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Abstract
Regenerative medicine is the field concerned with the repair and restoration of the 
integrity of damaged human tissues as well as whole organs. Since the inception 
of the field several decades ago, regenerative medicine therapies, namely stem 
cells, have received significant attention in preclinical studies and clinical trials. 
Apart from their known potential for differentiation into the various body cells, 
stem cells enhance the organ's intrinsic regenerative capacity by altering its 
environment, whether by exogenous injection or introducing their products that 
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modulate endogenous stem cell function and fate for the sake of regeneration. 
Recently, research in cardiology has highlighted the evidence for the existence of 
cardiac stem and progenitor cells (CSCs/CPCs). The global burden of cardio-
vascular diseases’ morbidity and mortality has demanded an in-depth 
understanding of the biology of CSCs/CPCs aiming at improving the outcome for 
an innovative therapeutic strategy. This review will discuss the nature of each of 
the CSCs/CPCs, their environment, their interplay with other cells, and their 
metabolism. In addition, important issues are tackled concerning the potency of 
CSCs/CPCs in relation to their secretome for mediating the ability to influence 
other cells. Moreover, the review will throw the light on the clinical trials and the 
preclinical studies using CSCs/CPCs and combined therapy for cardiac 
regeneration. Finally, the novel role of nanotechnology in cardiac regeneration 
will be explored.

Key Words: Cardiac stem and progenitor cells; Cardiac stem cells’ secretome; Cardiac 
stem cells’ niche and metabolism; Nanotechnology; Clinical trials; Combined therapy
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Core Tip: With the growing evidence for the existence of regenerating cardiac stem and 
progenitor cells, studies to evaluate their therapeutic potential have received increasing 
attention. Although pre-clinical research and clinical trials have demonstrated 
promising results, yet the latter were often inconsistent in many aspects thus imposing 
the need for deeper exploration of the molecular biology and relevant pathways 
regulating cardiogenesis and cardiac muscle repair. This review gives an insight into 
cardiac stem and progenitor cells regarding their embryological origin, populations, 
niche, secretome, and metabolism. It overviews the current preclinical research, 
including medical nanotechnology, and the clinical trials generally applied for cardiac 
regeneration.
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INTRODUCTION
Cardiovascular diseases are the leading cause of death globally, as stated by the latest 
report 2019 for the World Health Organization, with 17.9 million deaths per year, 
accounting for 31% of all deaths worldwide.

The heart is one of the least proliferative organs in the human body, and its minimal 
regenerative capacity has been dogma for decades. Such dogma has been led by the 
belief that the heart cannot regenerate from ischemic damage. The absence of primary 
tumors in the heart has further supported the notion of low proliferation. In an alleged 
post-mitotic organ, it has been debatable whether cardiac cells repair through 
activation of resident cardiac stem cells (CSCs) and cardiac progenitor cells (CPCs) or 
by the proliferation of pre-existing cardiomyocytes (CMs). In 2009, Bergmann et al[1] 
were the first to refute that notion and have reported that the heart can in fact self-
renew. Based on the results obtained from their carbon-14-labelled DNA study to track 
CMs, Bergmann et al[1] stated that about 50% of CMs renew over the lifespan of an 
adult. Hsieh et al[2] provided further evidence for the origin of newly generated CMs 
from progenitor cells in an alpha myosin heavy chain (MHC) transgenic model. They 
estimated that approximately 15% of CMs can regenerate in adult hearts following 
ischemic damage. With progression of research, lineage tracing of regenerated cardiac 
tissue confirmed that the newly regenerated CMs develop from a non-CM and 
possibly from stem cells (SCs)[2].
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Further studies have revealed various CSC/CPC candidates that are morpholo-
gically and functionally distinct from each other yet act in a complementary fashion 
and contribute to the regeneration process. This complex cell aggregation is known as 
the CSC niche that has been a challenge to characterize and locate anatomically[3].

SC applications have been under intensive research interest since the early 20th 
century. Many types have been isolated, starting from the embryonic, amniotic, and 
cord blood mesenchymal stem cells (MSCs) and passing through the adult SCs till the 
induced pluripotent SCs (iPSCs). Adult MSCs are undifferentiated cells with the same 
potentials as progenitor cells regarding the ability to differentiate into all three germ 
layer cells[4]. Exogenous MSCs from various sources, including bone marrow, adipose 
tissue, umbilical cord, placenta, and amniotic fluid[5], have shown promising results 
in the treatment of cardiovascular diseases. However, the outcome of CSC therapy has 
shown superior results in experimental studies but to a lesser extent in human clinical 
trials[6]. The applications of SC therapy for cardiovascular regeneration still hold a 
plethora of queries to be answered as well as commandment of the molecular and 
signaling features for CSCs in order to standardize this therapy. Among the aspects 
that need optimization are the types of SCs and supporting cells to be used, the 
number of cells, the route of injection, the frequency, and best timing for trans-
plantation. Standardization requires an advanced understanding of the full biological 
features of CSCs.

SC therapy in cardiac regeneration has dual beneficiary actions. Primarily, the 
transplanted exogenous SCs would directly differentiate into CMs. Concomitantly, 
SCs activate the endogenous progenitors through their rich secretome of extracellular 
vesicles, immunomodulatory and growth factors, protein, and nucleic acid families[7]. 
These paracrine factors act to activate resident SCs and enhance vascularization to 
potentiate cardiac repair.

This review aims to provide insight into CSCs/CPCs regarding their embryological 
origin, populations, niche, metabolism, secretome, and therapeutic potentials. Also 
discussed is the interplay of nanotechnology with SCs in several aspects, including 
differentiation, tracking, imaging, and assisted therapy, showing the prospects and 
limitations of nanoparticle (NP)-based cardiac therapy. Finally, preclinical trials and 
ongoing, completed, and future clinical trials using CSCs and combined therapy are 
shown to delineate the potential applications in treating cardiac disease.

EMBRYOLOGICAL ORIGIN OF CPCs
The heart is formed of a wide range of cell types originating from the mesodermal 
precursor cells. They include CMs and endocardial cells forming the inner layer, while 
epicardial-derived cells (EPDCs) and smooth muscle cells (SMCs) are found on the 
external layer. Differentiation of the mesodermal cells is initiated by the T-box 
transcriptional factors Brachyury (Bry) and Eomes. Bry+ cells differentiate into insulin 
gene enhancer protein islet-1 (ISL1) and T-box transcription factor 5 (TBX5) expressing 
cells, while Eomes induce expression of mesoderm posterior 1 (MESP1). MESP1+ cells 
are identified before the first heart field (FHF) and the second heart field (SHF) 
separations, so MESP1 serves as an indicator of early CPCs for both heart fields[8]. 
Chemokine receptor type 4 (CXCR4), fetal liver kinase 1 (FLK-1), and platelet derived 
growth factor receptor A are other surface markers that coincide with MESP1 and are 
used in combination to isolate CPCs[9,10].

In addition, a novel cell surface marker known as G protein-coupled receptor 
lysophosphatidic acid receptor 4 is specific to CPCs and determines its functional 
significance. Interestingly, its transient expression peaks in cardiac progenitors after 3 
to 7 d of human (h)PSCs differentiation toward cardiac lineage, then it declines. In 
vivo, lysophosphatidic acid receptor 4 shows high expression in the initial stages of 
embryonic heart development and decreases throughout development[11].

The FHF cells are the firstly differentiated myocardial cells that are derived from 
cells in the anterior lateral plate mesoderm; they give rise to the left ventricle, partially 
some of the right ventricle population, sinoatrial node, atrioventricular node, and both 
atria[12]. Meanwhile, the SHF cells originate from the pharyngeal mesoderm to the 
posterior side of the heart and further divide into anterior and posterior SHF. They 
contribute to the right ventricle, atria, and the cardiac outflow tract (OFT) formation. 
Addition of the SHF-derived CMs to the ventricles depend on myocyte enhancer factor 
2C (MEF2C). It has been found that MEF2C null mice die at 9.5-d post conception with 
severe heart defects due to failure of heart looping[13]. In OFT formation, two waves 
of SHF progenitors and their derivatives have been identified, making a differential 
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contribution to the aorta and pulmonary artery. The early wave of cells is favorably 
directed to the aorta, while the second wave of cells contributes to the pulmonary 
artery. Phosphoinositide-dependent kinase-1 critically regulates the second wave of 
cells, and its deletion results in pulmonary stenosis[14]. The epicardium of the heart is 
formed of a transient proepicardial organ. Proepicardium is formed from homeobox 
protein NKx2.5 (NKx2.5) and ISL1+ cells. After epicardial formation, subepicardial 
mesenchymal space is formed by epithelial to mesenchymal cell transformation of the 
epicardial cells[15] (Figure 1).

The differentiation in the posterior SHF is regulated by Hoxb1 gene. Stimulation of 
Hoxb1 in embryonic stem cells (ESCs) halts cardiac differentiation, while Hoxb1-
deficiency shows premature cardiac differentiation in embryos. Moreover, an 
atrioventricular septal defect develops as a result of ectopic differentiation in the 
posterior SHF of embryos deficient in Hoxb1 and its paralog Hoxa1[16].

Multiple signaling pathways have essential roles in cardiogenesis with a sequential 
arrangement. The transforming growth factor-β (TGF-β) superfamily, retinoic acid, 
Hedgehog, Notch, Wnt, and fibroblast growth factors (FGFs) pathways comprise the 
chief signaling pathways involved in cardiac development. These pathways, along 
with transcription factors and epigenetic regulators, regulate cardiac progenitors’ 
specification, proliferation, and differentiation into the different cardiac cell lineages
[17].

SIGNALING PATHWAYS DURING CARDIOGENESIS
TGF-β superfamily 
The TGF-β superfamily members consist of over 30 structurally associated polypeptide 
growth factors including nodal and bone morphogenetic proteins (BMP)[18].

Nodal signaling is vital for the formation of sinoatrial node. Nodal inhibition during 
the cardiac mesoderm differentiation stage downregulates PITX2c, a transcription 
factor recognized to inhibit the formation of the sinoatrial in the left atrium during 
cardiac development[19]. Moreover, nodal signaling is dispensable for initiation of 
heart looping; however, it regulates asymmetries that result in a helical shape at the 
heart tube poles[20].

BMP signaling, as a member of TGF-β, has an important role in the different stages 
of heart development including the OFT formation, endocardium, and lastly the 
epicardium. The cardiac neural crest cells have a crucial role in normal cardiovascular 
development. They give rise to the vascular smooth muscle of the pharyngeal arch 
arteries, OFT septation, valvulogenesis, and development of the cardiac conduction 
system[21] (Figure 1). The role of BMP in OFT septation mainly depends on their 
gradient signaling, which arranges neural crest cell aggregation along the OFT; this 
Dullard-mediated tuning of BMP signaling ensures the fine timed zipper-like closure 
of the OFT by the neural crest cells[22]. Furthermore, the BMP signaling promotes the 
development of endocardial cells (ECs) from hPSC-derived cardiovascular progenitors
[23]. It is also integrated with Notch signaling for influencing the proepicardium 
formation, where overexpression of Notch intracellular receptor in the endothelium 
enhances BMP expression and increases the number of phospho-Smad1/5+ cells for 
enhancing the formation of the proepicardium[24].

Retinoic acid, hedgehog, and Notch signaling pathways
Retinoic acid signaling plays a role in heart development. It is a key factor for efficient 
lateral mesoderm differentiation into atrial-like cells in a confined time frame. The 
structural, electrophysiological, and metabolic maturation of CMs are significantly 
influenced by retinoic acid[25]. However, it is reported that retinoic acid receptor 
agonists transiently enhance the proliferation of human CPCs at the expense of 
terminal cardiac differentiation[26].

The downregulation of the retinoic acid responsive gene, ripply transcriptional 
repressor 3 (RIPPLY3), within the SHF progenitors by histone deacetylase 1 is required 
during OFT formation[27].

Hedgehog signaling has a role in OFT morphogenesis. Lipoprotein-related protein 2 
(LRP2) is a member of the LDL receptor gene family, a class of multifunctional 
endocytic receptors that play crucial roles in embryonic development. LRP2 is 
expressed in the anterior SHF cardiac progenitor niche, which leads to the elongation 
of the OFT during separation into aorta and pulmonary trunk. Loss of LRP2 in mutant 
mice results in depleting a pool of sonic hedgehog-dependent progenitor cells in the 
anterior SHF as they migrate into the OFT myocardium due to premature differen-
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Figure 1 Embryonic cardiac progenitors, Brachyury-positive mesoderm precursors and Pax3+ neural crest cells. Brachyury (Bry+) mesoderm 
precursors give rise to the mesoderm posterior 1+ primordial precursors, which are the origin of the first heart field, second heart field, and proepicardial progenitors, 
each population of which is responsible for the development of different parts in the heart. Pax3+ neural crest cells are responsible for the development of vascular 
smooth muscle, outflow tract, valves and the conductive system. Progenitors are tagged with their specific markers. Created with BioRender.com. CPC: Cardiac 
progenitor cell; LT: Left; RT: Right; FHF:  First heart field; SHF: Second heart field; OFT: Outflow tract.

tiation into CMs. This depletion results in aberrant shortening of the OFT[28].
Four Notch receptors (Notch1–Notch4) and five structurally similar Notch ligands 

[Delta-like (DLL) 1, DLL3, DLL4, Jagged1, and Jagged2] have been detected in 
mammals[29]. Activation of Notch signaling enhances CM differentiation from human 
PSCs. However, the CMs derived from Notch-induced cardiac mesoderm are develop-
mentally immature[30]. In vivo, the Notch pathway plays a significant role in CPC 
biology. An arterial-specific Notch ligand known as DLL4 is expressed by SHF 
progenitors at critical time-points in SHF biology. The DLL4-mediated Notch signaling 
is a crucial requirement for maintaining an adequate SHF progenitor pool, in a way 
that DLL4 knockout results in decreased proliferation and increased apoptosis. 
Reduced SHF progenitor pool leads to an underdeveloped OFT and right ventricle[31].

Wnt pathway
The Wnt signaling pathway has an essential role in many developmental stages of 
embryogenesis. The Wnt family consists of 19 distinct Wnt proteins and other 10 types 
of Frizzled receptors. On the basis of their primary functions, the Wnt and Frizzled 
receptors are divided into two major classes, which are the canonical and non-
canonical Wnt pathways[32]. Accumulating evidence suggests a role for the dynamic 
balance between canonical and non-canonical Wnt signaling in cardiac formation and 
differentiation. Wnt/β-catenin signaling is required for proper mesoderm formation 
and proliferation of CMs but needs to be low for terminal differentiation and cardiac 
specification. In contrast, for cardiac specification in murine and human ESCs, non-
canonical β-catenin independent Wnt signaling is essential, while the non-canonical 
Wnt signaling is necessary for terminal differentiation later in development[33].

The activation of non-canonical Wnt is non-catenin-independent, and the down-
stream proteins involve several kinases, including protein kinase C, calcium/ 
calmodulin-dependent kinase, and Jun N terminal kinase (JNK). Wnt11 enhances 
angiogenesis and improves cardiac function through non-canonical Wnt-protein 
kinase C-Jun N terminal kinase dependent pathways in myocardial infarction (MI)
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[34]. In hypoxia, Wnt11 expression preserves the integrity of mitochondrial membrane 
and facilitates the release of insulin growth factor-1 (IGF-1) and vascular endothelial 
growth factor (VEGF), thus protecting CMs against hypoxia[35]. Canonical dependent 
Wnt signaling, Wnt 3 Ligand, favors the pacemaker lineage, while its suppression 
promotes the chamber CM lineage[36].

TRANSCRIPTOME AND REGENERATIVE CAPACITY OF SUB-POPULA-
TIONS
The regenerative capacity of most organs is contingent on the adult SC populations 
that exist in their niches and are activated by injury. Adult SC populations vary greatly 
in their molecular marker expression profile and hence in their possible role in 
regenerative medicine. The transcriptome is a representation of the gene read-outs, the 
cellular state, and is imperative for studying all genetic disease and biological 
processes. The genome-wide profiling using novel sequencing technology has made 
transcriptome research accessible.

c-KIT+ CPCs
Receptor tyrosine kinase (RTK) c-KIT (also referred to as SC factor receptor or CD117)-
expressing CPCs are mainly located in the atria and the ventricular apex, comprising 
most of the ventricular and atrial myocardium[37]. c-KIT+ cells also express the cardiac 
transcription factors NKx2.5, GATA binding protein 4 (GATA4), and MEF2C but are 
negative for the hematopoietic markers CD45, CD3, CD34, CD19, CD16, CD20, CD14, 
and CD56[38,39]. SC factor ligand attaches to the c-KIT receptor and activates the 
phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and p38 mitogen-activated 
protein kinase (MAPK) signaling pathways[40]. Both PI3K/AKT and MAPK pathways 
control various CPCs functions like self-renewal, proliferation, migration, and survival
[41]. During embryonic development and the early post-natal time, c-KIT+ CPCs 
contribute to the generation of new CMs. Such capacity declines in the adult heart with 
only a few new CMs originating from CPCs[42]. In a rat MI model, the c-KIT+ CPCs 
have migrated through the collagen type I and type III matrices into the infarcted area. 
The transplanted CPCs have shown overexpressed matrix metalloproteinases (MMPs; 
MMP2, MMP9, and MMP14) that degrade extracellular matrix (ECM), concluding that 
c-KIT+ CPCs hold an invasive capacity[43]. Transplanted CPCs (c-KIT+ CPCs and 
cardiospheres) also show an endogenous proliferative potential in vivo and addi-
tionally activate endogenous CPCs[44].

SCA-1+ CPCs
Stem cell antigen 1 (SCA-1) expressing CPC population exists predominantly in the 
atrium, intra-atrial septum, and atrium-ventricular boundary and dispersed inside the 
epicardial layer of adult hearts[45]. SCA-1 is a cell surface protein of the lymphocyte 
antigen-6 (Ly6) gene family, which has roles in cell survival, proliferation, and differ-
entiation[46]. A population of SCA-1+ cells from murine adult myocardium hold a 
telomerase activity comparable to that of a neonatal heart. This SCA-1+ population is 
different from hematopoietic SCs as they lack CD45, CD34, c-KIT, LIM domain only 2, 
GATA2, VEGF receptor 1, and T-cell acute lymphoblastic leukemia 1/SC leukemia 
proteins. SCA-1+ cells are also distinct from endothelial progenitor cells and express 
cardiac lineage transcriptional factors such as GATA4, MEF2C, and translation 
elongation factor 1 yet lack transcripts for cardiomyocytic structural genes such as 
BMP1r1 and α-, β-MHC[47,48]. Although this population exhibits the endothelial 
marker CD31, it is suggested to be due to the contaminating endothelial CD31+/SCA-
1+ cells. In vitro studies have revealed that 5-azacytidine (5-aza), a demethylating 
agent, pushed SCA-1+ cells to differentiate into CMs[48,49]. Further studies have 
isolated SCA-1+ cells that lack CD31 and CD45 markers, referring to them as lineage 
negative (Lin−). The SCA-1+/Lin− cells display a mesenchymal cell-surface profile 
(CD34−, CD29+, CD90+, CD105+, and CD44+) and are able to differentiate, to a certain 
extent, into CMs and endothelial and smooth muscle-like cells[50,51].

Human SCA-1+-like cells also express early cardiac transcription factors (GATA4, 
MEF2C, insulin gene enhancer protein ISL-1, and Nkx-2.5) and can differentiate into 
contractile CMs[52]. Although a human ortholog of the SCA-1 protein has not been yet 
identified, an anti-mouse SCA-1 antibody is used to isolate SCA-1+-like cells from the 
adult human heart.



Mehanna RA et al. CSCs and cardiac regeneration

WJSC https://www.wjgnet.com 7 January 26, 2022 Volume 14 Issue 1

MESP1+ CPCs
MESP1 expressing cells mainly contribute to the mesoderm and to the myocardium of 
the heart tube during development[53]. Transient expression of MESP1 seems to 
accelerate and enhance the appearance of cardiac progenitor. However, homologous 
disruption of the MESP1 gene has resulted in aberrant cardiac morphogenesis. MESP1 
interacts with the promoter area of main cardiac transcription factors, including heart 
and neural crest derivatives expressed 2, Nkx2-5, myocardin, and GATA4[54]. These 
factors induce fibroblasts to express a full battery of cardiac genes, form sarcomeres, 
develop CM-like electrical activity, and in a few cases elicit beating activity[55]. 
Several studies have shown that the addition of MESP1 could enhance the efficacy of 
direct reprogramming of fibroblasts into CMs[56,57]. The transdifferentiation of 
fibroblasts to CMs via MESP1 suggests that MESP1 chiefly modulates the gene 
regulatory network for cardiogenesis[52].

KDR+ CPCs
Kinase insert domain receptor (KDR), also known as Flk-1, is one of the earliest 
discovered cardiogenic progenitor cell markers acting during the early stages of 
cardiac development in human[58]. Nelson et al[59] have reported that Flk-1 has a 
distinctive transcriptome that has been evident at day 6, immediately after gastrulation 
but prior to the expression of the cardiac transcription factors. KDR+ population lack 
the pluripotent octamer-binding transcription factor 4, sex determining region Y-Box 
transcription factor (SOX) 2, and endoderm SOX17 markers. On the other hand, KDR+ 
CPCs have shown a noteworthy upregulation in SOX7, a vasculogenic transcription 
factor, overlapping with the emergence of primordial cardiac transcription factors 
GATA4, myocardin, and NKx2.5. Moreover, KDR subpopulations that overexpress 
SOX7 are associated with a vascular phenotype rather than a cardiogenic phenotype. 
These outcomes offer insights for refining the therapeutic regenerative interventions.

CPCs from the first and second heart fields
The FHF cells express hyperpolarization activated cyclic nucleotide gated potassium 
channel 4 and TBX5, while SHF progenitors express TBX1, FGF 8, FGF10, and sine 
oculis homeobox2 (Figure 1). Cells from the SHF exhibit high proliferative and 
migratory capacities and are mostly responsible for the elongation and winding of the 
heart tube. Moreover, SHF cells differentiate to CMs, SMCs, fibroblasts, and 
endothelial cells (ECs) along their journey in the heart tube to form the right ventricle, 
right ventricular OFT, and most of the atria[60,61]. However, FHF cells hold less 
proliferative and migratory potentials and differentiate predominantly to CMs that 
form the left ventricle and small parts of the atria[62]. The cells of the cardiac crescent, 
theoretically the progeny of FHF CPCs, are terminally differentiated cells expressing 
the markers of CMs, such as actin alpha cardiac muscle 1 and myosin light chain 7[63,
64], hence they are unlikely to be multipotent progenitors. Therefore, it is difficult to 
identify FHF before Nkx2.5 and TBX5 expressions. Conversely, multipotent SHF CPCs 
were validated with a clonal tracing experiment and identified by ISL1 expression[65]. 
However, ISL1 expression is not specific for SHF and has been proposed to represent 
only the developmental stages[66]. Tampakakis et al[67] generated ESCs by using 
hyperpolarization activated cyclic nucleotide gated potassium channel 4-green 
fluorescent protein and TBX1-Cre; Rosa-red fluorescent protein reporters of the FHF 
and the SHF respectively, and also by using live immunostaining of the cell membrane 
CXCR4, a SHF marker and the reporters. The ESC-derived progenitor cells have 
shown functional properties and transcriptome similar to their in vivo equivalents. 
Thus, chamber-specific cardiac cells have been generated for modelling of heart 
diseases in vitro.

Epicardium-derived CPCs
The EPDCs are important as a signaling source for heart development, cardiac 
regeneration, and post-MI heart repair. Throughout the development of the heart in 
mice, EPDCs aid in the formation of various cardiac cell types and secrete paracrine 
factors for myocardial maturation[68]. In the adult heart, EPDCs are normally dormant 
and become stimulated following myocardial injury. Transcriptional analysis of the 
EPDCs derived from human (h)iPSCs cells have revealed several markers of EPDCs 
including Wilm’s tumor protein 1, endoglin, thymus cell antigen 1, and aldehyde 
dehydrogenase 1 family member A2[69] (Figure 1). Following MI in mice, EPDCs 
undergo an epithelial-to-mesenchymal transition, with overexpression of Wilms tumor 
protein 1, and differentiate mainly into SMCs/fibroblasts[70,71]. EPDC-secreted 
paracrine factors include VEGF-A, FGF2, and PDGF-C, which support the growth of 
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blood vessels, protect the myocardium, and recover cardiac functions in an acute MI-
mouse model[70].

Side population-derived CPCs
Side population (SP) cells have been detected in the heart and other various tissues 
and hold enhanced stem and progenitor cell activity[72]. SP cells, when stained in 
vitro, hold the ability to flush out the DNA Hoechst dye from their nuclei[73]. Gene 
expression profiling of SP cells after MI has revealed a downregulation of Wnt-related 
signals coupled with increased SP cell proliferation. This has been validated in vitro by 
treatment of isolated SP cells with canonical Wnt agonists or recombinant Wnt, where 
the proliferation of SP cells has been repressed with partial arresting the G1 cell cycle 
phase[74]. Consistent with this observation, delivery of secreted Frizzled-related 
proteins (SFRP; the Wnt antagonizer) improves post-MI remodeling[75,76].

SP cells can be identified by surface marker adenosine triphosphate (ATP) binding 
cassette subfamily G member 2 (ABCG2), also referred to as the breast cancer 
resistance protein1[77]. ABCG2+ cells have been also observed in the adult heart and 
can differentiate in vitro into CMs[78]. When SP cells have been injected into the 
injured hearts of rats, they have been recruited to the injured regions, where they 
differentiate into CMs, ECs, and SMCs, suggesting that they may be endogenous SP 
cells[79]. However, ABCG2–CreER based genetic lineage tracing has demonstrated 
that ABCG2+ cells could only differentiate into the multiple cardiac cell lineages 
during the embryonic stages but not in adulthood[80,81]. The combination of ABCG2+ 
cells with pre-existing CMs is more likely to stimulate CM proliferation rather than 
differentiation into CMs directly[82]. Therefore, genetic fate mapping investigations 
have disproved the SP cells property of the adult endogenous ABCG2+ SP and their in 
vivo renewing myogenic ability[83].

Cardiosphere-derived CPCs
Cardiospheres contain a combination of stromal, mesenchymal, and progenitor cells 
that are isolated from cultures of human heart biopsy[39,84]. They represent a niche-
like environment, with cardiac-committed cells in the center and supporting cells in 
the periphery of the spherical cluster[85]. The cardiosphere-derived cells (CDCs) were 
originally isolated from mouse heart explants and human ventricular biopsies based 
on their ability to form three-dimensional (3D) spheroids in suspension cultures[86]. 
CDCs have grabbed much attention due to their proliferation and differentiation 
abilities by inherent stimulation of cardio-specific differentiation factors [GATA4, 
MEF2C, Nkx2.5, heart and neural crest derivatives expressed 2, and cardiac troponin T 
(TNNT2)] using a clustered regularly interspaced short palindromic repeat/dead Cas9 
(CRISPR/dCas9) assisted transcriptional enhancement system[87,88]. Sano et al[89] 
have postulated that the CRISPR/dCas9 system may provide a proficient method of 
modifying TNNT2 gene activation in SCs. Consequently, CRISPR/dCas9 can improve 
the therapeutic outcomes of patients with ischemic heart disease by enhancing the 
transplanted CDCs differentiation capacity within the ischemic myocardium. Heart 
tissue is usually obtained by endomyocardial biopsy or during open cardiac surgery 
and grown in explants to form CDCs. CDCs have shown a superior myogenic differen-
tiation potential, angiogenesis, and paracrine factor secretion as compared to other cell 
types. In heart failure animal models, the injected CDCs potentially differentiated into 
CMs and vascular cells. Additionally, CDCs have diminished unfavorable remodeling 
and infarct size, and hence improve cardiac function[90]. Accordingly, cardiospheres 
and CDCs may be some of the most promising sources of CPCs for cardiac repair.

CSC niche 
The niche in the heart integrates several heterogeneous cell types, including CSCs, 
progenitors, fibroblasts, SMCs, CMs, capillaries, and supporting telocytes (TCs)[91], 
together with the junctions and cementing ECM that hold the niche together. Such 
architectural arrangement is essential for protection against external damaging stimuli 
and for preserving the stemness of the CSCs (Figure 2). Without the niche microenvir-
onment, CSCs lose their stemness and initiate differentiation eventually, leading to the 
exhaustion of the CSC pool. Similarly, in vitro studies require feeder layers and 
cytokines supplements in the culture media to ensure that SCs remain in their 
undifferentiated state[37].

In vitro studies have recapitulated the niche theory using cardiospheres, which are 
20–150 µm spheres (Figure 2) of cells generated from the explant outgrowth of heart 
tissues[92,93]. Cardiospheres consist of CSCs in the core and cells committed to the 
cardiac lineage such as myofibroblasts, while vascular SMCs and ECs form the outer 
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Figure 2 In vivo arrangement of the central cardiac stem cells and the surrounding cells that comprise the niche (right side) and the in 
vitro derived cardio spheres (left side). The key delineates the types of cells identified in the niche and cardio spheres. Created with BioRender. CSC: 
Cardiac stem cell.

layer of the spheres. The 3D structure of cardiospheres protects the interiorly located 
CSCs from oxidative stress as well as maintain their stemness and function[84].

Accurate anatomical identification of CSCs in vivo remains a challenge due to the 
lack of basal-apical anatomical orientation as seen in epithelial organs such as the 
intestines[94]. Moreover, the heart does not comprise a specific compartment, where 
cells form a well-defined lining as seen in the bone marrow osteoblasts[95]. The adult 
heart epicardial lining anatomically contains several classes of niches, which are not 
limited to the sub epicardium[96] but dispersed throughout the myocardium, more in 
the atria and apex away from hemodynamic stress[97]. Some niches have been 
described in the atrio-ventricular junction of adult mouse and rat hearts[98] and 
interestingly in the human hearts[99]. The young mouse heart has been studied 
morphometrically to identify the location of CSCs niche and has been defined as a 
randomly positioned ellipsoid structure consisting of cellular and extracellular 
components. Within the niches, undifferentiated CSCs are usually assembled together 
with early committed cells that express c-KIT on surface, Nkx2.5 in the nucleus, and 
the contractile protein α-sarcomeric actin in the cytoplasmic[97].

CSCs niche consists of clusters of c-kit+, MDR1+, and Sca-1+ cells[98] but lack the 
expression of the transcription factors and cytoplasmic or membrane proteins of 
cardiac cells[99,100]. Cardiac c-kit+/CD45- cells comprise about 1% of the CSC niche
[97], are self-renewing clonogenic, and possess a cardiac multilineage differentiation 
potential comprise[101].

Within the niche, gap junctions (connexins) and (cadherins) connect SCs to their 
supporting cells, myocytes/fibroblasts. Conversely, ECs and SMCs do not act as 
supporting cells. Hence, the communication between CSCs with CMs and fibroblasts 
has been investigated by using in vitro assays[102]. The transmission of dyes via gap 
junctions between CSCs and CMs or fibroblasts was demonstrated previously and 
verified the functional coupling of these three cell populations[97]. In addition, micro 
ribonucleic acid (miRNA-499) translocates from CMs to CSCs comprising to the 
initiation of lineage specification and formation of myocytes[103].

Identification of SC niches is contingent upon the fulfillment of explicit criteria, 
including the recognition and determination of the affixing of SCs to their supporting 
cells as well as assuring the existence of an ancestor-progeny association[104]. 
Chemical and physical signals modulate the behavior of SCs within the niche. 
Amongst these signals are cytokines, cell surface adhesion molecules, shear forces, 
oxygen tension, innervation, and ions that serve as major determinants of SCs function
[97]. Cell-to-cell signaling mediates the fate of SCs within the niches to promote self-
renewal and favors their migration and differentiation. The fine-tuned crosstalk 
between SCs and their supporting cells regulates the state of the niche regarding 
quiescence or activity[105].

CSC niches, similar to the bone marrow, characteristically live in low oxygen 
tension, which favors a quiescent primitive state for SCs[106]. The longstanding 
perpetuation of the CSC niche requires a hypoxic environment, while physiological 
normoxia could be required for active cardiomyogenesis[107]. Hypoxic c-KIT+ CSCs 
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within niches have been found throughout the myocardium, especially at the atria and 
apex. Throughout all ages, bundles of CSCs with low oxygen content coexist with 
normoxic CSCs niches. Hypoxic CSCs, especially in the atria, are quiescent cells 
undergoing cell cycle arrest and cannot divide. Normoxic CSCs are pushed into 
intense proliferation and differentiation with continuous telomere erosion, resulting 
finally in dysfunctional aged CMs[108]. Additionally, Nkx2.5 and GATA4 expressions 
are only restricted to the normoxic CSC niche. A balance between the hypoxic and 
normoxic niche is essential for the preservation of the CSC compartment and for the 
maintenance of myocardial homeostasis during the organ lifespan. Some factors such 
as aging cause an imbalance by expanding the hypoxic quiescent CSCs so that less 
pools of cycling CSCs maintain cell turnover[100]. Hypoxic cardiac niches are 
abundant in the epicardium and subepicardium in an adult mouse heart, which also 
fosters a metabolically distinctive population of glycolytic progenitor cells[109].

The pool of CSCs seems to be heterogeneous, incorporating quiescent and actively 
proliferating cells, migratory and adherent cells, uncommitted and early committed 
cells, with young and senescent cells. Additional surface epitopes remain to be 
disclosed to classify pools of CSCs holding specific properties. Surface Notch1 
expression distinguishes multipotent CSCs that are poised for lineage commitment, 
while c-Met and ephrin type-A receptor 2 receptors reveal cells with particular 
migratory potential out of the niche area. A specific compartment of CSCs, expressing 
IGF-1 receptor, can be stimulated to regenerate damaged myocardium, while those 
expressing IGF-2 receptor hold higher probability for senescence and apoptosis. 
Although this arrangement of cells seems to equip properly the CSC with homeostasis 
regulation, it does not effectively protect against aging or ischemic injury of the heart
[100].

CSCs RELATIONSHIP WITH OTHER CELLS
Circulatory angiogenic cells
Circulatory angiogenic cells (CACs) are endothelial progenitor cells involved in 
vasculogenesis, angiogenesis, and stimulating myocardial repair, mainly through 
paracrine action. Latham et al[110] demonstrated that conditioned medium from 
CAC–CSC co-cultures exhibited greatly mobilized CACs, with induction of tubule 
formation in human umbilical vein endothelial cells, mainly through the upregulation 
of the angiogenic factors angiogenin, stromal cell-derived factor 1 (SDF-1α), and VEGF. 
Moreover, administration of CACs and CSCs in infarcted hearts of non-obese/severe 
combined immunodeficient mice restored substantially the left ventricular ejection 
fraction (LVEF), with reduction of scar formation as revealed by echocardiography. 
Successful yet modest SMCs, ECs, and CM differentiation has been also reported.

Saphenous vein-derived pericytes 
Pericytes (also called Rouget cells, mural cells, or perivascular mesenchymal precursor 
cells) are mesodermal cells that border the endothelial lining. They are highly prolif-
erative cells and express neural/glial antigen 2, SOX-2, PDGFR-β, CD34, and several 
mesenchymal markers such as CD105, CD90, and CD44. It was previously reported 
that the transplantation of saphenous vein-derived pericytes (SVPs) into an ischemic 
limb of an immunodeficient mice restored the local circulatory network via 
angiogenesis[111]. Moreover, treatment with SVP reduced fibrotic scar, CM death, and 
vascular permeability in a mouse model of MI via miRNA-132 facilitated angiogenesis
[112]. Avolio et al[113] were the first to describe the relationship between SVP and the 
endogenous CSCs. Combined CSC and SVP transplantation in the infarcted myocar-
dium of severe combined immunodeficient/Beige-immunodeficient mice showed 
similar results to treatment with CSCs or SVP cells per se, regarding scar size and 
ventricular function, indicating that SVPs alone are as potent as CSCs.

TCs
TCs represent a recently described cell population in the stromal spaces located in 
many organs, including the heart. They are broadly dispersed throughout the heart 
and comprise a network in the three cardiac layers, heart valves, and in CSC niches. 
TCs have been documented also in primary culture from heart tissues[114,115]. The 
ratio of cardiac TCs (0.5%-1%) exceeds that of CSCs. Although they still represent a 
minute portion of human cardiac interstitial cells, their extremely long and extensive 
telopodes allow them to occupy more surface area, forming a 3D platform probably 
that extends to support other cells[116]. The telopodes act as tracks for the sliding of 
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precursor cells towards mature CMs and their integration into heart architecture[91]. 
TCs form a tandem with CSCs/CPCs in niches, where they communicate through 
direct physical contact by atypical junctions or indirect paracrine signaling[115].

TC-CSC co-culturing have suggested that TCs and CSCs act synergistically to 
control the level of secreted proteins, as shown by the increased levels of monocyte 
chemoattractant protein 1 (MCP-1), macrophage inflammatory protein1 α and 2 (MIP-1
α and MIP-2), and interleukin (IL)-13. Whereas, the level of IL-2 decreased compared 
to the monoculture of CSCs or TCs. IL-6 found in TC culture is behind the upregu-
lation of these chemokines. Chemokines elucidated the role of TCs in directing the 
formation of CMs. Within the context, MIP-1α and MCP-1 play roles in the formation 
of SMCs in the airway. Additionally, MCP-1 is also involved in mouse skeletal muscle 
regeneration by recruiting macrophages. The enhancement of MCP-1 secretion serves 
as an activator of another cell population, primarily macrophages, which are generally 
involved in such processes[117].

IL-6 also activates downstream signaling pathways and contributes to cardiopro-
tection and vessel formation in the heart through activation of gp130/signal 
transducer and activator of transcription 3. The Gp130/signal transducer and activator 
of transcription 3 is essential for the commitment of cardiac SCA-1+ cells into 
endothelial lineage[118].

Furthermore, IL-6 targets VEGF and hepatocyte growth factor (HGF) genes. VEGF 
has a mitogenic effect on CMs[119]. It is known to mobilize bone marrow-derived 
mesenchymal stem cells (BM-MSCs) into the peripheral blood in MI patients[120]. 
HGF and its receptor (c-Met) are also involved in cardiogenesis, as it is expressed early 
during cardiac development[121]. The level of HGF mRNA is normally low in the 
heart, but it is upregulated for at least 14 d after ischemic insult in rats, enhancing CMs 
survival under ischemic conditions[122,123]. Moreover, it has the potential to generate 
an adhesive micro-environment for SCs, as demonstrated in a study of transplantation 
of HGF transfected BM-MSCs in the infarcted myocardium[124]. HGF is also a 
powerful angiogenic agent, conducting its mitogenic and morphogenic effects through 
the expression of its specific receptor in various types of cells, including myocytes. 
Moreover, HGF exerts antifibrotic and antiapoptotic effects on the myocardium[125,
126].

Transcriptomic analysis also has disclosed that TCs express pro-angiogenic miRNAs 
including let-7e, miRNA-21, miRNA-27b, miRNA-126, miRNA-130, miRNA-143, 
miRNA-503, and miRNA-100[127]. The TCs and CSCs interact in vitro forming atypical 
junctions, such as puncta adherentia and stromal synapses. The puncta adherentia 
consists of cadherin–catenin clusters. It controls the symmetry of division by 
facilitating the proper positioning of centrosomes. Therefore, an increased number of 
CSCs has been reported to be encountered in the presence of cardiac TCs[128,129].

CSCs SECRETOME 
The paracrine potential of CSCs/CPCs has been recently under focus. CSC-derived 
cytokines and growth factors include epidermal growth factor (EGF), HGF, IGF-1, IGF-
2, IL-6, IL-1α, and TGF-β1[130,131]. Exosomes appear to harbor relevant reparative 
signals, which mechanistically underlie the beneficial effects of CSCs transplantation
[132].

Structurally, exosomes are lipid bilayer nano-sized organelles, 20-150 nm in 
diameter, secreted from all cell types, and function as intercellular communicators. 
Exosomes are highly heterogenic in content, and this stems from the unique packaging 
process that occurs inside progenitor and SCs. Exosomes carry lipids, proteins, and 
nucleic acids, with an abundance of miRNAs that hold profound post-transcriptional 
gene regulatory effects[133].

Protein content of exosomes 
Amongst the distinctive protein content of cardiac exosomes are the chaperone 
proteins heat shock protein (HSP) 70 and HSP60. The HSP70 and HSP60, which under 
normal conditions assist in protein folding processes and deter misfolding and protein 
aggregation under pathological states induced by stress, also play major roles in 
apoptosis[134]. Circulating exosomes from healthy individuals have been found to 
activate cardioprotective pathways in CMs via HSP70 through extracellular signal-
regulated kinase ½ and HSP27 phosphorylation[135].

The exosome protein cargo of CPCs is distinct from BM-MSCs, fibroblasts, and other 
sources as it contains ample amounts of the pregnancy-associated plasma protein-A 
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(PAPP-A). PAPP-A is present on the surface of human exosomes and interacts with 
IGF binding proteins (IGFBPs) to release IGF-1[136]. The cardioprotective role of 
CPCs-exosomes has been proven experimentally in in vitro ischemia/reperfusion and 
MI models and on CMs apoptosis to surpass that of BM-MSC-exosomes owing to their 
rich content of PAPP-A[137].

Exosomes’ surface and intra-vesicular markers 
Like all exosomes, mouse CPCs-derived exosomes are positive for the surface markers 
CD63, CD81, and CD9, TSG-101, and Alix, however, they express a high-level of 
GATA4-responsive-miRNA-451. MiRNA-451 has been shown to inhibit CM apoptosis 
in an acute mouse myocardial ischemia-reperfusion model through inhibition of the 
caspases 3/7. The expression of miRNA-21 in the mouse CPCs-exosomes additionally 
justifies their CM protection against oxidative stress and antiapoptotic effects via 
inhibition of programmed cell death protein 4 (PDCD4)[138]. Human CPCs-exosomes 
are enriched with miRNA-210, miRNA-132, and miRNA-146a-3p, which account for 
the diminished CM apoptosis, enhanced angiogenesis, and improved LVEF[139]. 
MiRNA-146a-5p is the most highly upregulated miRNA in human CPCs-exosomes 
and targets genes involved in inflammatory and cell death pathways[137].

The CDCs contain CD34+ stromal cells of cardiac origin and are multipotent and 
clonogenic but not self-renewing[140]. CDCs secrete exosomes that induce cardiomyo-
genesis and angiogenesis, regulate the immune response, downgrade fibrosis, and 
improve the overall cardiac function[141,142]. Moreover, CDCs homogeneously 
express CD105 but not CD45 or other hematopoietic markers. They also exhibit a high 
expression of miRNA-126[143]. Circulating miRNA-126 may participate in cardiac 
repair during acute MI and has been demonstrated to be downregulated in heart 
damage[144].

Exosome secretion and function
While exosomes are constitutively secreted, changes in the surrounding microenvir-
onment, such as hypoxia, can induce modifications in CPCs- and CM- derived 
extracellular vesicles. Hypoxic CMs secrete large extracellular vesicles containing long 
noncoding RNA neat 1 (LNCRNA NEAT1), which is transcriptionally regulated under 
basal conditions by p53, while during hypoxia it is regulated by the hypoxia inducible 
factor 2A. An uptake of the hypoxic CM-derived extracellular vesicles by fibroblasts 
can prompt the expression of profibrotic genes[145]. Oxidative stress may also induce 
the release of cardiac CPCs exosomes, which in turn inhibit apoptosis when taken up 
by H9C2 (rat cardiomyoblast cell line)[132]. Furthermore, oxidative stress stimulates 
secretion of miRNA-21 rich exosomes, which could inhibit H9C2 apoptosis by 
targeting PDCD4 and hence can be accounted as a new method to treat ischemia-
reperfusion[138].

Intercellular communication via exosomes occurs as part of various biological 
processes, including immune modulation, vasculogenesis, transport of genetic 
materials, and pathological conditions such as inflammation, apoptosis, and fibrosis, 
which can lead to cardiovascular disease when altered[146]. Hence, isolation and 
analysis of cardiac exosomes contents, mainly miRNA and proteins, could offer 
diagnostic information for several cardiovascular diseases[147] (Figure 3).

Functionally, exosomes mediate several intra-cardiac inter-cellular communications 
such as:

CPC-CM crosstalk through factors, such as miRNA-146a and PAPP-A, which 
activate extracellular signal-regulated kinases 1/2 pathway and inhibit apoptosis[139].

CPC-macrophage (M1) crosstalk via miRNA-181b and Y-RNA fragment transforms 
M1 to M2 macrophages with attenuated proinflammatory cytokines and increased IL-
10[148,149] (Figure 4).

CPC-fibroblast interaction via exosomes primes the fibroblasts and increases 
expression of VEGF and SDF-1. Experimental injection of fibroblasts primed with 
CPCs-exosomes into the myocardium of a MI model proved to reduce infarct size and 
improve cardiac function. In addition, cardiosphere-isolated exosomes have been used 
to prime inert fibroblasts, leading to an intensification of their angiogenic, 
cardiomyogenic, antifibrotic, and collective regenerative effects[150] (Figure 4).

CPC-self regulatory mechanisms: Exosomes derived from CPCs may play critical 
roles in maintaining the self-renewal state of CPCs themselves and balance their differ-
entiation, i.e. preserve their stemness[151] (Figure 4). The CPC-derived exosomes 
activate the endogenous CPCs by transferring signal molecules directly within their 
niche[152].



Mehanna RA et al. CSCs and cardiac regeneration

WJSC https://www.wjgnet.com 13 January 26, 2022 Volume 14 Issue 1

Figure 3 Schematic diagram elucidating the diverse exosomal contents that serve as biomarkers for several cardiovascular diseases. 
Created with BioRender.com. HSP: Heat shock protein; lncRNA: Long non-coding RNA; miR: MicroRNA.

CPC-derived exosomes release various RNA species in the extracellular space, 
modulating endogenous SC plasticity and tissue regeneration through their cytopro-
tective, immunomodulatory, pro-angiogenic, and anti-apoptotic actions[153].

Fibroblasts and pericytes interact after transdifferentiating to myofibroblasts and 
deposit ECM causing cardiac fibrosis. These fibrotic changes are usually induced by 
cardiac damage and lead to scar formation. Exosomes serve as messengers for cell-to-
cell communication during cardiac fibrosis[154]. Molecular mechanisms of cardiac 
fibrosis are primarily related to TGF-β pathways, IL-11 signaling pathway, nuclear 
factor-κβ pathway, and Wnt pathways[155]. Accordingly, the bioactive substances 
targeted at these pathways could hypothetically be applied in the treatment of cardiac 
fibrosis. Wnt3a, being highly expressed in exosomes, could activate the Wnt/β-catenin 
pathway in cardiac fibroblasts by restricting GSK3β activation[156]. Moreover, tumor 
necrosis factor α contained in exosomes can be transferred between cardiac myocytes. 
In general activation/inhibition of the exosomes conveying remodeling substance 
secretion or uptake can control the myocardial remodeling and repair following MI
[154,157].

The highlighted complex cell-to-cell communication from endogenous or exogenous 
CSCs provides an optimal microenvironment for resident CPC proliferation and 
differentiation (Figure 4), rendering the environment receptive to transplanted CPCs. 
This adaptation is promoted through activation of pro-survival kinases, leading to the 
induction of a glycolytic switch in recipient CPCs[158].

Therapeutic efficiency of CPCs/CDCs exosomes 
Data from experimental models suggest that the exosomal component of the CPC 
secretome can fully recapitulate the effects of cellular therapy on ischemic and non-
ischemic heart models[140]. In an ischemia-reperfusion injury rat model, Ciullo and 
partners[159] have shown that the systemic injection of exosomes (genetically 
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Figure 4 Possible cardiac reparative effects of cardiac stem cell/cardiosphere-derived cell-derived exosomes in myocardial ischemia and 
ischemia/reperfusion injury. Created with BioRender.com. CSC: Cardiac stem cell; IL: Interleukin; IR: Ischemia/reperfusion; miRNA: MicroRNA; PI3K: 
Phosphoinositide 3-kinase; SDF-1: Stromal cell-derived factor 1; VEGF: Vascular endothelial growth factor.

manipulated to overexpress CXCR4–ExoCXCR4) improve cardiac function. Additio-
nally, expression of hypoxia-inducible factor 1 (HIF-1) in the infarcted myocardium is 
upregulated through the stimulation of SDF-1α. The latter is one of the CXC 
chemokine family overexpressed in heart post-MI that readily attaches to the CXCR4 
receptor and acts as a potent chemoattractant for CXCR4 expressing circulating 
progenitor cells. The ExoCXCR4 are more bioactive in the infarcted zone than 
naturally occurring exosomes injected via tail-vein, confirming their superior homing 
and cardioprotective properties in the damaged heart.

Gallet et al[160] postulated the safety and efficiency of CDC-derived exosomes in 
acute and chronic myocardial injury animal models. Within the context of experi-
mental research to validate the paracrine hypothesis for CDCs–derived exosomes, it 
has been proven that human CDC-exosomes can recapitulate CDC therapy and boost 
cardiac function post-MI in pig models. Intramyocardial injection of human CDC-
exosomes has resulted in higher exosome retention and efficacy as compared to 
intracoronary injection, with great reduction of scar size and increased ejection 
fraction. This indicates that the route of administration is imperative for full functional 
capacity of the exosomes. Subsequently, the researchers have devised a randomized 
preclinical study by means of a NOGA-guided intramyocardial exosome injection. 
Decreased collagen content in the infarct and border zone and increased neovascular-
ization and Ki67+ CMs are indicative of the reparative functions of CDC-exosomes. 
Notably, human CDC-exosomes have shown a lack of an immune reaction, as seen by 
the lack of inflammatory reactions or CM necrosis in pig models. These observations 
strongly support the view that CDC-exosomes are ready to be tested in clinical trials.
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Similar promising outcomes were observed in a Duchenne muscular dystrophy 
model (mdx), in which intramyocardial injection of CDC-exosomes efficiently recapit-
ulated the effects of CDC injection on cardiac function, leading to recovery of 
movement. Administration of CPC-derived exosomes has resulted in transient 
restoration of partial expression of full-length dystrophin in mdx mice[161]. Further 
studies assessed the therapeutic potential of CPC-exosomes in a doxorubicin 
cardiotoxicity model and non-ischemic heart disease[162]. In addition, two concluded 
phase I clinical trials in patients with heart failure and revealed the capacity of CDCs 
to enhance cardiac function by reducing ventricular remodeling and scar formation. 
Despite receiving a single injection at the beginning of the study, the improvement in 
cardiac function was noted after the 1-year follow-up. This finding consequently leads 
to the proposition that transplanted CDCs mainly have imposed their actions at the 
site of injury by secreting paracrine factors including exosomes. In other words, CDC-
exosomes achieved a biphasic beneficiary regenerative effect involving acute cardio 
protection coupled with long-term stimulation of endogenous cardiac repair[163].

METABOLISM OF CSCs 
While the fetal heart obtains most of its ATP supply via glycolysis[164], the adult heart 
relies mainly on fatty acid oxidation to fulfill the contracting myocardium high energy 
demand[164,165]. The loss of the regenerative phenotype is related to the oxidative 
metabolism of glucose and fatty acids[166,167] and is mediated by various 
physiological changes including increased workload and the demand for growth, 
which cannot be solely met by glycolysis[168,169], as well as postnatal increase in both 
circulating levels of free fatty acids and blood oxygen levels[164,165]. Studies have 
shown the involvement of the HIF-1 signaling pathway[170], peroxisome proliferator-
activated receptor α (PPARα)[171], and peroxisome proliferator-activated receptor γ 
coactivator-1 (PGC-1) in the switch toward oxidative metabolism[172], which is 
accompanied by dramatic increase in the number of mitochondria in CMs[173].

Notably, similar metabolic reprogramming occurs during differentiation from 
cardiac SCs to CMs[167]. Studies reported that after differentiation into CMs, there is 
an increase in the mitochondrial number and activity[174], increased oxidative 
metabolism[175], and increased respiratory capacity resulting in an increased 
adenosine diphosphate:ATP ratio[173] after differentiation into CMs.

The fact of the various metabolic changes that accompany the transition from 
glycolysis to fatty acids oxidation affect cardiac cell maturation[164,167] has mandated 
the consideration of substrate composition in cardiac differentiation protocols[167].

A study by Malandraki-Miller et al[176] investigated the effect of fatty acid supple-
mentation, which mimics the metabolic switch from glucose to fatty acid oxidation, on 
adult cardiac progenitors. The study used radiolabeled substrate consumption for 
metabolic flux to investigate the role of the PPARα/PGC-1 axis during metabolic 
maturation. Oleic acid stimulated the PPARα pathway, enhanced the maturation of the 
cardiac progenitor, and increased the expression of MHC and connexin after differen-
tiation. Moreover, total glycolytic metabolism, mitochondrial membrane potential, the 
expression of glucose, and fatty acid transporter increased. The recorded results 
contributed greatly in highlighting the role of fatty acids and PPARα in CPC differen-
tiation.

Another study by Correia et al[177] has linked substrate utilization and functional 
maturation of CMs via studying the effect of the metabolic shift from glucose to 
galactose and fatty acid-containing medium in the maturation of hPSCs-derived CMs 
(hPSCs-CMs). The shift accelerated hPSC-CM maturation into adult-like CMs with 
higher oxidative metabolism, mature transcriptional signatures, higher myofibril 
density, improved calcium influx, and enhanced contractility. Galactose improved 
total oxidative capacity with reduction of fatty acid oxidation, thereby protecting the 
cells from lipotoxicity.

In CDCs, oxidative metabolism and cell differentiation reciprocally affect each 
other. In vitro cultures for CDCs revealed a PPARα agonist that triggers fatty acid 
oxidation. Metabolic changes have been characterized as the CDC differentiated 
towards a cardiac phenotype. Addition of a PPARα agonist at the onset of differen-
tiation has induced a switch towards oxidative metabolism, as shown by changes in 
gene expression with decreasing glycolytic flux and increasing oxidation of glucose 
and palmitate. Undifferentiated CDCs have generated high levels of ATP from 
glycolysis and from oxidation of acetoacetate. Upon differentiation, oxidative 
metabolism of glucose and fatty acids is upregulated with decreased oxidation of 
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acetoacetate, a metabolic phenotype similar to that of the adult heart[178].
Taken together, the metabolic hallmarks of differentiated CMs vary from their 

undifferentiated SCs. Energy substrate metabolism during cardiac development and 
differentiation shows gradual decrease in the contribution of glycolysis to ATP 
synthesis with simultaneous increase in fatty acid–dependent mitochondrial 
respiration[179].

Common methods for the investigation of substrate metabolism include the 
measurement of metabolic fluxes using radio-labeled substrates, such as D-U-14C-
glucose[180,181] as well as measurement of mitochondrial oxygen consumption rate 
and extracellular acidification rate using the XF Extracellular Flux Analyzer (Seahorse 
Bioscience, North Billerica, MA, United States)[182,183].

Recently, a detailed protocol for metabolic characterization of hiPSCs-CMs has been 
developed. The hiPSCs are obtained from adult somatic cells via novel cell reprog-
ramming approaches, followed by differentiation to CMs. The novel in vitro cardiac 
cellular model provided new insights into studying cardiac disease mechanisms and 
therapeutic potentials. The characterization protocol measures small metabolites and 
combines gas- and liquid-chromatography-mass spectrometry metabolic profiling, 
lactate/pyruvate, and glucose uptake assays as important tools[184]. Integration 
between the implemented assays has provided complementary metabolic character-
istics besides the already established electrophysiological and imaging techniques, 
such as monitoring ion channel activities[185], measurement of action potentials, 
changes in Ca+2 fluxes[186], and mitochondria viability and apoptosis[187].

An alternative pathway for glucose metabolism in CMs involves the entry of 
glucose-6-phosphate (G6P) in the pentose phosphate pathway, with resultant 
generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH)[188]. 
Reduced NADPH helps to regenerate reduced glutathione and thus acts protectively 
against reactive oxygen species induced cell injury.

The cardioprotective role of the pentose/G6P/NADPH/glutathione pathway has 
been emphasized by Jain et al[189] who demonstrated that G6P dehydrogenase (G6PD) 
lacking mice have more severe heart damage induced by the myocardial ischemia 
reperfusion injury in Langendorff-perfused hearts as compared with wild-type mice.

Moreover, Katare et al[190] studied this pathway in CPCs isolated from hearts of 
diabetic mice. They reported that both G6PD and transketolase activities were 
markedly reduced in diabetes mellitus, which resulted in apoptosis of CMs. Intere-
stingly, they have also reported that apoptosis was induced under high glucose 
conditions via inhibition of the pentose phosphate pathway, which mediates 
prosurvival signaling pathways.

Cellular metabolic transcriptome profile is an important determinant of many 
critical cell functions such as survival, growth, differentiation, and reprogramming. 
With the fast-track advancements in CSCs research, in-depth and thorough metabolic 
transcriptome analyses on CSCs are needed. It has been also suggested that metabolic 
genes can be targeted to manipulate the differentiation of ESCs into specific CM 
phenotypes or to modulate the maturation grade of CMs derived from ESCs[179].

As mentioned earlier in the review, the energy demand of the contracting 
myocardium of an adult heart is met mainly through fatty acid oxidation, which 
explains the fact that genes required for fatty acid metabolism are upregulated in the 
differentiated CMs. These genes include acetyl-CoA acyltransferase 2 (ACAA2), 
NADH dehydrogenase ubiquinone 1, α/β subcomplex 1 (NDUFAB1), protein kinase 
AMP-activated α-2 catalytic subunit (PRKAA2), and ECI1 enoyl-CoA delta isomerase 1 
(DCI). In addition, other genes involved in glucose metabolism are also upregulated in 
α-MHC+ CMs, including protein phosphatase 1 regulatory subunit 3C (PPP1R3C), 
glycogen phosphorylase, muscle associated (PYGM), enolase 3 (ENO3), phosphogly-
cerate mutase 2 (PGAM2), amylo-α-1,6-glucosidase 4-α-glucanotransferase (AGL), 6-
phosphofructokinase muscle (PFKM), and malate dehydrogenase 1 (MDH1)[191]. This 
is interpreted by the fact that adult cardiac cells are metabolically flexible, being 
capable of oxidizing other energy sources, such as glucose, lactate, amino acids, and 
ketone bodies for the production of ATP and non–ATP-producing intermediate 
metabolites with high biological significance[169]. Another example of CMs’ metabolic 
plasticity is shown by HIF-1 expression, which is important for their metabolic 
adaptation to hypoxic and ischemic conditions[192].

NANOTECHNOLOGY AND CSCs
Since Richard Feynman laid down the foundation of nanotechnology 1959[193], 
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remarkable developments have been witnessed attributed to the novel properties 
possessed by the materials at the nanoscale, which differ from their bulk forms. A 
panel of NPs, ranging from soft to inorganic, are used in nanomedicine, depending on 
their unique property matching the field of interest[194-197] (Figure 5).

The interplay of nanotechnology with SCs has gained increasing interest, whether 
for differentiating, tracking, imaging, or for therapeutic purposes. Accumulating 
evidence presents that the small size and bioactive characteristics of NPs could 
influence SC function. Several engineering techniques have been developed to obtain 
nano-fibrous scaffolds that facilitate controlling SC proliferation, migration, and differ-
entiation. A diversity of SCs, including ESCs, skeletal myoblasts, BM-MSCs, and CSCs, 
have been tested to repair acutely or chronically damaged myocardium. However, the 
optimal cell type, the efficient cell number, the appropriate route for cell delivery, and 
the ideal time point for cell delivery after MI are still unanswered questions. The 
biodistribution of SCs and the specific mechanism by which therapeutic cells improve 
cardiac function remains under investigation[198]. Using NPs could solve some of 
these obstacles either by gene delivery to SCs, enhancing the retention of SCs, 
facilitating SCs’ proangiogenic effect, or mimicking the ECM[199].

In view of this, we have summarized the impacts of NPs on SCs, especially CSCs, 
from differentiating, therapeutic, and tracking viewpoints (Figure 5, Table 1).

NP-assisted CSC differentiation 
Nanotechnology has revolutionized the tissue engineering field and altered the 
landscape of scaffolds syntheses. In typical tissue engineering, a bio-mimicked scaffold 
provides adhesive surfaces for the seeded cells, where the SCs deposit their proteins to 
make the engineered-scaffold more biocompatible. However, improper vascular-
ization, lack of functional cells, the low mechanical strength of engineered cells, 
immunological incompatibility with the host, and nutrient constraints are the main 
limitations encountered in tissue engineering. Therefore, synthesis of a biomimetic 
scaffold at the nanoscale, in a minimum of one dimension, would offer a more 
effective microenvironment needed for cell growth. Nano-tissue engineering provides 
the scaffold with a simple substrate for SC adhesion and active agents for their prolif-
eration[200].

In consideration for CSCs, nano- and microstructured electrospun matrices have 
been used as non-woven scaffolds for the construction of cardiac tissue from primary 
CMs. Among different nanostructured poly (D, L-lactic-co-glycolic acid; PLGA) 
membranes, the poly (L-lactide; PLLA) scaffolds superiorly developed mature 
contractile machinery (sarcomeres). Functional studies (excitability) of CMs tested by 
optical imaging of electrical activity have confirmed the superior response on PLLA 
scaffolds compared with other ones[201].

An in vitro and in vivo study conducted by Liu et al[202] using porous ECM-
mimicking nanofibrous PLLA scaffolds (porous NF PLLA) demonstrated cardiac 
tissue formation from CPCs. The scaffold has facilitated the in vitro differentiation of 
isolated mouse ESCs into CPCs. Thereafter, the transplanted NF PLLA/CPCs 
integrated successfully with the host tissue, with superior expression of cardiac 
committed markers cardiac troponin T, smooth muscle MHC, and CD31.

The inductive and therapeutic properties of biodegradable PLGA nanofibers have 
been tested in vitro and in vivo. Different hiPSCs-CMs have been seeded on aligned 
PLGA nanofibers to differentiate into high-quality cardiac tissue-like constructs, where 
cardiac biomarkers and cardiac functions have been upregulated. When utilized in 
vivo for treating MI, the cardiac tissue-like constructs have shown more robust results 
than the two-dimensional conventional control in improving the ejection fraction, the 
fractional shortening, and left ventricular end-systolic diameter[203].

Recently, an injectable ECM hydrogel loaded with gold (Au)/Laponite (Lap) 
nanocomposite has been tested on the biological activity of resident CSCs. The electro-
active Au/Lap-ECM hydrogel improved cell biocompatibility and phenotypes 
maturation of cardiac-specific markers (SAC, cardiac troponin 1, and Cx43)[204].

NP-assisted CSC therapy 
More than 90 years ago, the Nobel laureate German immunologist Paul Ehrlich 
proposed the term “magic bullets” to describe the artificial biochemical agents that 
would transport and release drugs at the desired sites only[205]. Since then, drug 
delivery research has witnessed notable growth due to NPs utilization as “controlled 
release reservoirs” for drug delivery in order to combat many diseases[206].

In cardiovascular diseases, NP-based drug delivery targeting CSCs would be a 
successful therapeutic regimen. In an in vivo study of induced MI, self-assembling 
peptide nanofibers tethered with NF-IGF-1 positively influenced CPCs in female 
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Table 1 Main outcomes of the studies investigated the impact of nanotechnology in cardiac stem cell-based studies

Nanotechnology field Types of nanoparticles Type of cardiac disease/stem 
cells Type of research Outcomes Ref.

Tissue engineering Semi-crystalline PLLA nanostructured 
membranes among several PLGA 
membranes

Non-diseased/primary CMs In vitro: electrospun matrices were 
used as scaffolds for generating 
cardiac tissue constructs

Nanostructured non-woven PLLA scaffolds 
provide flexibility and guidance for CMs growth 
and can be successfully applied to obtain 
structurally and functionally competent cardiac 
tissue constructs. 

[201]

In vitro: CPCs with porous NF PLLA In vitro: porous NF PLLA scaffolds facilitate cell 
attachment, extension, and differentiation. 

Non-diseased/mouse ESCsTissue engineering ECM-mimicking nanofibrous PLLA 
scaffolds with porous structure (porous NF 
PLLA) of high interconnection for cardiac 
tissue formation CPCs 

In vivo: male athymic nude mice
In vivo: subcutaneous implantation of cell/scaffold 
supports survival of grafted cells and 
differentiation to CMs, SMCs, ECs lineages. 

[202]

In vitro: hiPSCs (253G1) In vitro: multilayered, elongated, organized CMs at 
high density along ANF, with up regulation of 
genes of sarcomere structures (ACTN2, TNNT2, 
TNNI3), cardiac maturation (MYH7), ventricular 
structures (MYL2, HAND2).

Tissue engineering/therapeutic Biodegradable ANF MI/hiPSCs-CMs

In vivo: nude rat

In vivo: CTLCs improve MI functionally due to 
transplantation of organized functional CMs. 

[203]

Tissue engineering Electroactive Au-Lap NPs loaded 
myocardial ECM

Non diseased/Resident CSCs In vitro: rat CMs from 2-d old 
neonatal rats

Combination of electrically active nano-
formulations and biologically active ECM boost the 
expression of cardiac-specific proteins (SAC, cTnl, 
Cx43).

[204]

In vitro: NF-IGF-1 promote CPCs division (↑BrdU) 
and protect them from death signal (↓TdT). 

In vitro: clonogenic CPCsTherapeutic Self-assembling peptide nanofibers tethered 
with insulin-like growth factor-1 (NF-IGF-1)

MI/CPCs

In vivo: female Fischer 344 rats In vivo: CPCs-NF-IGF-1 enhance postinfarction 
ventricular remodeling, attenuate chamber 
dilation, and improve cardiac performance.

[207]

cSCA-1/PM attenuates ventricular enlargement, 
restore cardiac function, with high capillary 
density (↑vWF) and conductive vessels (↑αSMA, ↑
VEGF). 

Therapeutic Transplantation of self-assembling 
nanopeptides: Cell-PM complex

MI/cSCA-1+ cardiac progenitors 
Other stem cells BM, SM, AMC

In vivo: Wild-type mice (C57Bl/6J); 
Adult GFP transgenic mice

↓TUNEL+ CMs in the infarct area of cSCA-1/PM.

[208]

In situ: characterization

In vitro: NRCM

In situ: CMMPs express hCSC surface markers.

In vitro: CMMPs promote NRCM contractility and 
proliferation.

In vivo: CMMPs preserve viable myocardium, 

Therapeutic CMMP contained control-released stem cell 
factors in its polymeric core and cloaked 
with hCSC membrane fragments on the 
surface

MI/Human CSCs

In vivo: male SCID Beige mice

[209]
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augment cardiac functions, with safety profile. 

Therapeutic and drug delivery tool Statin PLGA nanoparticles MI/hAdSCs In vivo: male nude mice (BALB/c 
nu/nu)

A small number of intravenously administered 
SimNP-loaded AdSCs improve cardiac function 
following MI, stimulating endogenous cardiac 
regeneration in the infarcted myocardium. 

[244]

Tracking of treatment Colloidal nanoparticles containing europium 
loaded on collagen matrix

MI/Lewis rat BM-MSCs In vivo: female Fischer rat Collagen matrix enhance transplanted MSC 
retention and reduce migration of the cells into 
remote organs as tracked by the radioactive NPs. 

[211]

In vitro: ↓caspase 3+, ↓TUNEL+.Tracking and magnetic targeting of 
treatment 

Superparamagnetic iron microspheres MI/Rat CDCs In vitro: rat CDCsIn vivo: female 
WKY rats 

In vivo: enhanced cell engraftment, with attenuated 
left ventricular remodeling and increased ejection 
fraction. ↑GFP+, ↑Ki67+ CMs, and ↑GFP−/c-KIT+ 
cells. 

[212]

In vitro: ↓TUNEL+, ↓ROS and ↑CCK-8, ↑Ki67. In vitro: hCDCs and rCDCsImaging and therapeutic by magnetic 
targeting 

Ferumoxytol (FDA-approved SPIONs) 
nanoparticles linked by heparin sulfate and 
protamine sulfate 

MI/Human and ratCDCs

In vivo: female WKY rats In vivo: augmentation of acute cell retention and 
attenuation of left ventricular remodeling, 3 wk 
after treatment by MRI, fluorescence imaging, 
qPCR.

[213]

Imaging and tracking for 
differentiation 

Potassium niobate harmonic nanoparticles 
stabilized by polyethylene glycol 

Non-diseased/ESC-derived CMs In vitro: mouse ESC (CGR8 cell line) Monitoring at high acquisition speed the rhythmic 
contractions of ESC-derived CMs beating within 
3D cluster.

[245]

In vitro: under hypoxia IONP-MSCs exert

Antiapoptotic effect on CMs: ↓caspase 3+, ↑Cx43, ↑
PI3K.

Antifibrotic effect on CFs: ↑Cx43, ↓TGFβ1, ↓αActa2, 
↓MMP2, ↓MMP9. 

In vitro: rat CM, rat CFs, 
macrophage, HUVECs.

Anti-inflammatory effect on macrophage. 

Proangiogenic effect on HUVECs: ↑tube formation, 
↑EC migration.

Therapeutic by magnetic guidance of 
NPs

Iron oxide nanoparticle-incorporated 
nanovesicles (exosome memetic 
nanovesicles); (IONP-NVs)

MI/MSCs

In vivo: Fischer 344 rats

In vivo: magnetic guidance increases IONP-MSCs 
retention within the infarcted heart, with early shift 
from inflammatory stage to reparative stage. 

[217]

AMC: Adipose tissue-derived mesenchymal cell; ANF: Aligned PLGA nanofibers; Au-Lap NP: Gold and laponite nanoparticle; BrdU: Bromodeoxyuridine cell proliferation assay; CCK-8: Cell counting kit-8; CF: Cardiac fibroblast; CM: 
Cardiomyocyte; CMMP: Cell-mimicking microparticle; CPC: Cardiac progenitor cell; CTLC: Cardiac tissue-like construct; cTnl: Cardiac troponin 1; FDA: Food and Drug Administration; ECM: Extracellular matrix; ESC: Embryonic stem 
cell; hAdSC: Human adipose-derived stem cell; HUVEC: Human umbilical cord vein endothelial cell; IONP: Iron oxide nanoparticle; MRI: Magnetic resonance imaging; NF: Nanofibrous; MI: Myocardial infarction; MMP: Matrix 
metalloproteinase; NRCM: Neonatal rat cardiomyocyte; PLGA: Poly D,L-lactic-co-glycolic acid; PLLA: Poly (L-lactic acid); PM: Puramatrix™; qPCR: Quantitative polymerase chain reaction; SM: Skeletal myoblast; SPION: 
Superparamagnetic iron oxide NP; TdT: Terminal deoxynucleotidyl transferase apoptotic assay; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling apoptotic assay; vWF: von-Willebrand factor; WKY: Wistar-Kyoto; 
αSMA: Alpha smooth muscle actin; 3-D: Three-dimensional.

Fischer rats. The local injection of CPCs loaded on NF, with the prolonged release of 
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Other self-assembling nanopeptides loaded with cell-Puramatrix™ complex have 
revealed promising results in treating MI, especially when targeting clonal SCA-1+ 
CPCs. The infarct area of SCA-1+/PM became smaller than that of other tested SCs. 
Moreover, SCA-1+/PM have secreted VEGF, enhancing their differentiation 
potentiality into CMs and vascular SMCs[208].

Interestingly, a synthetic cell-mimicking microparticle (CMMP) has recapitulated 
CSC function with a safe immunological profile. The core of the CMMP is a PLGA 
containing human-derived CSC (hCSC) secretome, while the surface has been cloaked 
with SC membrane fragments. These CD105+ and CD90+ CMMPs have shown 
synchronized movement with adjacent beating CMs in vitro. When injected in the MI 
mouse model, they have shown prolonged retention without eliciting the T-cell 
immunoreaction that transplanted hCSCs provoked[209].

NP-assisted CSC imaging and tracking
Combining the therapeutic effect of SC-based therapy with concomitant in vitro or in 
vivo visualization of the SCl is a strategy helped by the auto-luminescent NPs. 
Furthermore, delivery of the SCs to the infarcted cardiac area could be guided by a 
magnetic field depending on the unique magnetic properties of iron oxide NPs[210].

Isotopic colloidal NPs tagged with europium have successfully tracked the retention 
of BM-MSCs in the infarcted area. The NP-labeled MSCs loaded on a collagen matrix 
have shown reduced relocation of MSCs to remote organs. However, delivering the 
NP-MSCs via collagen has failed to improve cardiac function[211]. Further retention 
and magnetic targeting of CDCs have been retrieved using superparamagnetic 
microspheres (SPM). Quantitative polymerase chain reaction and optical imaging have 
confirmed the magnetic targeting and the increased cardiac retention of transplanted 
cells, with reduced lung migration in a rat model of ischemia/reperfusion injury. 
Moreover, the prolonged survival of SPM-labelled CDCs by cell counting kit-8 and 
Western blot has proved the safety profile of SPM[212].

The success of magnetic cell delivery in various preclinical studies potentiates the 
translation into clinical ones encouraged with the Food and Drug Administration-
approved superparamagnetic iron oxide NP ferumoxytol. A thorough investigation of 
ferumoxytol-labeled (FHP) human and rat CDCs offered the potential for rapid clinical 
translation of the magnetically targeted cell delivery to an ischemic heart. The in vitro 
study proved that FHP nanocomplex is not toxic to hCDCs, where a panel of 
cytotoxicity assays have revealed prolonged survival, potentiated differentiation, and 
genetic stability of FHP-hCDCs. Furthermore, in vivo tracking of FHP-rCDCs by 
magnetic resonance imaging (MRI), fluorescence imaging, and quantitative 
polymerase chain reaction have shown that magnetic targeting increased cardiac 
retention without eliciting cardiac inflammation or causing iron overload. The 
histological assessment revealed enhancement of angiogenesis and cell engraftment in 
the hearts of the magnetic targeting group[213].

NP-based cardiac therapy limitations and prospects
Despite the promising results of NP-assisted SC interventions, the reported nanotoxi-
city is considered a major obstacle for clinical translation of these preclinical trials
[214]. Besides, most of the in vitro and in vivo NP-based SC trials focused on the short-
term effect of the NP interventions. The long-term safety profile of the injected 
NPs/CSCs or NPs/scaffolds with host interactions needs large scale investigations. 
These shortcomings have directed the search for natural cell-derived immune 
compatible nanostructures.

Exosomes attracted the attention as therapeutic cellular-derived NPs. However, the 
small quantity of these exosomes secreted from SCs is considered the main limitation 
to its therapeutic implementation. A novel exosome-mimetic extracellular nanovesicles 
(NVs) have bypassed this obstacle[215]. The large-scaled mechanically synthesized 
NVs from ESCs, by Jo and his colleagues[216], have conserved both RNA and protein 
profiles of the ESCs. Furthermore, treatment of MSCs with NVs has promoted cellular 
proliferation, which has been comparable with or even superior to the positive MSCs 
control treated with silica nanobeads that are well known for their ability to stimulate 
proliferation via activation of the MAPK pathway.

Recently, NVs derived from iron oxide NPs (IONPs) incorporated MSCs (IONP-
MSCs) have co-cultured with different primary cell lines to investigate their physical 
and biological characteristics. IONPs-MSCs have revealed cardioprotective effects via 
PI3K/AKT activation. Under in vitro hypoxic conditions, IONPs-MSCs have 
upregulated Cx43, an electrical coupling molecule, whose reduction is responsible for 
arrhythmia and cardiac cell death in hypoxia. Furthermore, the NVs inhibited cardiac 
fibrosis by inhibiting the differentiation of cardiac fibroblasts into cardiac myofibro-
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Figure 5 Schematic presentation of multiple nanoparticles-based paradigms in nanomedicine (right side) and their mirror images in 
nanoparticle-assisted cardiac stem cell interventions (left side). In the right side, the auto-luminescence of quantum dots and some polymeric natural 
nanoparticles (NPs) as nanocurcumin qualifies them to be used primarily in tracking and diagnostic imaging. Meanwhile, inorganic NPs have been extensively 
investigated in cancer treatment as photothermal therapy due to the plasmonic resonance of their outer electron. For drug delivery purposes, soft NPs, such as 
liposomes, polymicelles, and dendrimers, are used due to their flexibility and biophysical interaction with components of the cell membrane, which enable them to 
penetrate biological membranes. In the left side, the impact of different NPs on cardiac stem cell (CSC)-based therapy are shown. The superparamagnetic iron oxide 
NPs are used for tracking and imaging of the CSCs-therapy, while nanofibers are used either as a dual delivery system for CSCs and therapy. Moreover, nanofiber 
scaffold holding the CSCs is used in tissue engineering to assist CSCs’ differentiation. The confocal images of NPs-cellular imaging are reproduced with permission
[196]. Created with BioRender.com. NPs: Nanoparticles; SMCs: Smooth muscle cells; CMs: Cardiomyocytes; ECs: Endocardial cells; CSCs: Cardiac stem cells; 
CPCs: Cardiac progenitor cells; SPION: Superparamagnetic iron oxide NP.

blasts after hypoxia. Magnetically targeting an induced MI with IONPs-MSCs have 
attenuated apoptosis, reduced inflammation, and increased blood vessel density, with 
increased retention of IONPs-MSCs in the infarcted myocardium, improving left 
ventricular remodeling[217].

Designer exosomes is another hope, boosting the exosomal theragnostic potential 
independently of its low yielding. Kojima and coworkers[218] genetically engineered 
the producer cells with the three genes responsible for potentiating exosome 
production: Six-Transmembrane Epithelial Antigen of Prostate 3 for exosome 
biogenesis, syndecan-4 for budding of endosomal membranes, and the fragment of L-
aspartate oxidase for cellular metabolism. These exosome production boosters have 
been further genetically upgraded to RNA packaging device and cytosolic delivery 
helper. Thereafter, they have used this collectively EXOtic device to deliver cargo 
messenger RNA to the mice brain, attenuating neurotoxicity in neuroinflammatory 
disease by enhancing cell-to-cell communication without the need for exosomes 
concentration. These results demonstrate the usefulness of designer exosomes for 
therapeutic RNA delivery that can be applied to CPC/CDC exosomes to enhance their 
efficacy.
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CLINICAL TRIALS 
The rationale of clinical studies testing CSC therapy on human subjects has been based 
on the conclusions from the promising results of experimental studies utilizing SCs
[219,220]. Clinical trials using CSCs, CPCs, and CDCs have been and are still targeting 
variable cardiac diseases, namely ischemic heart diseases, non-ischemic cardiomy-
opathy, heart failure, congenital heart diseases, and pulmonary atrial hypertension 
(Figure 6, Tables 2 and 3).

Ischemic heart diseases
There have been numerous ischemic heart diseases (IHD) trials. Cardiosphere-derived 
autologous stem cells to reverse ventricular dysfunction (CAUDEUS) and allogeneic 
heart stem cells to achieve myocardial regeneration (ALLSTAR) are two comple-
mentary studies in which CAUDEUS is the phase I and ALLSTAR is the phase II of 
clinical trial of intracoronary delivery of autologous CDCs in patients with IHD and 
left ventricular dysfunction. Firstly, CAUDEUS, with 6 mo and 12-mo follow-up of 
patients has shown significant reduction in the scar size (-7.7%, -11.1% respectively), 
increased viable myocardium (+13 g, +22.6 g respectively), and improvement of the 
regional function of infarcted myocardium[221]. Then, ALLSTAR results showed 
attenuation of the post infarct cardiac remodeling and improvement in the left 
ventricular diastolic volume, but it has failed to achieve the results of CAUDEUS 
regarding the reduction of scar size; hence ALLSTAR was dismissed[222].

The clinical trial transplantation of human embryonic stem cell-derived progenitors 
in severe heart failure (ESCORT) was developed to assess the regenerative effects of 
human ESC-derived CPCs. At the beginning of coronary artery bypass grafting, 
patients received a fibrin gel implanted with the hESC derived CPCs. The main 
conclusion from this trial demonstrated the technical feasibility of producing a 
clinically operational product. This product is hESCs derived CPCs that can be safely 
transplanted to patients with severe ischemic left ventricle (LV) dysfunction. It also 
supports their short- and medium-term safety after transplantation in patients with 
severe post-infarction LV dysfunction[223]. Direct engraftment of CPCs into cardiac 
tissue along with the paracrine effects of CPCs are the main milieu of cardiac 
regeneration[224,225]. Additionally, fibrin gel has been used as a delivering synthetic 
biomaterial to improve the long term cell engraftment in the ischemic environment
[226].

Safety and efficacy evaluation of intracoronary infusion of allogeneic human cardiac 
stem cells in patients with AMI (CAREMI), a phase I/II placebo-controlled clinical 
trial, has been designed to evaluate the safety, practicability, and efficiency of 
intracoronary transport of allogeneic adult CSC in patients with large ST segment 
elevation secondary to myocardial infarction, LV dysfunction at risk of developing 
heart failure. CAREMI has intended to interfere with allogeneic cells immediately after 
the initial ischemic insult (dodging the aggressive part of the first 5 d) and before 
myocardial scar starts to form (within 7 d after percutaneous infusion). CAREMI trial 
is documented proof that allogeneic CSCs intracoronary infusion early after acute MI 
is safe with rational efficacy outcomes and is promising hope for future clinical trials 
with Allo-CSCs[227].

Non-ischemic cardiomyopathy 
Halt cardiomyopathy progression in Duchenne (HOPE) and dilated cardiomyopathy 
intervention with allogenic myocardially-regenerative cells (DYNAMIC) studies aim 
to assess safety and to discover the usefulness of CDCs in patients with non-ischemic 
cardiomyopathy. HOPE was targeted specifically to explore efficacy of CDCs in 
patients with advanced stages of Duchenne muscular dystrophy. The results have 
shown significant and sustained improvements in cardiac structure, function, and 
significant reduction in cardiac scarring as compared with the control group[228]. 
Meanwhile, the DYNAMIC study does not have any published data so far.

Heart failure 
In autologous human cardiac-derived stem cell to treat ischemic cardiomyopathy 
(ALCADIA), intramyocardial delivery of CDCs with controlled releases of basic FGF 
in a biodegradable gelatin hydrogel sheet to patients with ischemic heart failure was 
done. This was at the time of coronary artery bypass grafting. After 6 mo, it was 
reported that small improvements in regional but not global function, i.e. LVEF (+ 9%-
12%), had been noted as well as decreased scar sizes 3.3% at 6-mo follow-up vs 
baseline[229]. A randomized, double-blinded phase II clinical trial started in 2015 to 
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Table 2 Completed clinical trials reporting on the use of cardiac derived stem cells in cardiovascular disorders

Study name, 
NCT Number

Start 
year

Study 
phase

Cardio-
vascular 
disease

Patients 
number

Type of cardiac stem 
cells/origin

Route of delivery 
/count of cells

Timing of cell 
delivery

Follow up 
times Imagingtechniques Outcomes Ref.

Significant reduction in infarct 
size 

CADUCEUS, 
00893360

2009 1 IHD 17 Autologous CDCs/endomyocardial 
biopsies

IC/12.5-25 × 106 1.5-3 m post STEMI 6 mo MRI

Significant growth in viable 
mass global LVEF remains 
unchanged LVEF and volumes.

[221]

No effect on scar 
sizeAttenuation of post infarct 
cardiac remodeling

ALLSTAR, 
01458405

2017 I/II IHD 90 Allogenic CDCs/endomyocardial 
biopsies

IC/25 × 106 < 5 d post MI 12 mo MRI

Improvement in LV end 
diastolic volume

[222]

ALCADIA, 
00981006

2010 I CHFIHDVD 6 Autologous 
hCSCs/endomyocardial biopsies + 
bFGF on gelatin hydrogel sheet

IM/0.5 × 106 /kg and 
200 µg of bFGF

At CABG 12 mo Not mentioned Decreased scar size [229]

CT Symptomatically improved 
patients with an increased 
systolic motion of the cell- 
treated segments.

PET scan

The protocol generated a 
highly purified population of 
cardiovascular progenitors.

ESCORT, 
020579000

2013 I IHD 6 ESCs-derived ISL1+ CSCs Epicardial patch 5-10 × 
106 CSCs embedded in 
a fibrin patch

At CABG 18 mo

Echo

One patient died of heart 
failure after 22 mo

[223]

MRICAREMI, 
02439398.

2014 I/II AMI 55 Allogeneic hCSCs/right atrial 
appendage

IC/35 × 106 cells 5 to 7 d after 
successful reperfusion 
of AMI by PCI or 8 d 
from symptoms onset

1 wk, 1, 2, 
3, 4, 5, 6, 9 
and 12 mo ECG

Allogeneic CSCs intracoronary 
infusion early after AMI is safe 
and anticipates reasonable 
efficacy outcomes

[227]

MRI Increased LVEF 

Treadmill Decrease in infarct size with LV 
end systolic volume reduction.

CONSERT-HF, 
02501811.

2015 II HF 125 Autologous c-KIT+ CPCs + 
MSCs/right ventricular endocardial 
biopsy + Bone marrow aspiration

Trans endocardial/150 
× 106 MSCs and 5 × 106 
CPCs

14 wk after cell 
harvest

6 and 12 
mo

Questionnaire
Strong safety profile

[230]

MRI Significant scar reduction 
improvement in inferior wall 
systolic thickening compared to 
the usual care group.

HOPE, 
02485938

2015 I\II CM secondary 
to DMD

25 Allogeneic CDCs IC/75 × 106 Not specified 12 mo

Questionnaire

[228]
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CDCs are generally safe and 
well-tolerated

ECGDYNAMIC, 
02293603

2014 I Idiopathic 
dilated CM

42 Allogeneic CDC/not specified IC/Stepwise dose 
escalation

Not specified 6, 12 mo

Cardiac enzymes

Not published _

Safety of the procedure 

Increased right ventricle 
ejection fraction 

Improved somatic growth

TICAP, 
01273857

2011 I HLHS 7 Autologous CDCs/right atrial 
appendage

IC/0.3 × 106 cells/kg 1 m after cardiac 
surgery

36 mo Echo

Reduced heart failure status

[233]

Significant improve of 
ventricular function 

Improved somatic growth, and 
quality of life 

Perseus, 
01829750

2013 II HLHS 34 Autologous CDCs/not specified IC/0.3 × 106 cells/kg 4 to 9 wk after surgery 3 and 12 
mo follow-
up

EchoMRIQuestionnaire

Reduced heart failure status 
and cardiac fibrosis compared 
with baseline

[231]

AMI: Acute myocardial infarction; bFGF: Basic fibroblast growth factor; CABG: Coronary artery by bass graft; CHF: Congestive heart failure; CM: Cardiomyopathy; CSC: Cardiac stem cell; DMD: Duchenne muscle dystrophy; hCSC: 
Human-derived cardiac stem cell; HLHS: Hypoplastic left heart syndrome; IC: Intracoronary; IHD: Ischemic heart disease; IHF: Ischemic heart failure; IM: Intramyocardial; MRI: Magnetic resonance imaging; NCT: National clinical trial; 
PCI: Percutaneous infusion; STEMI: ST segment elevation after MI; VD: Ventricular dysfunction.

study the efficacy of combinatorial therapy in treatment of cardiac ischemic disorders. 
Combination of mesenchymal and c-KIT+ CSCs as regenerative therapy for heart 
failure (CONCERT-HF) utilized autologous endomyocardial CSCs combined with 
MSCs for heart failure patients. After trans-endocardial injection of this combined 
therapy, the LVEF increased to 89%, with about 4.5% decrease in infarct size and LV 
end systolic volume. This is the first clinical trial to assess the benefits of cell 
combination therapy in humans, which addresses the therapeutic potential for cardiac 
ischemic patients[230]. In addition, according to the ClinicalTrials.gov Identifier 
(NCT02503280), there is an expected clinical study (TAC-HFT-II) that might start in 
2025 to study the safety and effectiveness of trans-endocardial injection of combination 
of MSCs and CSCs in patients with post-MI HF. Moreover, another ongoing 
randomized, double blind, placebo-controlled phase II clinical trial for regression of 
fibrosis and reversal of diastolic dysfunction in heart failure with preserved ejection 
fraction patients treated with allogeneic CDCs (Regress-HFpEF, NCT02941705) was 
conducted to determine whether treatment with intracoronary allogeneic CDCs will 
affect clinical functional status of HFpEF patients, regarding regression of fibrosis and 
reversal of diastolic dysfunction.
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Table 3 Ongoing and future expected clinical trials

Study name, NCT 
number

Year of 
study start

Study 
phase Cardiovascular disease Number of 

patients Type of cardiac cells Route of delivery

Regress-HFpEF, 
02941705

2017 II Symptomatic hypertensive heart 
disease induced HFpEF

40 Allogeneic CDCs IC

APOLLON trial, 
02781922

2016 III HLHS 40 Autologous CSCs IC

CHILD, 03406884 2019 I HLHS 32 Autologous c-KIT+ cells IM

ALPHA, 03145298 2017 I PAH 26 Allogeneic CDC IV

TAC-HFT-II, 
02503280

2025 I/II IHF 0 enrollment 
until now

Autologous combination 
of MSCs and CSCs

Trans endocardial 
Injection

CSC: Cardiac stem cell; HFpEF: Heart failure with preserved ejection fraction; HLHS: Hypoplastic left heart syndrome; IC: Intracardiac; IHF: Ischemic 
heart failure; IM: Intramyocardial; IV: Intravenous; NCT: National clinical trial; PAH: Pulmonary atrial hypertension.

Figure 6 Timeline of completed, ongoing, and future clinical trials in cardiovascular diseases. CDCs: Cardiosphere-derived cells; CSCs: Cardiac 
stem cells; ESCs: Embryonic stem cells; MSCs: Mesenchymal stem cells.

Congenital heart diseases
There are reports on phase I, II, and III clinical trials assessing the use of autologous 
CDCs in pediatric patients. One of the early clinical trials in children is the 
transcoronary infusion of CPCs in patients with single ventricle physiology (TICAP) 
trial. It has confirmed the practicality of intracoronary delivery of CDCs in post 
palliative single ventricle physiology patients. In this study, autologous CDCs have 
been isolated, expanded, and then finally administered via intracoronary delivery 4-5 
wk after the stage II/III palliative surgery. TICAP has proved that the methodology is 
safe and achievable for improving cardiac function after 18 mo. The safety of the CDC 
therapy has been also analyzed at 36 mo post-transplantation. Neither tumor 
formation nor arrhythmias have been reported, and the initial observed benefits have 
enhanced, with attenuation of ventricular stiffness and improvement of ventriculoar-
terial coupling[231].

Following the TICAP trial, the cardiac progenitor cell infusion to treat univen-
tricular heart disease (PERSEUS) trial, a phase II randomized controlled trial has been 
planned to follow-up on the TICAP trial. CDCs have been given via the coronary 
arteries after stage II or III palliative operations[232]. The main result is the change in 
EF from baseline to 3 mo that has been measured by cardiac MRI and echocardio-
graphy. The CDC treated group showed greater improvement in right ventricle (RV) 
function at 3 mo than controls (+6.4% vs +1.3%) and at 1 year continued to exhibit 
augmented RV function. Follow-up analysis at 36 mo demonstrated an improvement 
in RVEF among patients receiving CDCs (+8.0% vs +2.2%) even at this late time point. 
Furthermore, the therapy is currently being tested in a phase III trial cardiac 
stem/progenitor cell infusion in univentricular physiology (APOLLON). The phase III 
trial is an extension of the TICAP and PERSEUS trials exploiting autologous CDCs 
administered by intracoronary injection in single ventricle patients, for which results 
are still awaiting[233]. In addition, there is another ongoing phase I clinical trial 
(CHILD, NCT03406884) for examining the safety and efficacy of intramyocardial 
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injection of c-KIT CSCs injection in patients with hypoplastic left heart syndrome.

Pulmonary atrial hypertension 
Pulmonary arterial hypertension (PAH) is a progressive condition for which there is 
no cure. As reported in PAH archives and with the pharmacologic developments in 
the current treatment scope, survival remains poor. Preclinical studies suggest that the 
transplantation of allogeneic CDCs could reduce unfavorable PAH related arteriolar 
remodeling. Until now, there are no completed studies on PAH, though, there is an 
ongoing phase I clinical trial [(ALPHA), NCT03145298] exploring the potential 
beneficial effects of central intravenous delivery of allogeneic human CDCs.

THERAPEUTIC POTENTIAL OF COMBINED CELLULAR THERAPY
Despite the great differentiation potential of CSCs and their ability to restore the 
injured area, it is influenced by many factors, such as oxidative stress and the aging 
process, which diminish its function. Thus, the administration of mixtures of SCs can 
exhibit synergistic effects to get the maximum benefit from the transplanted cells in 
cardiac regeneration. Cell combination therapies are classified into various entities; the 
most commonly performed is combination of CSCs with MSCs either applied from 
autologous or allogeneic sources. The most recent combinatorial approaches are 
CardioChimerias (CCs) and CardioClusters. Merging several cell types harmonized 
efficiently cardiomyoplasty in preclinical cardiac ischemic models[234,235].

The mechanism behind the effect of MSCs when combined with CSCs has been 
clarified in a study conducted by Hatzistergos et al[236], where transendocardial 
injection of MSCs derived from allogenic male bone marrow in a reperfused MI swine 
model led to myocardial repair by stimulating and increasing the differentiation 
potential of endogenous CSCs to regenerate myocardium. Remarkably, 2 wk after 
MSC injection, the MSC-treated hearts showed chimeric collections containing both 
exogenous immature MSCs and endogenous CSCs with a 20-fold increase in c-KIT+ 
cells, indicating cardiac lineage commitment. In addition, to confirm the origin of 
CSCs, porcine endomyocardial biopsies have been isolated and plated as explants with 
or without MSC feeder layers, signifying that the MSCs have stimulated the expansion 
of c-KIT+ CSCs. The MSC co-culture derived CSCs have been more than 90% positive 
for Nkx2-5, which is considered an embryonic heart phenotype. MSCs have facilitated 
cardiac repair through stimulating a succession of secondary endogenous responses 
that triggered considerable amounts of adult CMs and immature CSCs to multiply and 
repair the injured areas with CMs, vascular SMCs, and ECs of host origin.

From this point of view, a study conducted by Williams et al[237] to assess the 
combination of CSCs and MSCs isolated from a human cardiac tissue and iliac crest, 
respectively, where 1 × 106 human CSCs and 200 × 106 human MSCs were injected 
intra-myocardially in the infarcted area in immunosuppressed pigs after 2 wk of MI 
induction. All cell-based cardiomyoplasty groups showed a decrease in the infarct size 
4 wk following cell injection with a 2-fold greater reduction in scar mass with 
combined SCs in comparison with each therapy alone. The results have been evaluated 
by cardiac MRI and conductance catheterization hemodynamics, revealing the 
improvement of cardiac response to MI functionally and structurally with returning of 
EF values to baseline, where the combined cell therapy enhanced the LV performance 
during systole and diastole.

In addition to cardiomyogenic repair in acute MI, the combination therapy enhances 
cardiac performance, both functionally and structurally, in chronic ischemic cardiomy-
opathies. The hypothesis was adopted by Karantalis et al[238]. The autologous CSCs 
isolated from the septal wall of the right ventricle immediately after MI induction and 
the autologous MSCs obtained from the tibial cavity were injected trans-endocardially 
in the same non-immunosuppressed pigs that undergo ischemic injury for 3 mo. The 
favorable effects of combinational therapy occurred in chronic MI models, where the 
size of the infarcted area diminished with improvement of EF, diastolic strain, and 
cardiac output in comparison with single therapy with MSCs.

In agreement with previous studies to explore the effect of allogeneic combination 
therapy in non-immunosuppressed swine chronic ischemic cardiomyopathy model, 
Natsumeda et al[239] addressed the advantage of such therapy from allogeneic sources 
to reduce the evoked immune response to administrated CSCs alone. The MSCs 
inhibited the rejection of the immune system to allo-CSCs, improving the retention of 
the combined cell therapy in the affected area to maintain the regenerative capacity. 
Moreover, in comparison with the autologous combination approach, angiogenesis 
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increased with improvement of perfusion to the previously infarcted area. Further-
more, the added CSCs to allo-MSCs augmented the contractile function of cardiac 
muscle by enhancing CM proliferation. This denotes that allogeneic combination cell 
therapy exerts cardiomyogenic regeneration in chronic ischemic conditions without 
immune rejection from the host.

The enumerated promising findings demonstrate the privileges of combinational 
therapy to attain the desirable effects of the differentiation potentiality of CSCs with 
the supporting and paracrine effects of MSCs in cardiac regeneration. However, the 
effectiveness of this therapy has been compromised by certain factors such as the 
persistence and long-term cardiogenic repair. Additionally, optimization of the dose of 
each cell type in the combination mixture is undefined. Therefore, new in vitro cell 
engineering techniques[240-243] have emerged to unify the maximum favorable effects 
of this therapy and eliminate the limitations concerning cardiac repair.

A novel modality has been aroused by Zang et al[240] to enhance the engraftment 
and angiogenesis properties of c-KIT+ CSCs to precondition the cells with exosomes- 
derived MSCs, resulting in increased proliferation, formation of angiotube, and 
enhanced migration in vitro. Moreover, in a rat MI model after 28 d, the CSCs 
combined with exosomes decreased the infarct size with neovascularization and 
increased the capillary density with higher EF relative to treated groups with CSCs 
only. The beneficial effect of exosomes on CSCs was evaluated by miRNA network 
analysis that exhibit influences on Wnt, VEGF, and PTEN/PI3K/Akt signaling 
pathways. These effects have enhanced CSCs potentials in cardiac repair by adding 
new properties to CSCs such as increased proliferation, differentiation, and 
angiogenesis to the pre infarcted area with defense against oxidative stress.

Quijada et al[241] is the first study conducted to administer a new cardiac hybrid 
murine MI model created by in vitro viral fusion between CPCs and MSCs with further 
clonal expansion known as CCs in order to improve and boost combinatorial cell 
delivery approaches. In this study, two variable clones were selected from 18 clones 
after 1 mo of fluorescent activated cell sorting of fused fluorescent-tagged CPCs 
(mcherry) and MSCs (enhanced green fluorescent protein) with an inactivated RNA 
Sendai virus to accomplish artificial cell fusion. It has been found that CCs exhibit 
augmented proliferation and survival properties in addition to opposing cell death 
(CC1 and CC2) compared with individual cell and combination therapies in a MI 
mouse model. The CCs injected into the acutely damaged heart have recurred 
structural integrity with functional improvement up to 18 wk with reduction of infarct 
size at 12 wk and earlier correction of EF at 6 wk. Moreover, they are not subjected to 
cell aging relative to combinational and single cell therapy. The tremendous effect of 
CCs was presented in enhanced engraftment in the border zone of infarcted area, 
which denotes the selectivity of this hybrid in addition to the already retained 
properties of CSCs and MSCs in cardiomyogenic repair. Notably, in comparison with 
mixed dual cell therapy the preservation of CM size and induction of c-KIT+ cells have 
occurred at 12 wk, with enhanced capillary density maintaining a longstanding 
cardiac vasculature.

In agreement with reparative potentials of CCs, Firouzi et al[242] applied the 
principle of cell fusion between c-KIT+ cardiac interstitial cells (cCICs) and MSCs in a 
2:1 ratio with inactivated Sendai virus. The cells were isolated from human cardiac 
samples removed during left ventricular assisted device implantation, then were 
allowed for clonal expansion to study the phenotypic features and function as 
compared to the parent cells. It was been found that the survival of human CCs is 
prolonged more than parent cells in addition to the increased survival of CMs when 
co-cultured with serum deprived neonatal rat CMs. Compared to CCs originating 
from a mouse model, its ability to resist oxidative stress is increased, thus enhancing 
survival potential and inheriting the same karyotype of the parent cells with diploid 
DNA content. However, it has not yet been tested in a MI model to assess the degree 
of retention or the cardiomyogenic repair potentials.

The evolution of next generation applications to improve the efficacy of combin-
atorial cell therapy in heart failure have been accomplished by Monsanto et al[243] 
who have implemented a 3D structure composed of MSCs in the center surrounded by 
cCICs, while endothelial progenitor cells (EPCs) inhabited the outer layer. These 
isolated autologous SCs in a ratio 3:2:1 of EPCs, cCICs, and MSCs, respectively, have 
been co-cultured to enhance the interactions between the cells before injection intra-
myocardially in a murine MI model. Moreover, this scaffold has inherited the same 
efficiency of each cell type. The EPCs protected the cCICs from oxidative stress and 
cell death with neovascularization to the infarcted area. Thus, the power of cCIC 
differentiation was increased in addition to the supporting milieu exerted by MSCs. 
The beneficiary outcomes were evidenced by the improved cardiac function in the 
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murine model initiated from the first week post MI injection and sustained up to 20 
wk, with greater improvement in EF, end systolic, and diastolic volume. Due to the 
administered distinct cell ratios and the controllable 3D structure size, which minimize 
cell loss, the CCs were retained for a long time and hence provided maximum effects 
of cell combination therapies in cardiomyogenic repair[240].

CONCLUSION
CSCs/CPCs carry a great therapeutic potential in different cardiac diseases owing to 
their numerous cell population, rich secretome and interplay with other cells. 
Conducted preclinical studies and clinical trials had demonstrated promising results in 
regards to the improvement of cardiac function. Studies using these cells targeting 
variable cardiac diseases are still ongoing aiming to discover more of their 
regenerative power and thus decrease the burden of morbidity and mortality due to 
cardiac tissue loss.
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