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Abstract

Dispersion-based inversion has been proposed as a viable direction for materials characterization 

of arteries, allowing clinicians to better study cardiovascular conditions using shear wave 

elastography. However, these methods rely on a priori knowledge of the vibrational modes 

dominating the propagating waves induced by acoustic radiation force excitation: differences 

between anticipated and real modal content are known to yield errors in the inversion. We seek 

to improve the accuracy of this process by modeling the artery as a fluid-immersed cylindrical 

waveguide and building an analytical framework to prescribe radiation force excitations that 

will selectively excite certain waveguide modes using ultrasound acoustic radiation force. We 

show that all even-numbered waveguide modes can be eliminated from the arterial response to 

perturbation, and confirm the efficacy of this approach with in silico tests that show that odd 

modes are preferentially excited. Finally, by analyzing data from phantom tests, we find a set 

of ultrasound focal parameters that demonstrate the viability of inducing the desired odd-mode 

response in experiments.

1 Introduction

Changes in arterial structure play a critical role in the pathology of myriad health 

conditions, from coronary artery disease to atherosclerosis [1–6]. Quantifying structural 

changes through shear wave elastography, using an initial ultrasound pushing beam to apply 

acoustic radiation force followed by ultrasound tracking of the resultant wave motion, allows 

clinicians and scientists to assess these conditions and prescribe appropriate interventions 

[7–9].

Using shear wave elastography to evaluate properties like the elastic modulus requires 

the solution of an inverse problem. To reduce the complexity of the inversion, many 

simplifications and assumptions are made throughout the literature, beginning with the 
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geometry: the artery is commonly treated as a cylinder with constant radius and wall 

thickness [10–16]. This simplified geometry can be leveraged to treat the artery as 

a cylindrical waveguide and decompose its motion into combinations of characteristic 

vibrational modes, allowing for inversion through study of wave dispersion [17–20]. In their 

paper validating such a dispersion-based method, Roy et. al. note that, although most authors 

treat the arterial motion as being dominated by a single mode, significant contributions from 

multiple modes are present [20, 21]. They find that failing to correctly account for this 

multimodal nature reduces the accuracy of material property estimates, posing additional 

challenges for inversion [21].

We propose to mitigate this source of inaccuracy and increase the robustness of 

arterial elastography procedures by prescribing a way to perform ultrasound shear wave 

elastography experiments such that the induced waveguide modes can be preferentially 

controlled without a priori knowledge of the arterial properties. Our approach is developed 

in two stages: an analytical stage, in which we link the forcing applied by the ultrasound 

pushing beam to the arterial walls to the resultant motion; and a testing stage consisting of 

a simulation, in which the force applied to the artery is made to match the analytical model 

exactly, and an analysis of experimental data collected from an arterial phantom.

The foundation of the analytical stage of our process is the study of the characteristics of 

waves induced during shear wave elastography experiments. We make use of the complete 

description of arterial motion afforded by the cylindrical waveguide model to determine 

which external and geometric factors will help us control the possible responses to 

perturbation. In doing this, we keep cases for which the cylindrical waveguide assumptions 

are most accurate, such as the study of the carotid artery, at the forefront of our consideration 

[17, 22]. To proceed, we link the forces applied to the artery walls and the waveguide modes 

that combine to represent the induced motion. This approach was pioneered by Ditri and 

Rose, who developed a mathematical approach to compute the amplitude of any given mode 

at any point along the length of a cylindrical waveguide in response to loading [23–25]. We 

expand the scope of their work and tailor it specifically to clinical ultrasound applications by 

introducing a model of the artery as a fluid-immersed structure rather than a free cylinder, 

and by modeling the load as an acoustic radiation force applied uni-directionally from an 

external transducer. This expanded model allows us to derive an abstract loading parameter, 

related to ultrasound focal properties and the balance of forces on the opposite walls of 

the artery, that indicates the degree to which we can cancel out a large subset of possible 

modes. We find that, for specific values of this parameter, it should be possible to eliminate 

all even-numbered circumferential waveguide modes from the arterial response regardless of 

material properties.

To the best of our knowledge, no other study has examined controlling arterial motion by 

tuning focal parameters to cancel out specific sets of waveguide modes. Thus, we perform 

a series of simulations and phantom experiments to test our prescription for simplifying the 

arterial motion. First, we perform finite element simulations to quantify the degree to which 

different modes participate in the arterial response under conditions that conform exactly 

to the analytical study. Next, we conduct experimental studies with the goal of finding 

ultrasound focal parameters that can be used as proxies for the abstract loading parameter 
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we determined analytically, and to infer the best way to translate our methods to in vivo 
testing.

The remainder of this paper is organized as follows: in Section 2, we develop the theoretical 

frameworks for the waveguide formulation and our experimental model; Section 3 discusses 

the setup and results of our simulations and arterial phantom experiments; finally, we 

conclude and summarize our findings in Section 4.

2 Theory

2.1 Arterial Model

Our goals in this section are to build the simplified arterial model we will use to perform 

our analysis, present the acoustic and elastodynamic equations that govern it, and develop 

an expression for the amplitudes of waveguide modes. We begin by defining the artery as 

a cylindrical, fluid-immersed waveguide, as shown in Fig. 1. This approach was developed 

during our previous work with Astaneh et al. on modeling shear wave elastography (SWE), 

detailed in [20].

Elastodynamic and acoustic equations govern the solid and fluid domains ΩS and ΩF, 

respectively. In the solid domain, we work in cylindrical coordinates and wish to relate the 

vector displacement u(r, θ, z, ω), the stress tensor σ(r, θ, z, ω), and the scalar pressure p(r, θ, 
z). Dropping all dependencies and writing u, σ, and p henceforth for simplicity, we write the 

equations governing ΩS as

∇ ⋅ σ = − ρSω2u in ΩS (1a)

σ ⋅ nS = − pnS on ΓFS (1b)

where Eqn. (1a) represents conservation of momentum and relates the divergence of σ to u, 

modified by the frequency ω and the density of the solid ρS, which is taken to be uniform. 

Boundary equation (1b) ensures equilibrium on the inner boundaries by balancing σ against 

p, applied along the normal nS to the fluid-solid interface ΓFS. We treat the material as 

homogeneous, isotropic, and nearly incompressible, and define the constitutive equation to 

be a linearelastic stress-strain relation, as in

σ = C:ϵ in ΩS (2)

where : denotes the double scalar product and C is the isotropic fourth-order elasticity 

tensor. The second-order strain tensor ϵ, assumed to be small in magnitude throughout the 

waveguide, is given by

ϵ = 1
2 ∇u + ∇uT in ΩS (3)

The assumption of small strain is justified by the typical displacement induced by radiation 

force, which we have found to be small compared to the characteristic length scale of the 
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arterial wall [20]. Moving to the fluid domain ΩF, we write the acoustic governing equations, 

assuming no body forces, as

∇2p + k2p = 0 in ΩF (4a)

∂nF p = − g1 ik + g2 p on Γ∞ (4b)

∂nF p = ρFω2u ⋅ nF on ΓFS (4c)

where ∇2 denotes the Laplacian operator, k is the frequency-dependent wave number, and 

∂nF  represents the partial derivative with respect to the fluid surface normal nF. Eqn. (4b) 

describes a non-reflecting boundary condition applied to the outer fluid boundary, Γ∞, using 

constants g1 and g2 calibrated for the domain geometry [26]. Finally, Eqn. (4c) couples the 

fluid and solid equations, invoking a uniform fluid density ρF.

According to waveguide theory and normal mode expansion, u, σ, and the velocity v(r, θ, 
z, ω) can be written as infinite sums of the orthogonal modal fields ηm(r, θ), ξm(r, θ), and 

ϕm(r, θ), respectively [18]. Here, m ∈ ℤ+ is an index differentiating circumferential modal 

fields referred to as the mode number. Note that we consider circumferential modes only: we 

have found that these modes dominate the arterial motion in our frequency range of interest, 

200 Hz to 1000 Hz, with the exception of the first longitudinal mode. However, we find 

later in our derivation that this mode can be eliminated from the arterial response, and so we 

limit our consideration to circumferential modes throughout for simplicity. While a similar 

expression can be derived for p, we are focused solely on quantities used within the solid. 

Suppressing all variable dependencies and assuming we are working at a single, arbitrary 

frequency ω0, we can write the expansions for u, v, and σ as

u = ∑
m

αmηmeikmze−iωt
(5a)

v = ∑
m

βmϕmeikmze−iωt
(5b)

σ = ∑
m

γmξmeikmze−iωt
(5c)

where the constants αm, βm, γm are scalar weights associated with each mode. The 

wavenumber k, which is already understood to be dependent upon frequency, is now written 

km to reflect an additional dependence on the mode number. Furthermore, the modal fields 

ηm, ϕm, and ξm are all defined over a cross-section of the cylindrical waveguide. The modal 

displacement can be written explicitly as ηm(r, θ) = rsin(mθ)er + rcos(mθ)eθ [18]. To illustrate 

the cross-sectional shapes produced by ηm, we plot the displacement field along the outer 

circumference of the waveguide cross-section for m = 1, 2, 3 in Fig. 2:.
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We are interested in finding the relative amplitudes of these modal fields in order 

to determine their degrees of contribution to the total response. Because ultrasound 

experiments typically measure particle velocity rather than particle displacement, we work 

with the modal velocities ϕ and combine the scalar weight and z-dependent exponential in 

Eqn. (5b) into a general amplitude Am, writing

v = ∑
m

Amϕm (6)

where Am = βmeikmze−iωt is the amplitude of the m-th mode for a cylindrical cross-section 

located at longitudinal position z and at time t. For the sake of simplicity and clarity, we 

will suppress the use of the e−iωt factor in future equations; it is assumed that all waveguide 

modes will propagate in this way in time. This modal amplitude expansion mirrors the 

steps taken by Ditri and Rose [23], and allows us to continue to follow their process for 

developing an equation for Am in terms of ϕm and σ. The next step is to relate two arbitrary 

modal states, denoted 1 and 2, characterized by the field pairs v1, σ1 and v2, σ2, using the 

reciprocity relation

∇ ⋅ v1 ⋅ σ2 + v2 ⋅ σ1 = 0 in ΩS (7)

where an over-bar, as in v1, indicates the complex conjugate transpose. To employ this 

particular reciprocity relation, we have assumed that the only sources of excitation in the 

entire solid-fluid domain can be treated as originating on, or being applied directly to, the 

surface of the solid [27]. This restriction to cross-sections of the solid waveguide makes a 

more granular description of the arterial cross-section useful, as shown in Fig. 3 where D is 

the cross-sectional area, a and b are inner and outer radii, and ∂D1 and ∂D2 are the inner and 

outer boundaries, respectively. Using this representation of the domain, we substitute Eqn. 

(6) into Eqn. (7), integrating and applying the divergence theorem to produce a formula for 

Am; this derivation can be found in full detail in [23]. The result, relating the stresses and 

velocities to the modal amplitude, is given by

Am = e−ikmz

4Pmm ∫
c

z
eikmℓ ∫∂D1

ϕm ⋅ σ ⋅ n1 ds + ∫∂D2
ϕm ⋅ σ ⋅ n2 ds d ℓ (8)

Here, the factor Pmm represents an abstract measure of the power transferred to mode m, 

serving to normalize the numerator of the expression and render Am unitless; its form is 

given explicitly in [23]. The limits of integration in z include an arbitrary starting point c, 

somewhere along the infinite length of the waveguide. Note that the line integrals on the 

edges of the cross-section depend on σ ⋅ n1 and σ ⋅ n2, which can be interpreted as tractions 

τ1 = σ ⋅ n1 and τ1 = σ ⋅ n2. Explicit definition of these tractions yields an opportunity to 

develop a model for ultrasonic SWE linking the experimental parameters governing τ1 and 

τ2 to the amplitudes of each potential mode m.
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2.2 Variable Ultrasound Beam Parameterization

In this section we show that a simple, one-parameter experimental model yields a method for 

driving the amplitudes of all even-numbered modes to zero. By explicitly defining the form 

of the tractions applied to the waveguide, we can build a model for ultrasonic SWE that links 

experimental parameters to the modal amplitudes Am given by Eqn. 8.

We begin to investigate ARF-induced tractions by considering two beam intensity profiles 

from ultrasound propagation simulations in the Field II software, shown in Fig. 4 [28]. The 

intensity is simulated for a L7–4 linear array transducer (Philips Healthcare, Andover, MA) 

with focal numbers (F/N) of 0.75 and 3 (F/N = focal depth/aperture width). A lower focal 

number corresponds to a more focused beam.

An apparent difference between the two beams in Fig. 4 is the degree to which they 

penetrate the artery and maintain intensity and pushing force on the bottom wall. This 

motivates us to investigate the influence of differing tractions on the arterial walls. We 

treat the ultrasound beam as applying its force directly to the outer surface of the upper 

and lower walls (confined to D2, as shown in Fig. 3) and assume that its spatial footprint 

does not change appreciably as it travels. Though we could achieve the same results using 

an arbitrary symmetrical footprint, we consider the area of the beam to be rectangular for 

the sake of simplicity; this assumption is justified by the fact that an ultrasound beams 

typically has a cigar-shaped footprint. Furthermore, we make use of a simple separable 

traction to simplify our mathematical treatment and to enforce notions of the finite extent of 

the ultrasound transducer [23]. We write a general traction τ(θ, z), applied to the solid outer 

surface D2, as a product of purely longitudinal and circumferential factors τz(z) and τθ(θ), 

given by

τ(θ, z) = τz(z)τθ(θ) on D2 (9)

Where

τθ(θ) =
−Fer, θ ≤ θc(top wall)
fFer, π − θc ≤ θ ≤ π + θc(bottom wall)
0, otherwise

(10a)

τz(z) =
1, z ≤ Lz
0, otherwise

(10b)

In these equations, F denotes the amplitude of the force applied to the upper surface, 

while θc and Lz are constants defining the circumferential and axial extent of the beam’s 

area, respectively; this setup is shown in Fig. 5 below. To increase readability in future 

expressions, we will suppress the θ and z dependencies for the tractions. Finally, f ∈ [0, 1] is 

a parameter we name the beam penetration coefficient, which describes how efficiently the 

intensity of the beam is maintained as it travels through the upper arterial wall, crosses the 

lumen, and impinges upon the lower arterial wall; in other words, f represents the balance of 

forces between the artery walls. In a highly-focused case like the one in Fig. 4a, we would 
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assume f ≈ 0, whereas an intermediate value like f ≈ 0.75 would be appropriate for the 

less-focused beam in Fig. 4b. Though there is no simple experimental indicator for f, one 

can intuit that changing focal parameters will change the balance of forces on the arterial 

walls, and thus impact f.

It should be noted that the application of a load to the arterial walls modifies the boundary 

condition balancing forces on the fluid-solid boundary, expressed in Eqn. (1b), by the 

addition of τ. In order to determine a relationship between f and Am, we substitute the 

traction given in Eqn. (9) into the amplitude formula, Eqn. (8), in place of τ2 since we are 

only applying traction to the outer surface. This yields

Am = e−ikmz

4Pmm ∫
c

z
eikmℓ ∫∂D2

ϕm ⋅ τℓτθds d ℓ (11a)

= e−ikmz

4Pmm ∫
c

z
eikmℓτℓd ℓ ∫∂D2

ϕm ⋅ τθds (11b)

We collect the factors in Eqn. 11b into three terms

Pm = 1
4Pmm (12a)

Zm = e−ikmz∫
c

z
eikmℓτℓd ℓ (12b)

Sm = ∫
0

2π
ϕm ⋅ τθdθ (12c)

representing a modal power factor Pm, a modal longitudinal factor Zm, and a modal cross-

sectional shape factor Sm, respectively. Rewriting Eqn. (11b) in terms of these factors yields 

a simplified expression for the amplitude Am

Am = PmZmSm (13)

Evidently, Am is proportional to each of the modal factors of Eqn. (12). Focusing solely on 

Sm, we substitute τθ from Eqn. (10) into Eqn. (12c) and derive an expression in terms of 

experimental parameter f as

Sm = 2F
m sin mθc [fcos(mπ) − 1] (14)

The derivation of Eqn. 14, along with a discussion of the longitudinal modes in the motion, 

can be found in Appendix A. The significance of this result becomes apparent if we consider 

the forms of Sm for odd m and even m; we absorb everything beyond f into multiplicative 

constants and consider only the proportionality of Sm to the resulting f terms, given by
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Sm ∝ (f + 1) for odd m (15a)

Sm ∝ (f − 1) for even m (15b)

We see that for even modes, as f approaches 1 the shape term Sm vanishes. For a perfectly 

penetrating beam that applies equal loading to both walls, f = 1 and the proportionality 

relation in Eqn. (15b) implies that the amplitudes of all even modes will be zero. Thus, 

we can assert control over the induced modes in a real experiment by getting as close as 

possible to an ideal penetrating beam, thereby eliminating even modes from the arterial 

response.

3 Numerical and Experimental Studies

The analysis of the previous section left us with a prescription for producing simplified 

arterial responses to ARF: use an ultrasound beam that completely penetrates the artery, 

with f close to 1. We test this prescription by analyzing the wall particle velocity data 

generated by beams with varying degrees of penetration and evaluating a measure of modal 

participation, confirming the presence or absence of even and odd modes.

In the remainder of this section we describe two sets of tests, including the measures for 

determining modal participation that accompany them and their results: first, we use a finite 

element approach to simulate an experimental response to ultrasound excitation and quantify 

the modal response using a modal participation factor (MPF), developed by exploiting 

modal orthogonality; second, we create a correlative metric for modal response that allows 

us to bridge the gap between simulated and experimental data, and analyze data from an 

ARF experiment using a water-immersed artery-mimicking phantom. It is important to note 

the limitations of these studies: in the finite element model we simulate ARF solely by use 

of tractions on the artery walls in order to exactly match the analytical model, rather than 

modeling the propagation of a wave from an ultrasound source and through the domain; 

in the experiments, we cannot recover the parameter f directly, leading to some degree of 

uncertainty in our comparison with the theoretical model. Additionally, we lack sufficient 

knowledge of the material properties of the phantoms to perform inversions and quantify 

the accuracy of our results, leading us to rely on the correlation metric. However, in light 

of the clear implications of our analytical model and our means for analyzing the motion of 

real and simulated arteries, we do not believe that these limitations prevent us from drawing 

valuable conclusions about the viability of controlling the response to ARF excitation.

3.1 ARF Simulation

We develop our simulation of an ARF experiment by translating the solid and fluid 

equations, Eqn. (1) and Eqn. (4), into the finite element framework. We derive appropriate 

weak formulations and implement them in the SIERRA finite element analysis suite, as 

shown in [26, 29]. A tube geometry is created, with a total length of 120 mm in z with an 

inner radius of 3 mm and thickness of 1 mm, and properties matching a stiff rubber with 

average shear and loss moduli of 550 kPa and 75 kPa over the 1 – 1000 Hz frequency range. 
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These material properties were chosen based on the rubber used in an artery-mimicking 

phantom, evaluated with a Rheospectris C500+ (Rheolution, Inc., Montreal, Quebec, 

Canada) [30]. The finite element model itself used approximately 900,000 elements for the 

entire solid-fluid domain, and the element sizes were chosen by performing a convergence 

study. It should be noted that our analytical formulation is independent of the material 

properties and particular geometry of the solid, so long as it approximates a cylindrical 

waveguide. Because we are able to apply loads exactly matching those specified by our 

formulation, we expect no significant deviations in modal response for different tubes; thus, 

we perform simulations using only one geometry and set of material properties. Extending 

our modeling capability to use loading informed by the Field II simulations is a goal for 

future work.

Moving from the solid to the fluid domain, we add water, defined by ρF = 1000 kg/m3 

and wave speed c = 1500 m/s, within and outside the cylinder; the outer cylinder of fluid 

is given a thickness of 3 mm. Furthermore, we designate two vertically-aligned patches on 

the top and bottom arterial walls at one end of the tube (as in Fig. 5), measuring 2 mm × 

1 mm in correspondence with simulations of the ultrasound beam footprint, for the force 

application. On the circular cross section at the end of the tube where this load is applied, 

we use a symmetric boundary condition. On the opposite end of the tube and at the outer 

fluid boundary, we use a non-reflecting condition to prevent reflected waves from traveling 

back through the domain and corrupting the natural response. The load itself is applied 

as a pulse that ramps from zero to full amplitude linearly over 100 microseconds, and is 

then maintained for an additional 900 microseconds before an immediate shutoff. This pulse 

duration is approximately twice as long as the pulse used experimentally; this is necessitated 

by differences in the simulated and real loading, and our need to estimate the ultrasound 

force. Thereafter, all three components of the resultant velocities and displacements are 

recorded at all nodes throughout the domain at 0.5 millisecond intervals over a span of 

50 milliseconds. This sampling rate was chosen to minimize data overhead and simulation 

size, and produces the necessary resolution in the frequency domain for our analysis. Two 

simulations are performed using these parameters: one in which the loading is applied 

with equal magnitude to the top and bottom loading patches, corresponding to the fully 

penetrating beam case; and one in which only the top of the cylinder is loaded, intended to 

produce a response containing all waveguide modes.

3.1.1 Modal Participation Factor (MPF)—To assess which modes are present in the 

simulated velocity field, we make use of the fact that the modes which sum up to make v, as 

in Eqn. (6), are mutually orthogonal. Thus, for mode m and arbitrary frequency ωj, we can 

express the MPF ψmj using an inner product to project the mode shape onto the measured 

velocity, writing

ψmj = < ϕmj, vj > (16a)

= ∫ΩS
ϕmjvjdΩS (16b)
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where vj is the normalized simulated velocity field represented in the frequency domain, 

defined as v =
vj
vj

 with ‖·‖ denoting the L2 norm and vj designating the component of the 

Fourier-transformed velocity at frequency ωj. The ϕmj = ϕm ωj, as defined in Eqn. 5b, is 

already taken to be a normalized vector field, and so the MPF will produce a value between 

0 and 1; a 1 indicates that, at that frequency, mode m is the only mode participating. In 

practice, we approximate the integral given in Eqn. (16b) using finite elements.

3.1.2 ARF Simulation Results—We extract particle velocity fields from the ARF 

simulations described in the preceding subsections and analyze the MPF for modes 1, 2, 

and 3 in each. Fig. 6 compares these MPFs for the penetrating and single-surface loading 

cases ( f = 1 and f = 0, respectively). In the single-surface case, we see that all modes make 

significant contributions to the signal above 600 Hz, with mode 2 beginning to participate at 

relatively low frequencies. In the penetrating beam case, on the other hand, mode 2 makes a 

negligible contribution throughout the entire observed frequency range.

However, we note several deviations from perfect modal participation. This is expected 

because the applied load does not exactly conform to any of the harmonics; there are 

contributions to all the odd modes for the penetrating beam case, and all odd and even 

modes for the excitation at the top surface. Consistent with this, the participation of mode 

2 is negligible for the entire frequency range for the first case, while it is non-zero for the 

single-surface case. Interestingly however, for the penetrating beam case, the participation 

of mode 3 is minimal until around 550 Hz; this is attributable to the fact that mode 3 is 

evanescent at lower frequencies, decaying rapidly outside the immediate footprint of the 

applied force and yielding a negligible participation factor.

Similar observations are made for the case in which only the top surface is excited. In this 

case mode 2 makes negligible contributions below 250 Hz, where that mode is expected 

to be evanescent. Again we see this evanescence affect mode 3, which does not contribute 

below 550 Hz. Finally, we note that the participation factors are affected by the non-physical 

effects of numerical artifacts from discretization, leakage, and spurious boundary reflections. 

Notwithstanding these limitations, our results in Fig. 6 confirm that odd modes are strongly 

emphasized and mode 2 is diminished for the penetrating beam case.

3.1.3 Correlation Factors for Modal Participation—By using all three components 

of particle velocity to compute modal participation throughout our subvolume of interest, we 

are assured that the modal fields display orthogonality and that MPF values between zero 

and one are indicative of the relative contribution of a given mode to the response. However, 

in experiments and clinical applications, one cannot obtain such complete data. In these 

cases, we recover only vy, the component of velocity parallel to the ultrasound beam, and 

the region observed is limited to two lines of points: one running lengthwise down the artery 

and averaged throught the thickness top wall (the line of points closest to the transducer), 

and another directly opposite, averaged through the thickness of the lower wall. This data 

is insufficient to guarantee modal orthogonality, so we develop another metric to quantify 

modal participation.
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We look to the modal particle velocity fields, and observe the one-dimensional (1D) fields 

along the two lines of measured points for both mode 1 and mode 2 at a particular frequency, 

shown in Fig. 7.

We see that, at any given point on the line, the particle velocities for mode 1 are 

antisymmetric across the centerline of the artery, and those for mode 2 are symmetric. 

Therefore, we would expect that, for a signal dominated by mode 1 and other odd modes, 

most pairs of points on the front and back walls would be moving in the same direction, 

while they would move in opposite directions for mode 2 and signals dominated by even 

modes. From this observation we develop Ct, a measure of the degree of correlation of the 

point pairs along the length of the artery at any arbitrary time, given by

Ct ti = ∑jvf zj, ti vb zj, ti
vf z, ti vb z, ti

(17)

where vf(zj, ti) and vb(zj, ti) represent the radial components of velocity at the j-the point 

zj along the arterial length and at time ti on the front wall and back wall, respectively. This 

correlation takes a value of 1 for perfectly antisymmetric data, indicating odd modes, and a 

value of −1 for symmetric data, indicating even modes. Values near zero are indeterminate; 

the motion is neither symmetric nor antisymmetric.

3.1.4 Correlation Factors for ARF—We compute Ct for the penetrating and single-

surface loading cases in our simulated data, and perform additional tests with a series of 

intermediate f values to show how Ct changes with the degree of beam penetration. The 

time correlation proves less sensitive to the numerical discrepancies shown by the MPF: we 

see a value of 1, indicating odd-mode behavior, for the penetrating case, and an oscillatory 

intermediate value for the single-surface case, as expected. Looking closer at the transition 

from one case to the other, we plot the average Ct values for varying f in Fig. 8; we see here 

that the value of Ct approaches 1 as f approaches 1, as expected [31].

3.2 Arterial Phantom Experiments

3.2.1 Experimental Design—We analyzed data from a series of ultrasound tests 

conducted on an arterial phantom immersed in water, in order to determine which 

combination of two experimental parameters, focal number and focal depth, produces a 

response most closely correlated, through Ct, with a penetration coeffciient f near 1, odd 

modes, and antisymmetric motion. This dataset was chosen because a phantom study was a 

natural intermediate step before designing in vivo experiments, and because the parameters 

varied clearly serve to imbalance the forces on the front and back walls, producing cases 

similar to those seen in Fig. 4 and allowing us to draw parallels with our analytical model.

The experiments (setup shown in Fig. 9) were conducted on a urethane rubber tube 

(VytaFlex™ 30, SmoothOn, Inc., Macungie, PA), which is used as an artery mimicking 

phantom. Urethane rubber has been shown to exhibit elastic properties similar to ex vivo 
and in vivo arteries, with an elastic modulus between 400 kPa and 600 kPa [12, 32–35]. 

The phantom was immersed in a de-gassed water tank (AIMS III Scanning Tank, Onda 

Corporation, Sunnyvale, CA). The ARF push and detection sequence was executed using 
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a Verasonics ultrasound research system (V1, Verasonics, Inc., Kirkland, WA) and a linear 

array transducer (L7–4, Philips Healthcare, Andover, MA). The push duration was 200 μs 

and the F/N was set to 0.75 and 3. The field-of-view of 40 × 40 mm with pixel sizes of 

0.154 × 0.154 mm was reconstructed. The temporal duration of the measurement was 15 ms. 

Imaging was performed using plane wave compounding (PWC) with three plane waves at 

−4°, 0°, +4° [36]. The pulse repetition period was 85 μs, corresponding to a pulse repetition 

frequency (PRF) of 11.765 kHz. Since three angles are used to reconstruct one frame with 

PWC, the effective pulse repetition frequency (PRFe) is 3.922 kHz. The in-phase/quadrature 

(IQ) data from each acquired plane wave transmission was saved and was processed offline 

with a moving average PWC algorithm to allow for the recovery of motion with full frame 

rate while taking advantage of signal-to-noise ratio improvements with PWC [37]. The 

motion was estimated using 2D autocorrelation over the entire field-of-view, using spatial 

and temporal averaging windows with sizes of 3 and 2 pixels, respectively [38]. The spatial 

window length was 0.462 mm and the temporal window length was 510 ms. The particle 

velocity was extracted for the front and bottom walls of the tube phantom, and averaged 

through the thickness of the walls.

3.2.2 Results—Having shown that using f = 1 emphasizes odd over even modes in 

simulations, we set out to show, using Ct rather than the MPF, that the same holds 

in experiments approximating the simulated conditions. To do this, we must determine 

appropriate which focal depths and beam widths yield a Ct value near 1 for the duration 

of the measurement, indicating a penetrating beam. From Fig. 4, we expect that a widely-

focused beam, using a focal number (F/N) near 3 and focused at or below the tube midline 

will best reproduce our theoretical conditions: a beam with equally-sized footprints on the 

top and bottom walls, applying approximately equal force to each. The study used two F/N 

values, 3 and 0.75, and varied the focal depth for each. A representative sample from this 

data is shown in Fig. 10, illustrating the velocity profile over time on the top wall of the 

phantom.

It can be seen in Fig. 10 that a single wavefront propagates outward along the artery for 

the first 5 milliseconds of the signal, after which the velocity pattern changes; this holds 

generally for all of the data. The results of a correlation analysis of these velocities, in Figs. 

11 and 12, imply that as the focal depth increases and eventually drops below the lower 

arterial wall, the response becomes dominated by odd modes for greater and greater portions 

of the propagation time.

The ultrasound intensity plots for varying focal depths show that the beams producing the 

highest correlation values are those that act on both walls of the artery. For the focal number 

3, shown in Fig. 11, the wide beam seems to produce a relatively high degree of penetration 

at all focal depths, but with notable improvement when the foci are at or below the lower 

wall. For the focal number 0.75, shown in Fig. 12, the narrow focus yields intermediate 

Ct values until the beam is focused at or below the lower wall. The success of this case 

is notable because our analytical formulation uses beam footrpints of equal size on both 

arterial walls, which is clearly not the case for a highly focused beam. This seems to indicate 

that the critical factor is simply the relative forces on both walls: the tightly focused beam 

successfully pushes both surfaces when focused appropriately. These results corroborate our 

Hugenberg et al. Page 12

Phys Med Biol. Author manuscript; available in PMC 2022 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analytical supposition that a penetrating beam minimizes even-numbered symmetric modes 

and produces a response that is dominated by odd modes, and further show that focal depth 

is the most important proxy for the penetration coefficient f.

The strength of these results is that we see a clear link between the predictions of our 

analytical model and the behavior of a real, artery-mimicking structure. We now know that 

focusing acoustic radiation force excitation on the lower wall of the artery is critical for 

amplifying odd waveguide modes in phantoms, but the implications of our work for in vivo 
applications require further discussion. We will address the material surrounding the artery, 

modeling of the ultrasound beam and ultrasound attenuation, limitations of the phantom 

study, and logical next steps for future research.

Our first consideration for in vivo work is the tissue that surrounds the artery. Our 

model and phantom experiments both use water inside and outside the artery, creating a 

homogeneous medium that will have different shear properties than heterogeneous tissue. 

One consequence of this difference may be increased attenuation of some waveguide modes, 

resulting from changes in the restoring force applied to the walls. However, this is not 

expected to significantly alter the behavior of the artery as a cylindrical waveguide; previous 

investigations into the use of water in arterial phantom tests have shown that, in order to 

do dispersion analysis in vivo, numerical corrections can be made during data processing to 

account for the differences in shear modulus between the artery wall and the surrounding 

tissue [12]. This suggests that the presence of tissue does not preclude mode control, but 

extra processing and measurement of the properties of the surrounding tissue will be needed 

to perform complete validation in future experiments.

Next, the mechanics of ultrasound will change our approach to in vivo tests. The theoretical 

model does not explicitly account for the propagation of ultrasound to produce the acoustic 

radiation force, and is purely concerned with the balance of forces between the arterial walls. 

One consequence of this is that it also neglects any discussion of ultrasound attenuation: 

whatever magnitude of force is applied by the beam once it impinges on the artery is used to 

compare the upper and lower walls, and the in-tissue depth of the artery is inconsequential. 

Practically speaking, problems can arise if the artery is deep enough, or the focal number 

is large enough, that transferring sufficient power to excite one or both artery walls is 

difficult. Additionally, variations in arterial depth and properties can can lead to differences 

in the quality of data acquired from the upper and lower arterial walls, with increased 

noise for the lower wall measurements. Our analysis of the phantom experiments suggest 

that these limitations can be overcome for arteries near the surface of the skin; additional 

tests are needed to study the impact of attenuation for deep-seated arteries. However, the 

experimental results also show that the relative position of the ultrasound focus and the 

lower arterial wall is crucial for achieving mode control; in clinical studies, this will likely 

make manual re-focusing of the ultrasound system necessary on a patient-to-patient basis.

The phantom study gives us confidence in pursuing mode control in vivo, but the 

information we can glean from our current data has several limitations. Our inability to 

accurately assess the material properties makes quantitative analysis of the accuracy of 

inversion for tests with and without mode control impossible, and the use of water as a 
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medium and the above-mentioned additional numerical steps that will be needed for in 
vivo tests complicate such an assessment of accuracy before it even begins. Furthermore, 

while we know the urethane phantoms have similar elastic moduli to human arteries, their 

homogeneity and potential differences in viscoelasticity can produce differences in the 

response to acoustic radiation force. One possible consequence of these differences is a 

shift in the frequency ranges over which certain odd and even waveguide modes appear and 

become dominant, which will affect setup of inversion procedures. These ranges will also 

change with material properties over the course of the cardiac cycle in patients. Because 

our measurements are practically instantaneous with regard to the cardiac cycle we do not 

have to account for pulsation of the artery or its surroundings, but complete characterization 

should be done with multiple measurements throughout the cycle. Finally, the use of the 

correlation Ct gives us a qualitative sense of the degree to which even modes are suppressed 

in the arterial response. Its simplicity and insensitivity to signal amplitude can help mitigate 

some of the effects of noise, but may cause misassessment of wave characteristics in cases 

where many higher-order odd modes contribute to the signal. This is an unlikely problem 

for most in vivo studies given the rapid dissipation of higher order modes in tissue, but it 

still limits the amount precise information about the present modes that can be gained by 

computing Ct. Taking these factors into account and designing a study to evaluate the impact 

of mode control on the inversion process is a goal for our future work.

In light of these considerations, we believe that mode control can be achieved in vivo. 

However, the viability of our current, simple prescription (focusing the ultrasound beam at 

or below the lower wall of the artery) is in question for deeply embedded arteries; in these 

cases, sufficient excitation of both arterial walls may become difficult due to ultrasound 

attenuation. More systematic studies of the inverted modulus and relevant ultrasound beam 

parameters should be conducted in future by studying an artery near the surface of the skin, 

such as the carotid artery.

4 Conclusions

We have provided a theoretical foundation for a method of controlling the arterial response 

to acoustic radiation force by suppressing all even-numbered waveguide modes, relying 

on no prior knowledge of the elastic properties of the artery. Doing so requires focusing 

the ultrasound pushing beam at or below the lower wall of the artery, yielding balanced 

forces on the upper and lower walls. Finite element simulations verify that this approach can 

be implemented for a fluid-immersed, fluid-filled cylinder, and correlation between these 

simulations and a set of experimental results using urethane arterial phantoms suggest that 

mode control is viable for in vitro and in vivo experiments. The time correlation metric 

we have applied can be used an initial check to see whether or not experiments have been 

performed in accordance with our model. To ensure viability in vivo we can study arteries 

that are relatively close to the surface of the skin and conform well to idealized models of 

arterial geometry, like the carotid. This gives us a clear path forward for future experiments 

to determine the impact of other ultrasound beam parameters and quantify the effects of 

arterial depth and ultrasound attenuation on the efficacy of this approach. Upon in vivo 
validation, these methods can be used in shear wave elastography experiments to effect more 

accurate dispersion-based inversions for arterial material properties.
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Appendix A.: Derivation of Cross-Sectional Shape Factor Sm

We wish to derive an explicit expression for the shape factor Sm, one of three factors 

multiplied together to express the amplitude of the circumferential waveguide mode m.

Sm = ∫
0

2π
ϕm ⋅ τθdθ (A.1)

This derivation relies on the definitions of the circumferential factor in the traction, τtheta, as 

well as the velocity mode shape ϕm, which are given as follows:

τθ(θ) =
−Fer, θ ≤ θc(top wall)
fFer, π − θc ≤ θ ≤ π + θc(bottom wall)
0, otherwise

(A.2a)

ϕm(θ) = bcos(mθ)er + bsin(mθ)eθ (A.2b)

Here F is the force applied to the upper wall of the artery, f is the penetration 

coefficient scaling the force applied to the lower arterial wall, θc represents one-half of 

the circumferential extent of the applied forcing along the outer arterial surface, and b is the 

radius of the outer arterial wall. In order to begin our derivation of Sm, we consider the dot 

product of τθ and ϕm

ϕm ⋅ τθ =
−Fbcos(mθ), θ ≤ θc(top wall)
fFbcos(mθ), π − θc ≤ θ ≤ π + θc(bottom wall)
0, otherwise

(A.3)

By substituting Eqn. A.3 into Eqn. A.1 and suppressing the arbitrary factor b, we get a 

sum of two integrals defined over the circumferential regions where the ultrasound beam is 

applied

Sm = − ∫−θc

θc
Fcos(nθ)dθ + ∫π − θc

π + θc
fFcos(mθ)dθ (A.4)

We solve and simplify this integral

Sm = − F
msin(mθ) −θc

θc
+ fF

m sin(mθ) π − θc

π + θc
(A.5a)
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= − F
m sin mθc − sin −mθc + fF

m sin m π + θc − sin m π − θc

= − 2F
m sin mθc + 2fF

m sin mθc cos mθc
(A.5b)

= 2F
m sin mθc [fcos(mπ) − 1] (A.5c)

Resulting in Eqn. A.5c, which is the relation between the shape factor Sm and penetration 

coefficient f given in section 2 of this paper, as Eqn. 14. Critical in this simplification is the 

use of the sum and difference formulas for sine and cosine, which are needed to reach the 

form given in Eqn. A.5b. Finally, we note that this expression holds for the circumferential 

modes, but not necessarily all longitudinal modes. However, the only longitudinal mode 

present in the frequencies of interest to us is the lowest-order mode. This mode, referred to 

as the breathing mode, is a displacement that is directed radially at all angles [18, 39]. For 

mode control, we prescribe f = 1, yielding forces equal in magnitude and opposite in radial 

direction on opposing sides of the cylinder; this precludes the appearance of the breathing 

mode, and ensures that only odd circumferential modes will appear.
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Figure 1: 
Simplified geometry of a segment of artery, colored pink, immersed in fluid, colored 

blue. The cylindrical coordinate system (r, θ, z) with unit vectors er, θθ, ez, is shown in 

cross-section (left) and from the side (right). We assume the artery extends infinitely in the 

longitudinal z direction.
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Figure 2: 
Displacement vector fields, plotted at points uniformly sampled around the outer-wall 

circumference of an arbitrary cylindrical cross-section, illustrating the cross-sectional shapes 

for circumferential modes m = 1, 2, 3 (a) - (c). It can be seen that odd modes produce 

antisymmetric fields, whereas even modes produce symmetric displacements.

Hugenberg et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2022 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Detailed arterial cross section specifying inner and outer surfaces D1 and D2 along with their 

accompanying normal vectors, used to define the bounds of the modal amplitude equation, 

Eqn. 8. The entire cross-sectional area is denoted as D.
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Figure 4: 
Ultrasound beams simulated in Field II and seen in profile, passing through a tube with 1 

mm thick walls outlined by white dashed lines. The face of the ultrasound transducer is 

positioned at Y = −27 mm. Different focusing leads to rapidly diminishing beam intensity 

with depth in (a), and a beam that strongly pushes both top and bottom walls in (b). The 

intensities have been normalized to range from 0 to 1, according to the color bar on the right.
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Figure 5: 
Cross-sectional (left) and top (right) views of artery segment with the areas of influence for 

the variable beam bounded by dotted lines. In the cross-section, the forces applied to the top 

and bottom, acting over red and yellow patches, respectively, are shown. The magnitude of 

the force on the lower surface is scaled by penetration coefficient f, ranging from 0 to 1.
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Figure 6: 
MPF values computed using data from finite element simulations of a penetrating beam 

with f = 1 (a), showing that the odd modes dominate and mode 2 is absent, and for a beam 

focused only on the top arterial surface with f = 0 (b), where a mixed-mode response is 

generated. All three components of particle velocity were used in the computation, and the 

bounds in frequency were chosen to minimize numerical errors associated with the size of 

the mesh elements.
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Figure 7: 
Example particle velocity fields in 1D, displaying the radial component, sampled along the 

outer surfaces of the front and back arterial walls, at θ = 90° and θ = 270°, for mode 1 (a) 

and mode 2 (b), demonstrating asymmetry across the artery’s central axis for mode 1 and 

symmetry for mode 2.
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Figure 8: 
The Ct values averaged over time for finite element simulations using f values ranging from 

0 to 1 in increments of 0.1. This illustrates that Ct, and thus the correlation of the velocity 

with odd modes and antisymmetric motion, increases with f.
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Figure 9: 
Experimental setup, with an ultrasound transducer positioned over an arterial phantom 

immersed in water. There are approximately 20 mm of separation between the transducer 

head and the top wall of the artery, and the transducer is used both to perturb the artery and 

to make measurements.
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Figure 10: 
Particle velocity (m/s) data illustrating a wave propagating along the top wall (a) and bottom 

wall (b) of the arterial phantom for F/N = 3, with the ultrasound beam focused just below 

the bottom wall at a depth of 10 mm. It can be seen that the initial behavior persists for 

approximately 5 ms, after which the character of the wave changes.
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Figure 11: 
(a) Front wall/back wall velocity correlation at every point in time for data collected with 

varying focal depths for a beam with F/N = 3 focal characteristics, denoting a “widely 

focused” beam like the one seen in Fig. 4b. As the depth increases, and as the focus moves 

below the bottom wall of the artery, the correlation approaches 1 at all times, indicating 

an aysmmetric mode of motion that strongly correlates with odd waveguide modes. On the 

right side are intensity plots of the ultrasound wave propagation at the highest (b) and lowest 

(c) focal depths, showing that the lower focal depths produce beam distributions that we 

would expect to influence both the top and bottom walls to similar degrees.

Hugenberg et al. Page 29

Phys Med Biol. Author manuscript; available in PMC 2022 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12: 
(a) Front wall/back wall velocity correlation at every point in time for data collected with 

varying focal depths for a beam with F/N = 0.75 focal characteristics, denoting a “narrowly 

focused” beam like the one seen in Fig. 4a. As the depth increases, and as the focus moves 

below the bottom wall of the artery, the correlation approaches 1 at all times, indicating 

an aysmmetric mode of motion that strongly correlates with odd waveguide modes. On 

the right side are intensity plots of the ultrasound wave propagation at the highest (b) and 

lowest (c) focal depths, illustrating a surprising result: low focal depths, at or below the 

lower arterial boundary, produce motion correlated with odd modes, while this is not true for 

beams focused at or above the upper boundary.
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