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Abstract
Mesenchymal stem stromal cells (MSC) are characterized by the intriguing 
capacity to home toward cancer cells after systemic administration. Thus, MSC 
can be harnessed as targeted delivery vehicles of cytotoxic agents against tumors. 
In cancer patients, MSC based advanced cellular therapies were shown to be safe 
but their clinical efficacy was limited. Indeed, the amount of systemically infused 
MSC actually homing to human cancer masses is insufficient to reduce tumor 
growth. Moreover, induction of an unequivocal anticancer cytotoxic phenotype in 
expanded MSC is necessary to achieve significant therapeutic efficacy. Ex vivo cell 
modifications are, thus, required to improve anti-cancer properties of MSC. MSC 
based cellular therapy products must be handled in compliance with good 
manufacturing practice (GMP) guidelines. In the present review we include MSC-
improving manipulation approaches that, even though actually tested at pre-
clinical level, could be compatible with GMP guidelines. In particular, we describe 
possible approaches to improve MSC homing on cancer, including genetic 
engineering, membrane modification and cytokine priming. Similarly, we discuss 
appropriate modalities aimed at inducing a marked cytotoxic phenotype in 
expanded MSC by direct chemotherapeutic drug loading or by genetic methods. 
In conclusion, we suggest that, to configure MSC as a powerful weapon against 
cancer, combinations of clinical grade compatible modification protocols that are 
currently selected, should be introduced in the final product. Highly standardized 
cancer clinical trials are required to test the efficacy of ameliorated MSC based cell 
therapies.
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Core Tip: Natural tropism towards a tumor mass and the cytotoxic potential of 
mesenchymal stem stromal cells (MSC) need to be ex vivo ameliorated in order to 
improve clinical effectiveness of cell therapies against cancer. We review genetic 
engineering, membrane modification and other approaches to upgrade migration and 
tumor killing activity of MSC. As cell manipulation must be compliant with good 
manufacturing practice (GMP) guidelines, ex vivo cell modification protocols were 
selected as potentially compatible with GMP regulations, after appropriate protocol 
design and validation. Modified cell products must be tested for their clinical relevance 
in cancer patients within highly standardized clinical trials.
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INTRODUCTION
In multicellular organisms, continuous regeneration and functional maintenance of 
adult tissues are assured by a stem cell reservoir. The word “stem” is derived, in fact, 
from the Latin stamen, i.e., the warp thread composing a tissue. In the early 70s 
Friedenstein et al[1,2] identified, within the bone marrow, rare multipotent non-
hematopoietic fibroblast-like cells characterized by the capacity to differentiate into 
osteoblasts. As previously reviewed[3], such mesenchymal precursors of stromal cells 
were shown to play a crucial role in hematopoietic stem cell differentiation and 
maintenance within the bone marrow niche. In light of their capacity to differentiate 
into chondrocytes and adipocytes and bone osteocytes[4,5] they were named 
mesenchymal stem cells[6]. In a position statement of the International Society for Cell 
Therapies, the definition of such cells was further improved to multipotent 
mesenchymal stem stromal cells (MSC)[7]. In the same work, the International Society 
for Cell Therapies proposed three criteria to define MSC. Adherence to a tissue culture 
plastic substrate is the first mandatory condition for MSC expansion in standard 
culture medium. A second requirement, flow cytometry analysis must demonstrate 
that at least 95% of expanded cells express CD105, CD73 and CD90 and that less than 
2% express CD45, CD34, CD14 or CD11b, CD79a or CD19 and human leukocyte 
antigen class II. Finally, MSC must show the above-mentioned tri-lineage differen-
tiation capacity into chon-drocytes, adipocytes and osteocytes.

MSC can be derived from virtually all post-natal human tissues[8] with different 
abundances. Perinatal tissues such as amniotic fluid[9], umbilical cord blood[10] and 
Wharton jelly[11] are considered relevant sources of MSC. Precursors are very rare in 
adult circulating blood[12], while adipose mesenchymal stem cells (ASC) are partic-
ularly abundant in fat tissue[13].

In a previously published seminal work, induced pluripotent stem cells (iPSC) were 
obtained by reprogramming differentiated human somatic cells through artificial 
introduction of multiple genes and the same work showed that iPSC were charac-
terized by the capacity to induce teratomas in vivo[14]. Plating iPSC and sorting cells 
by expression of selected cell surface markers allowed successful isolation of cells 
meeting minimal criteria to be defined as MSC[15].

In this review, we focus on MSC related applications as an advanced therapeutic 
tool against cancer. General MSC biological properties are summarized, but relevant 
features motivating the choice of MSC as a potential tool against tumor progression 
are emphasized. Manipulation of cellular therapy products for application in human 
patients must be performed in compliance with strict regulations warranting safety 
and efficacy. Thus, we describe published strategies aimed at improving MSC 
anticancer action, choosing approaches that we consider to be potentially compatible 
with clinical grade production guidelines and regulatory limitations.

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-0210/full/v14/i1/54.htm
https://dx.doi.org/10.4252/wjsc.v14.i1.54


Vicinanza C et al. MSC in cancer therapy: Required upgrades

WJSC https://www.wjgnet.com 56 January 26, 2022 Volume 14 Issue 1

MSC BIOLOGIC PROPERTIES
Regenerative potential
Mainly through paracrine mechanisms, MSC can stimulate tissue regeneration. In 
particular, soluble factors secreted by MSC were shown to ameliorate cardiac rege-
neration in a murine model[16]. Similarly, MSC were previously embedded in an 
agarose scaffold enriched with MSC-released factors, and administration of such 
products improved regeneration of rat bone calvarial defects[17]. MSC bone repair 
potential could be further upgraded by tuning administration routes, scaffold types 
and local angiogenesis[18]. Several studies have previously reported that, exploiting 
their paracrine action, MSC can sustain regeneration and repair of cartilage in 
osteoarthritis models[19,20].

Immune system modulation
In addition to their regenerative potential, MSC as well as iPSC derived MSC, can 
efficiently modulate reactivity of the recipient immune system mainly acting as 
suppressing agents[21,22]. MSC mediated immune regulation was shown to be 
dependent on microenvironmental cues[21,23]: In particular, MSC exposure to a low 
grade inflammatory milieu was shown, in murine models, to enhance inflammatory 
processes such as monocyte mobilization[24]. Such an MSC mediated effect was 
shown to be determined by secretion of specific chemokines, in turn recruiting 
lymphocytes[25]. As characterized in the literature[26], MSC exposure to elevated 
concentrations of proinflammatory mediators (licensing) can trigger their anti-inflam-
matory properties[25]. Coculturing MSC with monocytes, after application of 
sufficient pro-inflammatory stimuli, was shown to promote polarization of 
macrophages to the anti-inflammatory M2 phenotype[27]. Similarly, expanded MSC 
were shown to induce in culture a regulatory T cell phenotype in CD4+ cells[28]. 
Moreover, previous works reported that appropriate MSC licensing by stimulatory 
cytokines, such as interferon gamma (IFN-γ) together with tumor necrosis factor alpha 
(TNF-α) can properly stimulate and enhance their capacity to downregulate inflam-
mation[26].

Homing to inflamed or cancer tissues
As previously reviewed[29], MSC are characterized by the peculiar capacity to 
spontaneously reach damaged or inflamed tissues as well as primary or metastatic 
cancer masses (Figure 1). Although not fully elucidated, mechanisms regulating such 
processes are analogous to the leukocyte model of adhesion and invasion[30]. When in 
contact with endothelial cells within an inflamed microenvironment, circulating MSC 
can set transient and repeated physical interactions, resulting in cell tethering and 
rolling: This represents a crucial and rate limiting step in the cell adhesion process[29,
30]. Selectin expression on the endothelial surface is known to mediate leukocyte 
tethering and rolling on the internal vessel lumen[31]. Accordingly, MSC can bind in 
vitro and in vivo selectins expressed on inflamed endothelial cells[32]. The capacity of 
MSC to interact with the endothelium through selectins, was questioned: MSC were, in 
fact, shown not to normally express the P-selectin glycoprotein ligand-1 containing the 
active interaction domain Sialyl LewisX (SLeX)[33-35]. Further investigations are 
required to fully clarify mechanisms explaining MSC early interaction with inflamed 
endothelial cells.

Following loose contacts with endothelial cells, MSC activation can trigger firm cell 
adhesion. This process is mainly mediated by the interaction between stromal derived 
factor-1 (SDF-1), a ligand expressed on endothelial cells, and the C-X-C chemokine 
receptor type 4 (CXCR4) exposed on MSC[36]. In a clinical trial testing the efficacy of 
modified MSC against glioblastoma, the authors showed that migration capacities and 
expression levels of selected adhesion molecules (e.g., CXCR1 and CXCR4) were higher 
in MSC derived from responding patients vs non-responders[37]. MSC activation by 
chemokine interaction with the receptor can fully stabilize cell adhesion, increasing 
integrin affinity for extracellular matrix proteins or for other adhesion molecules[38-
40]. In particular, SDF-1 interaction with CXCR4 can activate integrins such as very 
late antigen-4 (VLA-4), in turn promoting MSC adhesion through vascular cell 
adhesion molecule 1 (VCAM-1)[41]. Interestingly, preclinical studies demonstrated 
that binding between VLA-4, expressed on MSC, and VCAM-1, on endothelial cells, 
can actively contribute to MSC interaction with the vessel lumen[32,41]. Recently, MSC 
expressing higher levels of the integrin lymphocyte function-associated antigen 1 were 
shown to adhere on endothelial cells through Intercellular adhesion molecule 1[42].
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Figure 1 Graphic summary. A graphic simplified summary of mesenchymal stem stromal cells (MSC) ex vivo handling and of possible cell modification strategies 
under good manufacturing practice regulations is reported in Figure 1. In particular, the possibility of improving MSC homing capacity through viral/non-viral genetic 
engineering, membrane modification and cytokine licensing/priming is reported. In parallel, genetic engineering and direct drug loading are illustrated as a mean of 
inducing a cytotoxic phenotype in MSC. In the lower section of the figure, relevant molecular mechanisms controlling distinct phases (tethering/rolling, firm adhesion, 
extravasation, interstitial migration) of the homing process to the cancer mass, potentially occurring after systemic administration of modified MSC to human patients 
are illustrated. PSGL-1: P-selectin glycoprotein ligand-1; CXCR4: C-X-C chemokine receptor type 4; SDF-1: Stromal derived factor-1; VLA-4: Very late antigen-4; 
VCAM-1: Vascular cell adhesion molecule 1; LFA-1: Lymphocyte function-associated antigen 1; ICAM-1: Intercellular adhesion molecule 1; MMPs: Metalloproteases; 
CXCR6: C-X-C chemokine receptor type 6; CXCL16: C-X-C motif ligand 16; MIF: Macrophage migration inhibitory factor; MSC: Mesenchymal stem stromal cells; 
GMP: Good manufacturing practice.

Firmly adhering MSC can extravasate crossing the inflamed endothelium mainly 
through paracellular and transcellular diapedesis[41]. Inflammation elicited activation 
and secretion of metalloproteases (MMP) plays a crucial role in this step, paving the 
way to final interstitial migration toward the target site[41,43]. Together with CXCR4, 
MMP-2 is involved in MSC tropism to subcutaneous and lung metastatic prostate 
tumors in vitro[44].

Final MSC migration toward the target site occurs in response to various and poorly 
defined chemotactic stimuli released by inflamed tissues. Interaction between CXCR4 
and SDF-1 was proven to be important for MSC final nesting within bone marrow[45]. 
Interestingly, CXCR4 binding to macrophage migration inhibitory factor released by 
cancer cells, was considered as one of the dominant signals regulating MSC homing 
into the tumor microenvironment: In fact, downregulation of either macrophage 
migration inhibitory factor or CXCR4 abrogated MSC in vivo migration to pulmonary 
tumor metastasis[46]. Additional receptors expressed by MSC were shown to be 
involved in their cancer homing capacity: Through paired CXCR4 and CXCR7 
interaction with SDF-1, MSC can get trapped in the lung and, in turn, they can migrate 
toward pulmonary cancer nodules[47]. Such evidence was confirmed by subsequent 
work showing that CXCR7 promotes MSC adhesion and migration toward osteo-
sarcoma cells in vitro[48]. Pathways, e.g., C-X-C motif ligand 16 binding with the 
CXCR6 receptor expressed by MSC, can mediate cell docking into tumor masses[49]. 
Further knowledge of molecular mechanisms mediating specific migration to the 
cancer mass could contribute to improving the effectiveness of MSC therapeutic 
potential.
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CLINICAL APPLICATIONS
Due to their biological properties, MSC can be used for therapeutic applications in 
humans. In 2020, more than 1100 clinical trials were registered at the clinicaltrial.gov 
database, with a steep increase from 2005[50]. The majority (around 50%) of such 
studies was focused on traumatology, pneumology and neurology fields. The results 
were disclosed and published only in a relatively small fraction of registered clinical 
trials. Improved cardiac function was demonstrated after MSC administration in 
clinical settings of dilated cardiomyopathy[51,52] and heart failure[53]. Encouraging 
results were also reported in cartilage lesions and osteoarthritis studies, in which pain 
reduction and joint function amelioration were demonstrated following application of 
MSC[54]. Strikingly, MSC were also proposed as a potential therapy against coro-
navirus disease 2019[55] and preliminary encouraging reports were published[56]. 
MSC were also administered in cancer clinical trials to reduce steroid-resistant graft-
versus-host disease and successful results were reported both in adult and pediatric 
patients[57-59]. In a recently published work, iPSC derived MSC, obtained by non-
integrating episomal reprogramming, were successfully applied in a clinical trial 
against graft-versus-host disease[60]. MSC co-transplantation with hematopoietic stem 
cells was also shown to be a potentially effective and safe treatment to improve 
engraftment in children and adolescents with severe aplastic anemia[61]. MSC were 
used in a few clinical trials as a therapeutic product directly aimed at counteracting 
solid cancer progression (Table 1). Results were published only from a minor number 
of such studies. In the TREAT-ME study, genetically modified autologous MSC 
induced disease stabilization in 5 out of 10 patients suffering from end-stage 
gastrointestinal tumors even though immunological or cancer markers were not 
clearly affected. Similarly, modified MSC were administered in adults and children 
affected by neuroblastoma and stabilization of neoplastic progression was 
demonstrated in a subgroup of patients. The above mentioned results derived from 
preclinical experiments or from studies performed in human patients suggest that 
mesenchymal stem cells can be a clinically relevant therapeutic option in different 
disease conditions, but significant efforts are required to obtain satisfactory results, 
especially in human cancer patients.

MSC EXPANSION FOR CLINICAL USE
As previously mentioned, MSC precursors can be obtained from different human 
source tissues such as bone marrow, adipose tissue, cord blood or Wharton jelly. Upon 
isolation, the absolute number of cells is not sufficient for clinical applications in 
humans. To obtain a sufficient amount of cells to be administered as an autologous or 
allogenic Advanced Cell Therapy Product, ex vivo cell expansion is mandatory. When 
intended for therapeutic applications, MSC must be isolated and cultured in 
accordance with good manufacturing practice (GMP) rules for medicinal products 
(European Cgmp-Annex 1: Manufacture of sterile medicinal products). For this reason, 
procedures must be performed in appropriate facilities allowing strict control of 
environmental air quality. Contamination levels of environments are classified from 
the cleanest “A” to “D”. Authorized personnel can progressively access from external 
not-classified areas to class “B” operational rooms wearing disposable sterile coats. 
Class “A” air contamination level is obtained by taking advantage of a sterile laminar 
flow biological cabinet that must be located within the class B environment. Main-
tenance of air quality within defined standards is obtained by setting positive pressure 
differences between the highest and lowest classified areas. Rigorous environmental 
microbiological tests must be routinely performed to demonstrate compliance with 
required standards. The cell product must be manipulated with validated procedures 
and standardized quality control tests must be carried out in order to warrant product 
safety, identity and compliance with intended use[62,63]. Only GMP certified devices, 
disposables and growth media can be used within the production pipeline. Reagents 
and additives must be non-toxic, highly standardized, and they must not contain 
animal derived components (European cGMP-Annex 1: Manufacture of sterile 
medicinal products). The final product can be “released” for human applications, only 
after approval by an authorized Qualified Person, carefully checking full compliance 
with defined requirements and standards.

In a recently published work, we focused on the identification of a substitute for 
fetal bovine serum, as a source of growth factors to promote cell expansion[64]: The 
adoption of such an animal derived additive is, in fact, not recommended for GMP 
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Table 1 Human mesenchymal stem cells based clinical trials for solid tumors

Clinical trial ID Source of MSC Diagnosis Trial phase Route of 
administration

Cell product name 
(modifying factor) Status

NCT03298763 Umbilical cord 
MSC (not 
specified)

Adenocarcinoma of lung I/II Intravenous MSCTRAIL (TRAIL) Recruiting

NCT02530047 Bone marrow MSC 
(not specified)

Ovarian cancer I Intraperitoneal MSC-INFβ (INF-β) Completed

NCT02068794 ASC (not specified) Ovarian, primary 
peritoneal or fallopian 
tube cancer

I/II Intraperitoneal (MV-NIS) Recruiting

NCT02079324 Not specified (not 
specified)

Head and neck cancer I Intratumoral GX-051 (IL-12) Unknown

NCT04657315 Not specified (not 
specified)

Recurrent glioblastoma I/II Intratumoral MSC11FCD (CD) Not yet recruiting

NCT01983709 Bone marrow MSC 
(allogenic)

Prostate cancer I Intravenous Not modified Terminated

NCT02008539 Bone marrow MSC 
(autologous) 

Advanced 
gastrointestinal cancer

I/II Infusion MSC_apceth_101 (HSV-
TK)

Terminated

2015-000520-29 Bone marrow MSC 
(allogenic)

Advanced 
gastrointestinal 
adenocarcinoma

I/II Intravenous MSC_apceth_111 Prematurely 
ended

NCT01844661 Bone marrow MSC 
(autologous)

Metastatic and refractory 
solid tumors

I/II Intravenous CELYVIR (ICOVIR5) Completed

2019-001154-26 Bone marrow MSC 
(allogenic)

Relapsed or refractory 
extracranial solid tumors

I Intravenous AloCELYVIR (ICOVIR-
5)

Recruiting

NCT04758533 Bone marrow MSC 
(allogenic)

Diffuse intrinsic pontine 
glioma or 
medulloblastoma

I/II Infusion AloCELYVIR (ICOVIR-
5)

Not yet recruiting

Table 1 reports data regarding selected clinical trials investigating the impact of modified mesenchymal stem cells (MSC) against solid tumors. Beside the 
clinical trial identification code (Clinical trial ID), were reported (from left to right): Source of MSC and the related use in brackets (Source of MSC), 
diagnosis of enrolled patients (Diagnosis), clinical trial phase (Trial phase), route of cell administration to patients (Route of administration), cell product 
name and related modification approach [Cell product name (modifying factor)] and the actual trial status (Status). MSC: Mesenchymal stem stromal cells; 
TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand; INFβ: Interferon beta; MV-NIS: Oncolytic measles virus encoding thyroidal sodium 
iodide symporter; IL-12: Interleukin-12; CD: Cytosine deaminase; HSV-TK: Herpes simplex virus-thymidine kinase; ICOVIR5: Modified oncolytic 
adenovirus.

compliant cell therapy production protocols. We took advantage of a supernatant rich 
in growth factors (SRGF) derived from a platelet apheresis product[65] in which the 
coagulation cascade was triggered by the addition of a standardized concentration of 
CaCl2. We previously demonstrated that SRGF is characterized by elevated concen-
trations of crucial growth factors involved in cell cycle progression such as platelet 
derived growth factor isoforms AA, AB, and BB, as well as epidermal growth factor 
and fibroblast growth factor[64]. SRGF was shown to increase, when compared to fetal 
bovine serum, the proliferation rate of ASC also at extended passages, without 
affecting cell phenotype, differentiation and clonogenic potential, as well as karyotype 
stability[64]. Of note, by exposing ASC to a medium containing 5% SRGF we obtained 
in less than two weeks the same cell yield reached when expanding cells for two 
months in the presence of 10% fetal bovine serum. Growth factor concentrates derived 
from platelets can also be obtained by other means e.g., repeated freeze and thaw 
cycles to disrupt platelet cell membranes, and such a platelet lysate was previously 
shown to efficiently surrogate fetal bovine serum in GMP compliant culture[66]. We 
also demonstrated that, when compared to a platelet lysate, SRGF induced a higher 
bone marrow MSC proliferation rate: This effect was reasonably shown to be mediated 
by increased platelet derived growth factor concentrations in SRGF[67]. As previously 
mentioned, standardization of ancillary medium additives is fundamental for GMP 
guidelines in order to warrant a safe and consistent product expansion. Pooling 
together single donor derived platelet products can efficiently minimize biological 
variability between medium additive batches[68], but the definition of the optimal 
pool size is not trivial, especially for academic GMP facilities. We demonstrated that to 
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obtain stable SRGF batches, that equally stimulate MSC proliferation rate, at least 16 
different SRGF products derived from single donors must be mixed together[69]: To 
achieve this aim, we adopted a predictive mathematical approach, followed by “wet 
biology” validation. In order to identify, in compliance with GMP requirements, a 
reliable and comprehensive quality control assay for SRGF, we manufactured from 
platelet concentrates several medium additive types differently promoting ASC 
growth rate[70]. Interestingly, while integrative analysis of growth factor concen-
tration changes was shown to be insufficiently sensitive, 1H-NMR and MALDI-TOF 
MS could clearly identify differences between product isoforms. Thus, we concluded 
that a single analysis using such metabolomic approaches could rapidly predict and 
classify the potential biological activity of our GMP compatible ancillary product.

MSC HOMING IMPROVEMENT STRATEGIES
MSC can be administered in situ (intramuscular or direct injection) or by systemic 
infusion (intravenous, intraarterial)[71]. Systemic administration can be easily 
performed as it allows for rapid product availability for the entire organism: These are 
clear advantages, especially in cancer patients. Nevertheless, intrinsic homing pro-
perties of MSC are limited, especially after in vitro expansion[72]: Only a very small 
percentage of the infused cells can home to targets[73] and, in a clinical trial, expanded 
MSC failed to be detected within prostate cancer masses after systemic administration 
in patients[74]. Topical applications can circumvent limitations linked to restricted 
naïve MSC homing properties: Even though injection modality and flow rate were 
previously investigated[75], a standardized and appropriate local cell delivery 
approach was not yet defined. Local MSC injection in cancer patients is limited to sur-
gically accessible neoplastic lesions; thus, cell modification approaches improving 
systemically administered MSC homing capacities are required. When planning the 
best technical procedures aimed to potentially improve MSC features, restrictions 
related to GMP requirements for clinical grade cell production must be strictly 
adhered to. In the next sections, we will report selected evidence derived from 
preclinical studies that involved potential homing improving methods in compliance 
with future GMP applications.

Genetic modifications
Genetic modification is one of the most frequently used approaches to tailor MSC 
properties: MSC are prone to infection with high efficiency by replication-deficient 
recombinant viruses leading to increased expression of a selected protein[76,77]. 
Adenoviruses, retroviruses and lentiviruses are used to induce stable expression of the 
exogenous protein through integration in the host genome, while insertion fails to 
occur when using baculoviruses[78]. While high transduction efficiency can encourage 
the use of viral gene editing systems, the possible insertional mutagenesis secondary 
to integration in the patient’s genome could increase the risk of cell transformation
[79]. In addition, virus mediated application in gene editing could lead to undesired 
immune responses in patients[80]. Elevated costs of virus production and manage-
ment as well as regulatory requirements, may represent a constraint to the obtainment 
of a genetically modified cell therapy product. Interestingly, MSC can also be modified 
by non-viral approaches[81]. Such approaches can circumvent virus related 
drawbacks, but transfection efficiency is known to be poor: Technical protocols 
improving such limitations and maintaining compliance to GMP rules, are required
[81].

Both viral and non-viral methods are accepted for application in GMP compliant 
clinical settings: Examples of preclinical investigations regarding both approaches are 
reported below. As mentioned above, SDF-1 interaction with the chemokine receptor 
CXCR4 is known to guide MSC migration to the target site in bone defects[82]. 
Overexpression of CXCR4 gene by lentivirus, enhanced MSC in vitro migration to 
osteosarcoma and this effect was demonstrated to occur through the Phosphoinositide 
3-kinase/Protein kinase B/Nuclear Factor kB signaling pathway[83]. Non-viral 
overexpression of CXCR4 increased in a dose-dependent manner the migration 
capacity of MSC toward glioblastoma cells both in vitro and in a human malignant 
glioma xenograft model[84]. Interestingly, reduced MSC interaction with osteo-
sarcoma and hepatocellular carcinoma cells secondary to selective inhibition of CXCR4 
strengthens the role of such receptors in the regulation of MSC migratory capacity[85]. 
Nevertheless, a previously published work showed that, even though CXCR4 
inhibition impaired MSC migration, its viral overexpression failed to promote in vitro 
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transmigration toward glioma cancer conditioned medium, as chemoattractant[86]. 
Thus, the exact involvement of CXCR4 in MSC migration toward cancer cells was not 
univocally clarified. Identification of selected homing controlling factors, whose non-
viral overexpression could improve MSC targeting to cancer masses, could simplify 
the GMP compliant obtainment of a cell product with ameliorated therapeutic effect-
iveness.

Cell membrane modification
Specific targeting or adhesion moieties can be added, by different means, to the cell 
membrane of expanded MSC. In principle, using certified reagents and performing an 
appropriate product validation, membrane modification can be performed in 
compliance with GMP guidelines. As mentioned above, selectin mediated rolling is a 
crucial and rate limiting step in the cell adhesion process[31,33]. In order to increase 
the fraction of rolling cells in dynamic conditions, in a seminal work by Sackstein et al
[34], the normally expressed CD44 antigen on MSC was converted, by alpha-1,3-
fucosyltransferase, to E-selectin/L-selectin ligand (HCELL), which is expressed in 
bone marrow hematopoietic stem cells. In addition, HCELL over expression increased 
MSC trans-endothelial migration[87]. Furthermore, covalent modifications or lipidic 
particles addition were adopted[35] to load biotin on the MSC cell surface, as a 
docking site for specific streptavidin-bound ligands: Using such strategies, MSC were 
decorated with the active integrin binding factor SLeX to improve cell-substrate 
interaction in in vitro dynamic flow conditions. Furthermore, palmitated protein A/G 
as well as bi-specific antibodies were used to enrich MSC membranes with specific 
antigens or receptors improving the migratory properties of MSC[88]. Palmitic acid 
conjugated peptides can be easily coated on MSC membranes to tailor their homing 
potential[89,90]. To our knowledge, even though deserving investigation, the efficacy 
of such cell membrane modification protocols has not yet been tested as a strategy to 
improve the fraction of MSC selectively homing to cancer.

In vitro priming
As mentioned above, MSC behavior can be modulated by the so called “licensing” 
approach, i.e., cell exposure to selected cytokine(s) in culture. This simple approach 
was included in the present review as, running appropriate validation and quality 
controls, it could be easily translated to production processes under GMP guidelines. 
MSC priming was previously investigated to direct cells toward a sharp anti-inflam-
matory phenotype[26] and can be applied to tailor and ameliorate general migration 
and homing properties of MSC. Incubating MSC in the presence of appropriate TNF-α 
concentrations can, in fact, trigger the enhanced expression of CXCR4[91], in turn 
potentially ameliorating the homing efficiency of such cells. MSC pre-exposure to 
TNF-α was also shown to improve MSC adhesion to endothelial cells in vitro and in rat 
ischemic hind limbs, through upregulation of VCAM-1[92]. Similarly, TNF-α precondi-
tioned MSC could better migrate in vitro toward selected chemokines such as the 
above-mentioned SDF-1, but this effect could not be correlated to CXCR4 expression 
levels[93]. In parallel, migration of MSC was also shown to be enhanced by exposure 
to transforming growth factor beta (TGF-β)[94], even though, in other studies[95], the 
same cytokine was also shown to downregulate migration of MSCs in response to 
SDF-1 stimuli. Interestingly, pre-exposure of MSC to TGF-β resulted in enhanced 
CXCR4 mediated migration toward glioblastoma cells[96]. The migration rate of 
interleukin (IL) 1β primed MSC was enhanced through upregulation of CXCR4 
expression[97,98] and through increased expression of MMP-1 and MMP-9[99]; by 
contrast previous work reported that IL-1β did not improve MSC trans-migration 
potential[93]. Interestingly, supplementation of growth medium with IFN-γ[100] and 
insulin-like growth factor-1[101] increased MSC migration capacity toward 
chemokines released within inflamed tissues. Similarly, a blend of different factors 
such as fms-related tyrosine kinase 3 ligand, stem cell factor, IL-3 and IL-6 as well as 
hepatocyte growth factor[102] increased MSC migration toward SDF-1 as a chemoat-
tractant. In an interesting published work[103], the authors demonstrated that 
transient exposure of MSC to conditioned medium from glioma cells increased MSC 
migration potential toward glioblastoma itself, both in vitro (static and microfluidic 
conditions) and in vivo (mouse model). In the same work, the authors showed that the 
conditioned medium contained higher levels of IFN-γ, IL-6, IL-8 and TNF-α.

In addition, preventive exposure of MSC to valproic acid[104], as well as to 
erythropoietin and granulocyte colony-stimulating factor[105] was shown to 
ameliorate their homing properties toward inflamed tissues. Finally, culturing MSC in 
hypoxic conditions increased the number of migrating MSC as a consequence of 
hypoxia inducible factor-1α and SDF-1 overexpression[106]. The aforementioned 
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evidence suggests that appropriately priming MSC in culture can improve their 
capacity to reach inflamed tissues after systemic administration. Considering cancer as 
a never-healing wound that secretes inflammatory cytokines and chemotactic factors (
e.g., monocyte chemotactic protein-1, SDF-1, TGF-β, TNF-α, ILs), MSC licensing can be 
considered a potentially GMP compatible and simple option to improve MSC homing 
toward tumor masses[107,108].

We recently demonstrated that modification of culture conditions can improve ASC 
homing properties in vitro: We showed that, when compared to fetal bovine serum 
expanded MSC, SRGF cultured cells could better adhere in microfluidic conditions on 
a layer of fibrosarcoma (HT1080) or glioblastoma (T98G) cells[109]. Cell interaction 
with selected cancer tissues was shown to be specific because MSC expanded using 
SRGF additive displayed lower affinity for hepatocarcinoma cells and for unspecific 
interaction sites, i.e., mixed extracellular matrix proteins[109]. We also showed that cell 
activation, evidenced by intracellular calcium concentration changes, occurred upon 
the adhesion of SRGF expanded ASC on cancer cells and extracellular matrix proteins
[109].

ARMING MSC TOWARD CANCER
As previously reviewed[110], unmodified expanded or naïve endogenous MSC can 
play a dual role towards cancer cells. MSC were previously shown to support tumor 
expansion directly, by playing an antiapoptotic role[111] or indirectly, by suppressing, 
patient immune responses against tumor cells, upon release of soluble mediators[112]. 
Moreover, MSC were shown to promote angiogenesis[113] and epithelial-to-
mesenchymal transition[114] in turn favoring invasion and metastasis[115,116]. MSC 
are involved in the architecture of the tumor stroma where they can become intra-
tumor associated fibroblasts[44] promoting drug resistance[117] or leading to higher 
nodule formation in mice[118]. Interestingly, in a previous paper, iPSC derived MSCs, 
when compared to adult bone marrow MSC, were characterized by a weaker capacity 
to promote cancer cell growth and invasion in vitro[119]. On the other hand, unmo-
dified MSC were also shown to actively counteract cancer expansion. In particular, 
MSC were demonstrated to induce cell cycle arrest in hepatoma cells in vitro and in 
vivo, promoting p21 expression[120] and such cells were shown to trigger apoptosis 
through caspase-3 and caspase-9 induction in cancer cells[121]. When expanded at 
high density, MSC overexpressed IFN-β, which directly induced in vitro breast cancer 
cell death[122]. In an attempt to apply MSC as a therapeutic tool against cancer, such a 
potentially bivalent role toward tumor cells must be clearly overcome, by introducing 
appropriate cell modifications that confer an unequivocal on-target cytotoxic behavior. 
In the following sections, we will discuss selected approaches to modify MSC that, in 
principle, could rapidly be translated to clinical applications, following GMP rules.

MSC as tools for chemotherapeutic drug delivery
After transient exposure in culture vessels, MSC can uptake chemotherapeutic drugs 
such as doxorubicin, paclitaxel, or gemcitabine[123]. Following drug removal, MSC 
can locally release their payload by passive diffusion, and exosome secretion[124] in 
turn inducing cancer cell death. Thus, after migration and homing toward cancer cells, 
MSC can release active substances in the tumor stroma, inducing localized cancer 
cytolysis.

Doxorubicin loaded MSC were effective against breast and thyroid cancer in vitro 
and in vivo in mice[125] as well as in counteracting oral squamous cell carcinoma[126]. 
MSC exposure to nanoparticles with adsorbed doxorubicin was adopted as a strategy 
to control drug release: Such an approach was effective in reducing the proliferation of 
breast cancer, lung melanoma metastasis and glioblastoma in mice[127,128]. Purified 
exosomes obtained from doxorubicin loaded MSC were shown to be a potentially 
effective cell-free targeted therapy against osteosarcoma cells[129]. Furthermore, 
linking doxorubicin-loaded liposomes on MSC outer membranes, a specific cytotoxic 
effect against colon adenocarcinoma was observed in vitro and in mice, with a limited 
impact on MSC as carrier cells[130].

Paclitaxel loaded MSC were shown to be effective against pancreatic[131] and brain 
cancer[132], as well as squamous cell carcinoma[126], mesothelioma[133], metastatic 
lung cancer[47] and leukemia[134]. In a recent work[135], drug pharmacokinetics and 
pharmacodynamics after administration of MSC containing paclitaxel loaded 
nanoparticles were analyzed, and the authors demonstrated that mouse orthotopic 
human lung tumors were completely eradicated after administration of 2 × 106 MSC 
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(equivalent to 50 µg or 2.5 mg/kg of paclitaxel). In analogy, MSC containing paclitaxel 
loaded nanoparticles were shown in vitro and in vivo to be a promising treatment for 
glioma and lung carcinoma targeted therapy[136,137]. Moreover, functionalization of 
MSC cell membranes with a transcription activating peptide, improved intracellular 
accumulation of nanoparticles in MSC as well as paclitaxel mediated cytotoxic activity 
against target lung cancer cells[138].

Furthermore, gemcitabine-releasing MSC were able to inhibit the growth of human 
pancreatic cancer[139] and of squamous cell carcinoma[126] without altering MSC 
multi-lineage differentiation potential and surface marker expression pattern[140].

Induction of MSC cytotoxic phenotype by lentiviral transduction
Taking advantage of recombinant lentiviruses, MSC can be modified to over express 
cytotoxic proteins to kill cancer cells after MSC specific homing. As previously 
mentioned, this approach could be compliant with GMP rules but its potential 
therapeutic efficacy was previously tested mainly in vitro and in animal models. 
Administration of MSC over expressing TRAIL by lentivirus transduction were shown 
to reduce the growth of pancreatic cancer and sarcomas[141,142] as well as colorectal 
carcinoma[143]. Similarly, MSC modified to actively secrete IFN-γ, induced apoptosis 
in lung tumor cells through caspase-3 activation[144]. Moreover, administration of 
MSC in which the IFN-β was transduced could lower brain tumor expansion[77] and 
similarly modified cells could specifically target lung cancer lesions[145] in mice. 
Interestingly, IL-18 and IFN-β lentiviral overexpression synergically inhibited tumor 
growth in a rat intracranial glioma model[146].

MSC were previously transduced by lentiviral or retroviral vectors to induce the 
expression of herpes simplex virus-thymidine kinase (HSV-TK), an enzyme converting 
the prodrug ganciclovir to is triphosphate toxic metabolite: After systemic adminis-
tration of transduced MSC together with ganciclovir, efficient suppression of tumor 
growth was observed in implanted glioma cells[147-149]. Retroviral approaches were 
also used in MSC to induce the expression of cytosine deaminase::uracil phosphori-
bosyltransferase (CD::UPRT), the enzyme that converts 5-fluorocytosin (5-FC) to an 
active drug[150]: Such modified MSC actively inhibited prostate cancer growth after 
intravenous administration in mice. Retroviral MSC modification with HSV-TK, 
combined with CD::UPRT, synergically counteracted the growth of breast cancer cells 
and related lung metastases in mice[151]. MSC were also engineered by a lentivirus to 
play a localized anti-angiogenic role within cancer masses through the secretion of 
fms-like tyrosine kinase-1; this modification inhibited tumor growth and prolonged 
survival in a mouse hepatocarcinoma model[152]. After intravenous administration, 
lentivirus treated MSC co-expressing the angiogenesis inhibitor kringle 5 of human 
plasminogen and the human sodium-iodide symporter (involved in radioisotope 
uptake), decreased tumor growth and improved the survival rate of glioblastoma 
bearing mice[153]. MSC, transduced with the hepatocyte growth factor inhibitor NK4, 
suppressed the growth of gastric cancer xenografts[154] after systemic administration 
and this effect was also mediated by impaired intra-tumoral vascularization.

Locally released exosomes from MSC, modified by lentivirus infection to upregulate 
microRNA (miR) miR-199a or miR-124a, improved hepatocellular carcinoma 
sensitivity to doxorubicin and eradicated brain cancer in preclinical animal models, 
respectively[155,156].

MSC modification by adenovirus and baculovirus transduction
In addition to lentiviruses, MSC engineering can be performed in GMP compatible 
conditions by also taking advantage of recombinant adenovirus infection potential. 
MSC overexpressing the proinflammatory IL-21 were shown in mice to efficiently 
counteract disseminated B-cell lymphoma through induction of systemic immunity
[157].

Adenoviral transduced TRAIL expression in MSC have shown antitumor effects on 
esophageal cancer xenografts in mice[158] and, similarly, NK4 modified MSC 
inhibited liver cancer growth and migration in animal models[159]. MSC transduced 
to express HSV-TK and TRAIL, induced long-term remission of murine metastatic 
renal cell carcinoma after three injections (100% survival of tumor-bearing mice)[160]. 
In comparison, systemic administration of IL-2, IL-12 or IL-18 overexpressing MSC by 
adenoviral transduction, reduced cancer masses and improved survival after adminis-
tration in a glioma murine model[161,162].

Similarly, injection of MSC in which the expression of HSV-TK was induced by 
baculovirus-based transduction, inhibited tumor growth and prolonged survival in 
glioblastoma-bearing mice[163]. Interestingly, in a recent paper, a hybrid baculovirus 
vector containing key transfection enhancing elements of adeno-associated viruses 
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was defined as a promising targeted-delivery vehicle to counteract hypopharyngeal 
carcinoma[164].

MSC as oncolytic adenovirus carriers
MSC were shown to be efficient delivery vehicles for oncolytic adenoviruses directed 
against gliomas[165]. In particular, MSC loaded with the oncolytic adenovirus Delta-
24-RGD could eradicate murine glioblastomas[166] and the same approach was 
applied in healthy dogs to demonstrate its technical feasibility in a more complex 
model[167]. Oncolytic adenoviruses delivered by MSC efficiently challenged hepato-
cellular carcinomas with reduced toxicity in healthy liver tissues[168]. Appropriately 
modified MSC to support viral replication were loaded with an oncolytic adenovirus 
expressing p14 and p53: Such engineered cells efficiently suppressed prostate cancer 
progression in mice[169]. Similarly, MSC loaded with a cytolytic adenovirus, addi-
tionally expressing TRAIL, efficiently counteracted pancreatic cancer cells in vitro and 
in xenografted live chick embryos[170]. Administration of MSC carrying an adenoviral 
oncolytic virus with the addition of a replication defective vector encoding inducible 
caspase-9, enabled efficient antitumor activity in a non-small-cell lung cancer murine 
model and improved overall survival[171]. In a clinical trial, involving advanced 
metastatic neuroblastoma pediatric patients, autologous MSC carrying an oncolytic 
adenovirus were safely administered and disease stabilization occurred in nearly half 
of patients[37].

Arming MSC by non-viral genetic modification approaches
MSC can be successfully engineered through non-viral vectors achieving transient but 
sustained gene overexpression. Infusion of MSC overexpressing TRAIL through non-
viral vectors were shown to efficiently induce pancreatic or liver cancer cell death[172,
173]. In a murine melanoma model, significant cancer mass reduction was obtained by 
MSC stably overexpressing IFN-γ through a non-viral method involving PhiC31 re-
combinase and piggyBac transposase[174].

In mice, intravenously applied MSC transfected to express HSV-TK, reduced 
primary pancreatic tumor growth and the incidence of metastases[175] and, after 
tissue specific expression, inhibited expansion of hepatocellular carcinoma cells[176]. 
In a mouse model, pulmonary cancer nodules were efficiently targeted by MSC 
induced to express CMV-TK by non-viral methods[177]. Polyethylenimine based 
polymers were used to transiently engineer MSC with HSV-TK, together with TRAIL: 
These modified cells were effective in vitro and in vivo against glioma through 
increased apoptosis and reduced angiogenesis[178]. MSC expressing CDy::UPRT by 
the same transfection method significantly inhibited in vivo temozolomide resistant 
glioma tumors[179] as well as 5-fluorouracil resistant colorectal adenocarcinoma cells
[180].

In addition, bone morphogenetic protein 4 overexpression achieved by a non-viral 
method was demonstrated to induce a reduction of brain tumor cell growth in rats, 
after intranasal administration and homing within the tumor mass[181]. Interestingly, 
the same study showed that bone morphogenetic protein 4 engineered MSC treatment 
significantly improved survival of tumor bearing rats.

Transfected MSC can deliver growth inhibiting miR to tumors: In particular, by 
direct intercellular communication or locally releasing microvesicles, MSC were 
demonstrated to transport anti-miR-9 to glioblastoma cells, in turn reversing drug 
resistance in these cells[182]. Similarly, recent studies have shown that exosomes 
released from MSC containing elevated amounts of miR-381-3p, miR-34a, miR-193a 
and miR146a were effective against triple negative breast cancer, non-small cell lung 
carcinoma and ovarian cancer[183-186].

CONCLUDING REMARKS
In this review, we briefly reported the biological features of MSC, focusing on cell 
properties and on mechanisms that could play a crucial role in MSC applications for 
cancer therapy. The importance of MSC modification to improve their naïve homing 
properties and to induce a clear cytotoxic behavior was also discussed. Such features 
are not the only parameters potentially affecting the final clinical outcome related to 
MSC administration in patients: A thorough discussion regarding this issue is beyond 
the scope of this review. Briefly, the impact on MSC therapeutic performance mediated 
by cell origin, expansion protocol, and dosage has not previously been defined[71,
187]. ASC and MSC derived from bone marrow share several biological features and 
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they are both frequently applied in clinical trials. In particular, ASC as well as the 
stromal vascular fraction derived from adipose tissue, are often used for regenerative 
medicine purposes[188-190], while bone marrow MSC are principally adopted to 
counteract, among others, graft-versus-host disease[57] or acute renal failure 
(NCT01275612) in cancer clinical trials. However, the clinical efficacy of bone marrow 
MSC and of ASC was never compared in the same experimental study. Even if iPSC 
are to be characterized by great expansion potential[60], such MSC applications in 
humans are still at very early development stages. Expansion conditions, e.g., cell 
seeding density[191] or culture medium additives[109], are known to affect MSC 
properties but the optimal production approach was not defined in relation to the 
desired clinical applications. Introduction of automated cell expansion protocols 
should be strongly encouraged, as it can improve reproducibility of cell growth in 
GMP environments[192]. Expanded MSC were previously administered in patients in 
a wide dosage range (from 1 to 4 million cells/kg) by single or multiple adminis-
trations[193]. A potentially appropriate minimal effective dose of MSC was previously 
proposed by analyzing published clinical trial results[187]: The authors suggested that 
clinical benefits were evident when 100-150 million cells/patient were systemically 
administered. Significant clinical effects were not registered when less than 70 million 
cells/patient or, interestingly, over 200 million cells/patient were administered[187].

In addition to the parameters requiring standardization, as stated above, core MSC 
properties requiring amelioration to improve their clinical effectiveness in tumor 
patients are homing potential and the capacity to actively counteract cancer growth. In 
this review, we reported the efficacy of published preclinical modification protocols 
aimed at improving such MSC features. Approaches were selected as they were 
considered potentially suitable for future translation to cell therapy production, in 
compliance with GMP guidelines. We can hypothesize that both modifications 
improving homing and cancer killing activity of MSC should be introduced in the 
same cell therapy product. The definition of comprehensive GMP compliant protocols 
could allow safe translation to clinical trials in humans.

CONCLUSION
In conclusion, it is agreed that MSC represent a powerful weapon against cancer but 
significant efforts are needed to introduce in human clinical trials combinations of 
relevant MSC modification protocols that were shown to be effective in preclinical 
studies. The study design of such experimental campaigns in human patients should 
be highly standardized in order to allow comparison and critical discussion of 
obtained positive or negative results.
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