeostasis [295, 
296]. Adipose tissue hypoxia is the result of (a) imbalance 
of the hypertrophic adipocytes and a compromised adi-
pose vasculature [295, 297] and (b) elevated oxygen con-
sumption in adipocytes during early stages of adipose tis-
sue expansion, the latter has been termed “relative adipo-
cyte hypoxia” [298]. Interdependence between hypoxia 
and inflammatory diseases, including obesity, is widely 
documented [294, 299].

Oxygen Availability, HIFs and Immune Cells in 
Obesity
In response to hypoxia, the master regulators of this 

adaptive response, the HIFs are activated [300]. HIFs are 
basic helix-loop-helix transcription factors and consist of 
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a constitutively expressed β subunit (HIF-1β) and an ox-
ygen-dependent HIF-α subunit [300]. HIF-1α is ubiqui-
tously expressed in all tissues [301], whereas HIF-2α is 
predominantly expressed in endothelial cells in highly 
vascularized tissues [302]. At normal oxygen levels, HIF-α 
is negatively regulated by HIF-prolyl hydroxylases 
(PHD1, PHD2, and PHD3). All three hydroxylate two 
proline residues (Pro402, Pro564 in HIF-1 and Pro405, 
Pro531 in HIF-2) in the oxygen-dependent degradation 
domain of HIF-α [303], allowing proteasomal degrada-
tion of HIF-α [304, 305]. Under hypoxic conditions, 
HIF-α hydroxylation is inhibited, leading to its stabiliza-
tion [304–306] and upregulation of a plethora of genes 
involved in glucose and lipid metabolism, angiogenesis 
and inflammation [307].

Although the mechanisms by which HIFs regulate im-
mune cell function are not fully understood, it is well ac-
cepted that HIFs act as a regulatory hub that link meta-
bolic activity with immune responses (immunometabo-
lism) [308]. HIF-1-dependent increased glycolysis is 
associated with the activation of macrophages, neutro-
phils, DC, NK cells and cells of the adaptive immunity 
[308, 309]. For example, in neutrophils, HIF-1 increases 
their life span and bactericidal capacity [310] by a time-
dependent induction of key glycolytic enzymes glyceral-
dehyde 3-phosphate dehydrogenase and triosephosphate 
isomerase [311] or induction of glycogen synthase [312]. 
The seminal work of Cramer and colleagues [313] dem-
onstrated that HIF-1 deletion in myeloid cells causes de-
pletion in the ATP cellular pool, impairs myeloid cell mo-
tility and induces infiltration in models of experimental 
arthritis. Interestingly, opposite to HIF-1, HIF-2 defi-
ciency does not alter cellular ATP production [314]. My-
eloid cells can undergo metabolic reprogramming to 
adapt to changes in their local microenvironment. For 
example, when macrophages are exposed to LPS, the lev-
els of the tricarboxylic acid cycle intermediate succinate 
are elevated. Succinate induction further stabilizes HIF-1, 
leading to increased IL-1β production [138]. Opposing 
roles of HIF-1 and HIF-2 are also reported for their regu-
lation on eosinophil chemotaxis, with HIF-1-deletion re-
ducing chemotaxis and with HIF-2-deletion increasing 
chemotaxis [315]. DC-specific HIF-1 deletion leads to 
significantly higher body weight loss, increased pro-in-
flammatory cytokines production, and severe intestinal 
inflammation in a model of experimental colitis com-
pared to HIF-1 proficient DC [316]. In ILC2 cells, the 
VHL-HIF-1-glycolysis pathway acts as a checkpoint for 
their terminal differentiation [317]. Activation of HIF-1 
(via VHL deletion) elevates the glycolytic enzyme pyru-

vate kinase M2, which in turn downregulates the IL-33-
ST2 pathway, thus directly impacting ILC-2 maturation 
[317]. Finally, in obese mice, it was recently demonstrated 
that palmitate upregulates ATM glycolysis and HIF-1 ac-
tivation and induces IL-1β in macrophages [318]. Thus, 
enhanced glycolysis and HIF-1α activation in ATM could 
be partially driving the low-grade inflammation in obe-
sity.

The role of HIFs in adipose tissue inflammation was 
demonstrated in several studies using mouse models of 
targeted HIF modulation in adipocytes (Fabp4Cre) but 
with contrasting results. Briefly, deletion of HIF-1, in 
most studies, reduces adipose tissue inflammation, 
whereas HIF-1 overexpression increases macrophage in-
filtration in white adipose tissue and leads to insulin re-
sistance [38, 319]. In contrast, deletion of HIF-2 in adipo-
cytes leads to both white and brown adipose tissue in-
flammation (higher numbers of F4/80+ macrophages) 
and consequently negatively impacts systemic insulin re-
sistance in obesity [129]. Stabilization of both isoforms 
(via deletion of their negative regulator, PHD2) in adi-
pose tissue provides metabolic flexibility and does not af-
fect immune cell population infiltration under basal con-
ditions [320] but reduces macrophage infiltration in 
high-fat diet-fed mice [321].

Fewer studies addressed the role of HIFs in myeloid 
cell populations (LysMCre) in the context of diet-induced 
obesity, again with contrasting results. Myeloid cell-spe-
cific HIF-1 deletion protects against adipose tissue in-
flammation and reduces macrophage crown-like struc-
ture formation [318, 322]. However the role in glucose 
and insulin tolerance is controversial, with one study 
showing that myeloid HIF-1 deletion protected from the 
development of systemic insulin resistance in obese mice 
[322], whereas the second study showed no effect [318]. 
In another study, however, deletion of HIF-1 in myeloid 
cells had no effect on the inflammatory state of adipose 
tissue after a shorter (8 weeks) high-fat-feeding protocol, 
and the transgenic mice were heavier with slightly elevat-
ed glucose levels [323]. Deletion of HIF-2 in myeloid cells 
has no impact on diet-induced obesity and associated 
metabolic dysregulation [129]. In vitro, HIF-2 adenoviral 
overexpression in peritoneal macrophages facilitated the 
M2-like polarization by increasing the expression of argi-
nase 1, suppressing NO production and reducing TNF, 
IL-6, and IL-1β expression [324]. Coculture of adipocytes 
with HIF-2-overexpressing macrophages reduces IL-6 
expression in adipocytes and restores the insulin-stimu-
lated glucose ability in adipocytes [324]. In contrast, high-
fat-fed haplodeficient HIF-2 (Hif2a+/−) mice show in-
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creased number of crown-like structure in adipose tissue 
and systemic insulin resistance [324]. However, in the lat-
ter study, it cannot be concluded that macrophage HIF-2 
is responsible for the impaired insulin response as HIF-2 
levels are universally reduced. These findings suggest that 
HIF-2 could be a potential regulator of the cross talk be-
tween macrophages and adipocytes and are consistent 
with the notion that HIF-1 is required for M1 polariza-
tion of macrophages, whereas HIF-2 for M2-like polar-
ization [325]. More recently, it was shown that deletion 
of PHD2 in myeloid cells increases ATM infiltration and 
leads to insulin resistance in high-fat-fed mice via en-
hanced interleukin-1 receptor associated kinase-M (Irak-
M) expression [326]. The authors concluded that the ob-
served effects were due to HIF-1 activation, although only 
elevated HIF-1a mRNA, but not protein, levels were re-
ported and the role of HIF-2 was not addressed. Together, 
these studies raise the divergent roles of HIF-1 and HIF-2 
in adipose tissue inflammation. This divergence has also 
been documented by a number of studies in the context 
of developmental processes, inflammatory diseases, or 
cancer [327]. Given that advanced PHD inhibitors, which 
do not pose HIF isoform specificity, are now under con-
sideration for FDA approval for the treatment of renal 
anemia [328], it is important to carefully evaluate system-
ic and off-target effects, especially in the context of obese 
adipose tissue and its inflammatory chronicity.

Adipose Endothelium and Innate Immune Cells in 
Obesity
The endothelium, apart from its central role in supply-

ing nutrients and oxygen to the tissues, facilitates the ex-
travasation of leukocytes form the blood stream into the 
tissue via expression of selectins, such as E- and P-selec-
tins, and adhesion molecules, such as intercellular adhe-
sion molecule 1 and VCAM-1, enabling rolling and adhe-
sion of immune cells [329]. In mouse models of obesity, 
it is well documented that there is increased leukocyte-
endothelial cell-platelet interaction in the microcircula-
tion of visceral adipose [117]. Moreover, in the obese ad-
ipose tissue, increased P-selectin expression and forma-
tion of monocyte-platelet conjugates suggests platelet 
activation [117]. However, changes in the leukocyte ad-
hesion cascade in the obese adipose tissue have been little 
investigated.

Pericytes, another less-studied cell-type of the vascu-
lature, was shown to regulate some aspects of the immune 
response. Pericytes are present outside of capillaries, and 
they are identified by expression of the growth factor re-
ceptor PDGFRβ and the proteoglycan, neuron-glial anti-

gen 2 (NG2), which is a PDGF co-receptor [330]. NG2+ 
pericytes express inflammation-sensing receptors, such 
as TLR4 and TLR2, which allow them to sense inflamma-
tory cues and release chemoattractants such as CXCL1, 
MIF and CCL2, thereby promoting leukocyte recruit-
ment and survival [331]. In turn, ATM inhibit pericyte 
detachment from blood vessels, which results in less vas-
cularization [332].

Recently, a new type of macrophages was described in 
epididymal adipose tissue, named vasculature-associated 
ATM (VAM) [209]. VAM are tissue-resident macro-
phages that are tightly associated with blood vessels, dis-
playing very high endocytic capacity. VAM appears to be 
very sensitive to different environmental changes (high-
fat diet, fasting, and inflammatory stimuli) [209]. Both 
nutritional and inflammatory acute stresses cause rapid 
reduction of VAM numbers, yet VAM maintain capacity 
for rapid recovery [209]. Open questions remain such as 
whether VAM are regulated by hypoxic stress and wheth-
er VAM depletion affects the interactions with other res-
ident immune cells in the adipose tissue.

A number of studies showed that during diet-induced 
obesity upregulation of the vascular response directly via 
VEGF-A overexpression [127, 333] or indirectly via acti-
vation of the hypoxia response [320, 321] has advanta-
geous metabolic outcomes. These studies also point to the 
distinct roles of HIF-1 and HIF-2 in the vascularization 
process. For example, HIF-1α regulates mainly endothe-
lial cell proliferation, migration and sprouting, whereas 
HIF-2α controls vascular morphogenesis [334]. Finally, 
failure to induce a vascular response in adipose tissue hy-
poxia can lead to HIF-1-dependent fibrogenesis by in-
ducing the expression of ECM-modifying factors (i.e., 
TIMP-1 and PAI-1), connective tissue growth factor, and 
lysyl oxidase genes [38]. Scar formation may further re-
strict blood supply and oxygen availability, spawning a 
pathological cycle that disrupts further adipose tissue 
plasticity and promotes adipose tissue inflammation.

Adipose Tissue Inflammation Is Long-Lasting, but Is 
It Reversible?

The chronicity of inflammation in obesity is associated 
with development of life-threatening diseases, such as 
cardiovascular complications, and might even predict 
COVID-19 severity [84, 335, 336]. As outlined above, in 
obesity, continuous presence of inflammatory stimuli, 
such as cytokines, adipokines, circulating lipids, and en-
dotoxins, drive chronic inflammation of innate immune 
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and nonimmune cells (e.g., endothelial cells and adipo-
cytes). However, inflammation may also have long-last-
ing effects through induction of “trained immunity” 
[337–341]. Trained immunity refers to the capacity of in-
nate immune cells, such as monocytes, macrophages and 
NK cells, to “remember” inflammatory encounters with 
pathogens and respond in a more sensitized manner 
upon reencountering pathogens [337–341]. Its long-last-
ing effects largely depend on epigenetic and metabolic 
cellular reprogramming [154, 337–340]. It is possible that 
also obesity-associated inflammation guides myeloid cell 
training [338, 341]. This is evidenced by studies showing 
that switching from a Western to a chow diet in Ldlr-de-
ficient mice does not reverse myeloid cell inflammatory 
responses although it reduces systemic inflammation 
[154]. Adipose tissue, and particularly the visceral rather 
than the subcutaneous adipose tissue, might also possess 
immunological memory and thereby still display an in-
flammatory profile after returning from a high- to a low-
calorie diet, despite weight reduction, improvement of 
glucose intolerance and amelioration of other metabolic 
parameters [342]. ATM, adipocytes, adipocyte precur-
sors and endothelial cells might all undergo “immuno-
logical training” during obesity [341, 343]. Essentially, in-
duction of trained immunity in obesity might have im-
portant clinical implications. In people who were 
previously obese, trained immunity could instigate stron-
ger inflammation upon weight regain. Moreover, trained 
immunity could promote an excessive inflammatory re-
sponse upon infection in obese subjects, as in COVID-19 
[11, 12, 336].

Essentially, trained immunity also involves adaptive 
responses of hematopoietic progenitor cells in the bone 
marrow [338]. Obesity and diabetes are associated with 
altered hematopoiesis, resulting in neutrophilia and 
monocytosis due to increased proliferation and expansion 
of bone marrow myeloid progenitors [158, 338, 344, 345]. 
TLR4 and its downstream molecules MyD88 (myeloid 
differentiation primary response 88) and TRIF (TIR do-
main-containing adapter protein-inducing interferon-β) 
are essential mediators of myelopoiesis in obese mice 
[346]. High-fat diet feeding-associated changes in the gut 
microbiome were shown to skew hematopoietic stem cell 
differentiation toward myelopoiesis through reshaping 
the bone marrow niche [347]. Increased production of 
S100A8/S100A9 by neutrophils mediates enhanced my-
elopoiesis through activation of receptor for advanced 
glycation end products (RAGE) in common myeloid pro-
genitor cells [344]. Moreover, inflammasome-dependent 
IL-1β production in ATM also contributes to hematopoi-

etic stem cell reprogramming [158]. In turn, increased 
myelopoiesis contributes to ATM accumulation and sus-
tains chronic inflammation, thereby promoting metabolic 
disease [341, 345, 346]. Along these lines, it was suggested 
that trained immunity might link obesity with the devel-
opment of atherosclerosis and cardiovascular disease 
[341]. However, only recently, the importance of trained 
immunity in obesity was recognized, hence so far it has 
been barely studied.

Despite the long-lasting effects of inflammation in 
metabolic disease, several lines of evidence suggest that it 
could be manageable by pharmaceutical interventions 
[348]. Several drugs against obesity were developed and 
clinically administered, but many were withdrawn due to 
occurrence of side effects and reduced efficacy [349, 350]. 
Currently approved drugs include a blocker of pancreatic 
lipase inhibiting fat absorption (orlistat), appetite sup-
pressors (phentermine/topiramate, lorcaserin, and nal-
trexone/bupropion), and a glucagon-like peptide-1 ago-
nist (liraglutide) [349, 350]. Antidiabetic agents, such thi-
azolidinediones, metformin, and dipeptidyl peptidase-4 
inhibitors can reduce inflammation [348]. Reduction of 
hyperglycemia restrains monocytosis in obese mice [344]. 
Moreover, treatment of obese diabetic patients with an 
inhibitor of IKKε and TBK1 (amlexanox) reduces to some 
extent inflammatory gene expression in the subcutaneous 
adipose tissue and ameliorates insulin sensitivity and he-
patic steatosis [97]. Furthermore, anakinra (a recombi-
nant human IL-1 receptor antagonist) was found to miti-
gate systemic inflammation in type 2 diabetes mellitus 
patients [351, 352]. However, systemic treatments with 
anti-inflammatory drugs can have harmful side effects 
[353]. Recently, targeting visceral ATM through intraper-
itoneally injected conjugates of dexamethasone (a potent 
anti-inflammatory drug) with dextran, which were effi-
ciently and specifically taken up by macrophages, strong-
ly reduced adipose tissue inflammation in obese mice 
[354]. Finally, nutritional adaptations involving, for in-
stance, intake of more mono- and polyunsaturated and 
less saturated fatty acids could also protect against devel-
opment of obesity-associated inflammation [355]. Also, 
several natural anti-inflammatory products were suggest-
ed to reduce adipose tissue inflammation and glucose in-
tolerance [356, 357].

However, lifestyle interventions, that is, weight loss 
through caloric restriction and exercise, could be the 
most applicable way to combat obesity and associated in-
flammation and metabolic dysregulation [358]. Weight 
loss in humans after bariatric surgery and mice is associ-
ated with reduced monocytosis and neutrophilia [158]. 
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Although adiposity, hepatic inflammation and systemic 
glucose homeostasis are improved after weight loss in 
both humans and mice, features of visceral adipose tissue 
inflammation, such as mRNA expression levels of inflam-
matory cytokines, number of crown-like structures, pro-
inflammatory macrophages, ILC2, CD8+ T cells and 
Tregs, remain rather unaffected [342, 359–362]. In fact, 
fasting or weight loss due to switch to a low-calorie diet 
induces ATM accumulation and upregulation of inflam-
matory pathways in the adipose tissue, accompanied by 
metabolic reprogramming involving downregulation of 
glycolysis, oxidative phosphorylation, lipogenesis, ca-
nonical lipolysis and upregulation of lysosomal lipid di-
gestion [176, 363–365]. The initial induction of ATM re-
cruitment upon caloric restriction is followed by a decline 
in ATM numbers in the case of a prolonged period of 
weight loss in both visceral and subcutaneous adipose tis-
sue [176]. ATM recruitment coincides with elevated cir-
culating free fatty acid levels, suggesting that adipose tis-
sue lipolysis induced by caloric restriction might drive 
ATM accumulation [176].

Inadequate physical activity is a major contributor to 
the development of obesity, while regular exercise can 
prevent, delay or even reverse metabolic disease [358, 
366–368]. The protective effects of exercise are thought 
to be mediated by both exercise-associated weight loss 
and its anti-inflammatory effects [358, 369]. Several stud-
ies reported a reduction of adipose tissue inflammation, 
as evidenced by attenuation of pro-inflammatory macro-
phages, neutrophils, CD8+ T cells, proinflammatory cy-
tokines, intercellular adhesion molecule 1 and leptin by 
exercise in humans and mice, especially when combined 
with dietary changes [370–378]. Exercise reduces the per-
centage of CD14+CD16+ monocytes and endotoxin-in-
duced TNF production in humans [379, 380] and elevates 
IL-10 and IL-6 secretion [379, 381]. Daily exercise and a 
hypocaloric diet for 15 weeks in severely obese subjects 
reduced body weight, insulin resistance, and plasma lev-
els of CRP, IL-6, IL-8, and MCP-1, increased adiponectin 
and decreased the ATM content [375]. Moreover, physi-
cally active elderly subjects had decreased inflammatory 
and oxidative stress marker expression and fewer CD36+ 
macrophages in the subcutaneous adipose tissue com-
pared to sedentary subjects [376]. Chronic exercise train-
ing correlated with increased expression of the M2-like 
macrophage marker CD163 [373]. In accordance with 
this, in a recent clinical trial (PREDIMED-plus), physical 
activity in combination with energy-restricted Mediter-
ranean diet reduced insulin resistance and circulating lev-
els of leptin, IL-18 and MCP-1 in overweight or obese 

subjects [382]. Aerobic exercise training for 4–16 weeks 
also reduced liver steatosis and increased the liver content 
in polyunsaturated lipids [383–385]. In mice fed a high-
fat-high-fructose diet, which induces NAFLD, exercise 
attenuated macrophage infiltration, TNF expression and 
fibrosis in the liver [386]. Accordingly, exercise was re-
ported to reduce adipose tissue fibrosis, liver inflamma-
tion and steatosis in obesity [358, 371, 374].

The precise mechanisms mediating the protective ef-
fects of exercise are not fully understood. Exercise train-
ing reduces the adipose tissue mass due to lipolysis, 
thereby attenuating the production of proinflammatory 
adipokines [387]. In rodents, it increases mitochondrial 
biogenesis and the thermogenic capacity of the subcuta-
neous and visceral adipose tissue [388]. However, in hu-
mans, 10 weeks of aerobic exercise or endurance train-
ing was not found to be associated with subcutaneous 
adipose tissue browning [389, 390]. Exercise also in-
creases the mitochondrial content and capacity of skel-
etal muscle for β-oxidation [391]. Increased fatty acid 
oxidation in the muscle could reduce circulating levels 
of free fatty acids, thereby attenuating fatty acid-medi-
ated activation of TLR4 [178, 182, 183, 383]. In addition, 
acute and chronic exercise are associated with reduced 
TLR4 expression in monocytes [369, 392–394]. More-
over, exercise decreases circulating fetuin-A levels, 
thereby possibly even more restraining fatty acid-medi-
ated TLR4 activation [380]. Along the same line, acute 
and chronic exercise inhibit TLR4 signaling through 
JNK and NF-κB and improve insulin signaling in the 
adipose tissue, liver and muscle [395]. Hence, attenua-
tion of TLR signaling could present an important mech-
anism mediating the anti-inflammatory effects of exer-
cise in insulin-sensitive tissues, such as the adipose tis-
sue, liver and muscle [358]. Moreover, exercise-induced 
secretion of IL-6 in muscles could mediate some of the 
protective effects of exercise [396]. In a recent clinical 
trial, aerobic exercise reduced cardiac fat through an 
IL-6 receptor-dependent mechanism in abdominally 
obese subjects [397]. The effects could be mediated by 
increasing the levels of IL-10 and IL-1ra, the latter func-
tioning as an inhibitor of IL-1 signaling [398]. More-
over, IL-6 promotes M2-like polarization by increasing 
the expression of IL-4 receptor α [171] and restrains in-
flammation and insulin resistance in the liver [107]. 
However, the role of IL-6 as a mediator of the effects of 
exercise on immunometabolism is complex, since it is a 
pleiotropic cytokine, which also exerts important pro-
inflammatory actions [44, 399]. Interestingly, endur-
ance and resistance training could have different effects 
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in adipose tissue inflammation: for instance, resistance 
training reduced NLRP3, while endurance training at-
tenuated TNF and IL-18 expression in the adipose tissue 
and more effectively improved glucose tolerance [377]. 
Overall, exercise combined or not with dietary adapta-
tions ameliorates the meta-inflammation in the adipose 
tissue. Although the exact mechanisms mediating the 
effects of exercise remain to be elucidated, physical ac-
tivity has undoubtedly protective effects against chronic 
inflammation and is keystone for metabolic health.

Conclusion

In obesity, adipose tissue inflammation develops as a 
result of functional reprogramming, proliferation and re-
tention of resident immune cells, recruitment of circulat-
ing immune cells, and reprogramming of hematopoietic 
stem cell and progenitor cells. A complex interplay be-
tween innate and adaptive immune cells, hypertrophic 
adipocytes, endothelium dysfunction and hypoxia shapes 
the immunometabolic profile of the adipose tissue. Con-
sequently, adipose tissue inflammation perpetuates de-
velopment of insulin resistance and fibrosis in the adipose 
tissue and contributes to systemic inflammation, NAFLD, 
cardiovascular disease, or other obesity-related disease. 
The chronicity and long-lasting effects of adipose tissue 
inflammation render it difficult to treat. Integrated ap-
proaches studying the complex microenvironment of the 
adipose tissue and interorgan communication are re-
quired in order to reveal the mechanisms governing im-
munometabolic dysregulation. Single-cell approaches are 
already implemented and will provide important infor-
mation for the better understanding of these dynamic cir-
cuits. Identification of the key immunometabolic pertur-
bations leading to unhealthy obesity will pave the way for 
novel therapeutic strategies.

Several parameters need to be taken into consider-
ation for the development and application of such inter-
ventions. First, continuous and long-term treatments are 
required, which increases the risk of complications and 
abstinence. Moreover, interindividual differences in pa-
tients, that is, BMI, type of obesity (visceral vs. subcuta-
neous adiposity), age, gender, metabolic disease (insulin 
resistance, fatty liver disease, etc.), the inflammatory pro-
file (as revealed by immunological screenings), lifestyle 
(physical activity, smoking, and stress) and genetic back-
ground, should be considered for the application of ther-
apeutic treatments. Along these lines, individualized 
treatment could increase the therapeutic outcome in 

obese patients. For instance, patients with visceral obe-
sity and high levels of inflammatory markers would ben-
efit most from anti-inflammatory treatments. Further-
more, specific cell-type targeting could increase drug ef-
ficiency and minimize side effects. ATM are promising 
targets due to their significant role in adipose tissue 
chronic inflammation as well as their capacity to phago-
cytose nanoparticles [400]. Nanoparticle-mediated de-
livery of inflammatory pathway blockers might therefore 
efficiently restrain adipose tissue inflammation. Howev-
er, adjustment of the physicochemical properties of the 
applied nanoparticles would be required to improve 
their delivery to the adipose tissue [400]. Finally, person-
alized treatments, new-age therapeutic strategies and 
prevention will be all needed to combat metabolic dis-
ease-associated chronic inflammation.
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