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Abstract
Sepsis is a heterogeneous disease with variable clinical course and several clinical 
phenotypes. As it is associated with an increased risk of death, patients with this 
condition are candidates for receipt of a very well-structured and protocolized 
treatment. All patients should receive the fundamental pillars of sepsis 
management, which are infection control, initial resuscitation, and multiorgan 
support. However, specific subgroups of patients may benefit from a personalized 
approach with interventions targeted towards specific pathophysiological 
mechanisms. Herein, we will review the framework for identifying subpopu-
lations of patients with sepsis, septic shock, and multiorgan dysfunction who may 
benefit from specific therapies. Some of these approaches are still in the early 
stages of research, while others are already in routine use in clinical practice, but 
together will help in the effective generation and safe implementation of precision 
medicine in sepsis.

Key Words: Sepsis; Septic shock; Organ dysfunction; Precision medicine; Biomarkers; 
Phenotype; Endotype
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Core Tip: Sepsis is a heterogeneous disease with different clinical courses and several 
clinical phenotypes. Precision medicine in sepsis allows the identification of specific 
subgroups of patients who may benefit from a personalized approach with 
interventions targeted towards specific pathophysiological mechanisms.
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INTRODUCTION
Sepsis requires a structured and protocolized treatment, which have been thoroughly 
reviewed in the literature[1-3]. The last version of the Surviving Sepsis Campaign 
(SSC) guidelines was released in 2021[4], and the hour-1 bundle was updated in 2018
[5]. The implementation of the SSC recommendations and bundles[6] is associated 
with a sustained reduction in the risk of death. Still, mortality from sepsis remains 
unacceptably high[7].

All patients with sepsis are candidates for receipt of the main pillars of sepsis 
treatment: Infection control, initial resuscitation, and multiorgan support. However, 
specific subgroups of patients not responding to conventional therapies may benefit 
from other therapies, which can be considered therapeutic rescue strategies.

Currently, sepsis is defined as organic dysfunction associated with a dysregulated 
response of the host to infection[8]. The host response is initiated when bacterial 
endotoxin or other bacterial structures interacting with the host´s immune system 
stimulate the production of a cascade of immune mediators that activate and target 
leukocytes, leading to organ dysfunction.

SEPSIS: A HETEROGENEOUS DISEASE
We have to ask ourselves whether all septic patients' clinical courses are predictable. 
Does dysregulated host response to infection progress and manifest similarly in all 
patients? The answer is clear and resounding: No. In sepsis, there is significant hetero-
geneity between individuals. In a certain way, such heterogeneity is foreseen based on 
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the existing differences in age, causative microorganisms, types of sepsis foci, and 
comorbidities. Pathophysiologically, there are also significant differences. The inflam-
matory response occurs in two distinct stages: The pro-inflammatory and the anti-
inflammatory phases. These phases vary among individuals and within the same 
individual, depending on a particular moment within the clinical course. This could 
explain the observed heterogeneity in responses to available immunomodulating 
treatments (e.g., corticosteroids, elimination of cytokines, and anti-cytokine 
antibodies).

Therefore, patients with a low risk for adverse outcomes are candidates to receive 
conventional treatments. In contrast, patients with a high risk of clinical deterioration 
could benefit from specific therapies addressing their particular pathophysiological 
characteristics. This gives rise to so-called ‘precision medicine’. This term comes from 
oncology and described the adaptation of a treatment to each patient’s traits based on 
the genomic study and the molecular characteristics of tumors.

In this narrative review, we explain the different strategies to create and implement 
precision medicine for sepsis, with the intent of supporting individualization of 
patients’ management (Figure 1). In the first part of this manuscript, we will review 
the technologies developed to identify endotypes and phenotypes (omics-based 
biomarkers, bioinformatics, and biomarkers commonly used in the clinic). In the 
second part of the manuscript, we will describe the different endotypes with their 
specific potential treatments (e.g., immunoglobulins, endotoxin- and cytokine-
hemadsorption, restoration of immunoparalysis) (Table 1). Omics-based biomarkers 
research is still in the early stages, while other biomarkers are now available and in use 
in the clinic.

TECHNOLOGIES DEVELOPED TO IDENTIFY ENDOTYPES AND PHEN-
OTYPES
Omics technologies
Novel technologies have been developed in recent years to detect different 
evolutionary patterns or other patterns in response to different therapies in sepsis. 
Omics-based biomarkers and bioinformatics can select various endotypes and 
phenotypes of sepsis patients indistinguishable from the clinical point of view at the 
bedside. Therefore, they help in the adaptation of specific therapies to patients 
according to their individual characteristics[9].

Genomics and epigenomics: Genomics is defined as the study of genes and their 
functions. The different clinical presentations and prognoses of sepsis patients have 
already been associated with particular genetic variants. A genetic polymorphism is an 
allelic variant that exists in an unalterable state in a population, with a frequency 
(generally > 1%) that cannot be accounted for by new mutations. Various poly-
morphisms have been described in the genes that encode pro-inflammatory and anti-
inflammatory cytokines. This is also true for cytokine receptors, cellular recognition 
pathways, intracellular signaling pathways, and hemostasis molecules. All these 
pathways are involved in the severity and risk of mortality in sepsis[10].

Epigenomics studies the additional changes that alter gene expression without 
changing the DNA sequence. These include DNA methylation, non-coding (nc)RNAs, 
histone variants, and histone post-translational modifications. Epigenetic modific-
ations can respond to environmental stimuli by activating or inhibiting gene 
transcription. Lorente-Sorolla et al[11] showed that sepsis patients undergoing 
widespread changes in the methylome of their circulating monocytes had associated 
aberrant levels of interleukin (IL)-10 (IL-10) and IL-6, and a high occurrence of organ 
dysfunction. Changes in histone modifications, especially histone acetylation, can lead 
to abnormal expression of IL-10 mRNA[12]. An ncRNA is a functional RNA molecule 
transcribed from DNA, though not translated into a protein. ncRNAs regulate gene 
expression at the transcriptional and post-transcriptional levels. The three major 
classes of short ncRNAs are known as micro (mi)RNAs, short interfering (si)RNAs, 
and piwi-interacting (pi)RNAs. Plasma levels of miR-133a are higher in critically ill 
patients with sepsis than in patients with non-infectious inflammation, and predict 
intensive care unit (ICU) and long-term mortality[13]. Consequently, epigenetic 
biomarkers could help detect patients with clinical deterioration and unfavorable 
evolution[11-14].
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Table 1 Clinical applicability of precision medicine strategies

Precision medicine 
strategy Target (s) Clinical application

Genetic variants Prognosis, severityGenomics and epigenomics

Genotypes Susceptibility to sepsis

Gene expression profiles, activity and regulation Susceptibility to sepsisTranscriptomics 

Sepsis response signatures Severity, prognosis

Small molecules produced by cells PrognosisMetabolomics

Metabolomic profile Response to treatment

Proteins expressed by the genome under certain 
conditions

Diagnosis, PrognosisProteomics

Biomarkers Diagnosis, prognosis

Diagnosis

Prediction of clinical trajectories

Assessment and treatment of organ dysfunction

Bioinformatics Machine learning techniques

Clinical phenotypes

Phenotypes 

Antimicrobial stewardship

Prediction of organ dysfuntion

Allocation of hospital resources

Diagnosis

Biomarkers Levels of molecules (mostly inflammatory)

Severity

Immunoglobulins Immunoglobulin levels Detection and treatment of sepsis-associated 
hypogammaglobulinemia

Endotoxin and 
hemoadsoption

Endotoxin levels and elimination by hemoadsoption Rescue therapy

Cytokines and 
hemoadsoption

Cytokine levels and elimination by hemoadsoption Rescue therapy

Immunoparalysis detection

Immunoadjuvant treatment

mHLA-DR expression

Stratification of patients

Immunoparalysis

GM-CSF therapy

GM-CSF: Granulocyte-macrophage colony-stimulating factor.

Individualized treatment based on the genetic characteristics of the host has not yet 
been implemented in clinical practice, even though it is undoubtedly one of the most 
promising research fields for the future management of patients with sepsis and septic 
shock.

Transcriptomics: The transcriptome is the set of messenger RNAs and ncRNA 
molecules in a specific cell or tissue. Transcriptomics is the study of the transcriptome 
of one particular cell or tissue in a specific circumstance, based on the analysis of gene 
expression profiles. It aims at monitoring gene activity and regulation. Transcriptomic 
studies have made possible the characterization of different gene expression profiles in 
sepsis.

Interindividual transcriptome variation in sepsis has been evaluated in several large 
cohorts. Maslove et al[15] identified two subtypes in septic patients. The subtype 1 
gene expression profile is characterized by a significantly increased expression of 
genes involved in inflammatory and Toll-like receptor (TLR)-mediated signaling 
pathways. This profile is associated with a higher prevalence of sepsis. Davenport et al
[16] analyzed peripheral blood leucocyte global gene expression of 265 critically ill 
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Figure 1 Strategies to create precision medicine in sepsis.

patients with community-acquired pneumonia and organ dysfunction. That 
transcriptomic study showed two distinct sepsis response signatures: SRS1 and SRS2. 
SRS1, present in 41% of patients, identified patients with an immunosuppression 
phenotype that included features of endotoxin tolerance, T cell exhaustion, and down-
regulation of human leucocyte antigen class II. SRS1 was associated with higher 14-, 
28- and 60-d mortality than SRS2. Sweeney et al[17] performed an unsupervised 
clustering analysis on pooled transcriptomic profiles from 14 datasets of sepsis 
patients (n = 700). The authors described three transcriptomic subtypes based on their 
functional analysis: the inflammopathic, adaptive, and coagulopathic subtypes. The 
adaptive subtype was associated with a lower clinical severity and lower mortality 
rate than the other subtypes. The coagulopathic subtype was associated with higher 
mortality and occurrence of clinical coagulopathy than either the adaptative or inflam-
mopathic subtypes. Septic shock was more frequent in the inflammopathic subtype. 
Wong et al[18,19] conducted a genome-wide expression profiling using whole blood-
derived RNA from 98 children with septic shock, and identified three subclasses of 
patients, which they designated as A, B, and C. Patients in subclass A were charac-
terized by repression of genes corresponding to adaptive immunity and glucocorticoid 
receptor signaling. The subclass A patients had higher illness severity and mortality 
rate than the patients in subclasses B and C.

In the future, transcriptomic studies should help us in the early identification of 
patients with evolutionary patterns associated with greater severity and mortality, 
allowing for more personalized treatment.

Metabolomics: Metabolomics is the study of the metabolome, a collection of small 
molecules produced by cells[20]. This technology has been increasingly used in 
various investigations, such as the identification of biomarkers, drug activities, or 
drug-induced toxicity and metabolism. Critical illnesses, such as sepsis, alter the 
metabolomic profile. Thus, metabolomic studies in sepsis have been aimed at 
discovering metabolites that discriminate between patients with sepsis and non-
infectious systemic inflammatory response syndrome (SIRS), identifying prognostic 
factors, and recognizing changes in response to treatment[21].

Su et al[22] studied a total of 65 patients (35 with sepsis, 15 with SIRS, and 15 healthy 
subjects). Levels of dimethylisine, 2-phenylacetamide, glyceryl-phosphoryl-ethano-
lamine, and D-cysteine were associated with the severity of sepsis. In addition, four 
other metabolites (S-(3-methylbutanoyl)-dihydrolipoamide-E, glycerophosphocholine, 
and S-succinyl-glutathione) were elevated within 48 h prior to death, indicating their 
potential use in predicting mortality. Neugenbauer et al[23] demonstrated that high 
levels of putrescine, lysoPCaC18:0, and SM C16: 1 are associated with higher mortality 
in community-acquired pneumonia and intra-abdominal infections. In a previous 
study, Mickiewicz et al[24] found 20 metabolites significant for discrimination between 
survivors and non-survivors. The pathways highlighted in this study were related to 
energy metabolism and branched-chain amino acid processes.
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Metabolomic studies have characterized the fundamental role of lysophospholipids, 
especially lysophosphatidylcholine (LPC), in sepsis prognosis[25-27]. Ferrario et al[28] 
studied the changes in lipid homeostasis that occur during sepsis progression. Plasma 
samples from 20 patients with septic shock were studied on days 1 and 7 of septic 
evolution. The authors identified 137 metabolites, many of which were significantly 
different between survivors and non-survivors. LPC and phosphatidylcholine were 
found at lower levels in non-survivors than in survivors on day 1 and day 7. Using 
regression models, the lowest levels of LPC on day 7 were identified as the strongest 
predictors of mortality. Drobnik et al[26] observed that the LPC concentration was 
markedly reduced in patients with sepsis compared to controls, and a negative 
correlation between these levels and mortality was found. Instead, Cho et al[25] found 
no association between low LPC levels and severity of the disease in septic patients. 
They also observed no differences in LPC levels between survivors and non-survivors.

In sum, metabolomics is a tool that allows for predicting the severity and prognosis 
of sepsis patients. This technology also provides a higher level of biochemical detail 
and knowledge than other systems biology approaches.

Proteomics: Proteomics is the part of omics that is responsible for the study of the 
proteome. The proteome comprises the set of all proteins expressed by the genome of a 
cell, tissue, or organism at a given time and under certain conditions of time and 
environment[29]. This technology provides an analysis of the expression, location, 
function, and interaction of proteomes. Compared to other immunological tests, 
proteomics is a novel method that has the advantage of having high throughput, 
sensitivity, and specificity. The development of proteomics has provided a means to 
study cellular processes, such as cell signaling, identifying protein modifications, and 
the characterization of specific biological markers[30].

For more than a decade, the study of proteomics has been sought to find new 
biomarkers determining sepsis diagnosis and prognosis. Su et al[31] selected 192 
proteins in patients with sepsis and septic shock for investigation. Of these, vimentin 
(a molecule that modulates lymphocyte apoptosis and inflammatory response) 
increased significantly in patients with sepsis and septic shock compared to controls. 
The non-survivors had higher vimentin levels in serum, and its expression was 
increased in lymphocytes in particular. As such, this molecule could be a marker for 
prognosis prediction in patients with sepsis. In a previous study of 16 critically ill 
patients, Punyadeera et al[32] found that a combination of various proteins [e.g., IL-1α, 
interferon gamma-induced protein 10 (IP-10), soluble tumor necrosis factor receptor 
(sTNF-R)2 and soluble cell death receptor (sFAS)] could induce the progression of 
sepsis to septic shock. Furthermore, a combined measurement of matrix metallopro-
teinase (MMP)-3, IL-1α, IP-10, soluble IL-2 receptor (sIL-2R), sFas, sTNF-R1, soluble 
receptor for advanced glycation end products (i.e., sRAGE), granulocyte-macrophage 
colony-stimulating factor (GM-CSF), IL-1β, and eotaxin could differentiate survivors 
from non-survivors. Latour-Pérez et al[33] observed that increased levels of activator 
receptor 1 expressed in myeloid cells (i.e., sTREM-1) throughout the first 3 d of 
evolution were associated with high mortality in critically ill patients with sepsis. The 
high initial severity of illness explained this finding. Gibot et al[34] found that the 
progressive decrease in plasma concentrations of sTREM-1 indicated a favorable 
clinical course during the recovery phase of sepsis and discriminated between 
survivors and non-survivors. Decoux et al[35] analyzed the serum proteome in a group 
of patients with early sepsis. To cope with the large dynamic range of serum protein 
samples, the authors performed N-glycosylation, a chemical enrichment of 
glycopeptides and subsequent differences were found in the serum proteome between 
survivors and non-survivors. For instance, some modified proteins and glycopeptides 
belong to common pathways, such as the coagulation cascade and the complement 
system. The authors also found decreased total neutrophil gelatinase-associated 
lipocalin (NGAL) and vascular cell adhesion molecule 1 (VCAM-1) levels in non-
survivors, two molecules believed to be part of the inflammatory response. Thus, even 
though VCAM and NGAL increase in sepsis, their study suggested that these 
increases may be part of a beneficial response necessary for survival, and pointed to 
the complexity of the regulatory network that is already activated in these patients at 
an early stage.

Proteomics has also helped to understand the role of proteolysis in sepsis by 
studying circulating peptides. Bauzá-Martinez et al[36] described a higher number of 
circulating peptides in patients with septic shock than in sepsis patients or non-hospit-
alized healthy subjects. The peptide count and abundance in septic shock patients 
were higher in non-survivors than in survivors, suggesting an association between the 
magnitude of proteolysis and the outcome. The predominant role of serine proteases, 



Ruiz-Rodriguez JC et al. Precision medicine in sepsis and septic shock

WJCCM https://www.wjgnet.com 7 January 9, 2022 Volume 11 Issue 1

such as chymotrypsin and MMPs, in causing the observed proteolytic degradation was 
demonstrated.

Ultimately, proteomics helps increase our understanding of the pathophysiology of 
sepsis and identify new molecules that can predict patients’ evolution. This technology 
also aids in the identification of significant prognostic factors in sepsis patients. 
Therefore, proteomic approaches are promising for clinical applications and biomarker 
studies of sepsis.

Bioinformatics
A major trend today in research is improving the accuracy of the diagnosis of sepsis. 
The definition of sepsis was updated in 2016 and advocated using the quick Sequential 
Organ Failure Assessment (qSOFA), which assesses blood pressure, respiratory rate, 
and mental status for sepsis diagnosis[8]. A major criticism by the medical community 
of this score lies in its low specificity[37]. For this reason, different research teams are 
trying to enhance this scale through the addition of bedside parameters (e.g., bio-
marker data), which could improve these diagnostic criteria. Another critical aspect in 
clinical research is obtaining a set of baseline phenotypes and patient trajectories in the 
ICU through multivariate analysis techniques, such as principal component analysis, 
factor analysis, and probabilistic clustering. For instance, a previous study[38] defined 
the following four different phenotypes for sepsis through consensus k-means 
clustering: (1) Patients with low vasopressor titration; (2) Patients with chronic 
conditions and renal dysfunction; (3) Patients with high inflammation and pulmonary 
dysfunction; and (4) Patients with liver dysfunction and septic shock. Another study
[39] defined the following phenotypes predicting ICU outcomes: (1) Patients requiring 
mechanical ventilation support; (2) Patients with severe organ dysfunction; (3) Patients 
with high severity scores; and (4) Patients with hepatic dysfunction.

Therefore, improved versions of the qSOFA scale are evaluated in the context of all 
available data at hospital admission through standard machine learning techniques, 
such as multivariate logistic regression, relevance vector machines, support vector 
machines, shallow neural networks or random forests, taking the diagnosis of sepsis 
confirmed through hemocultures as the main outcome. To predict organ dysfunction 
before its onset, phenotypes are now being improved by adding different clinical traits 
and biomarkers that become altered before organ dysfunction is detected at a systemic 
level. Current initiatives are intended to enhance these phenotypes by applying a 
generalization of the factor analysis method with Deep Autoencoders to assess the 
strength of associations between variables and their importance within each patient 
phenotype.

Deep Reinforcement Learning has also become an important research line for 
assessing the continuum of organ dysfunction in sepsis. For instance, Raghu et al[40] 
proposed a continuous state-space model for sepsis management in a twist beyond the 
more traditional development and use of discriminative classifiers.

Other studies have used Bayesian Networks and Random Forests[41] for assessing 
patient trajectories of septic and septic shock patients in the acute phase. A common 
trend between these initiatives is that they all pave the way to study patient tra-
jectories in the ICU. Patient trajectory assessment includes studying the prevalence of 
each phenotype and their impact on other clinical outcomes, such as long-term 
survival (e.g., 100-d survival rate), vasopressor resistance, and days on organ support
[38,39,42].

An accurate assessment of the organ dysfunction continuum is possible with the 
inclusion of biomarker data (e.g., complement cascade, platelet degranulation, acute 
inflammation response, negative regulation of endopeptidase activity, and blood 
coagulation), through the development of comprehensive, interpretable and mathem-
atically rigorous models of knowledge representation through Deep Learning 
techniques such as Deep Reinforcement Learning and standard machine learning 
techniques based on graphical models[42]. These techniques will improve diagnosis, 
trajectory, and long-term survival prediction in sepsis and septic shock. Also, they 
could set the basis for the personalized treatment of organ dysfunction.

Available biomarkers at clinics
The reliability of clinical assessments in patients with sepsis is often limited, and there 
is a need to individualize decision-making processes based on objective data. The 
heterogeneity of patients with sepsis has led to the use of biomarkers for patient strati-
fication according to prognosis and severity of illness, improving phenotyping, 
intensifying medical therapy in high-risk patients, guiding antimicrobial stewardship, 
and allocating hospital resources.
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Procalcitonin (PCT) is the most widely studied biomarker and is helpful as an 
adjunctive clinical tool for predicting prognosis and supporting clinical decisions in 
sepsis[43]. In a previous study of patients with septic shock and high vasopressor 
requirements, patients who had PCT levels of > 2 ng/mL benefited from receiving 
adjuvant therapy with hydrocortisone, vitamin C, and thiamine to reduce the 
progression of organ dysfunction[44]. High initial levels of PCT (> 6 ng/mL) are 
helpful to predict progressive organ dysfunction and an increased risk of mortality
[45]. Thus, this subgroup of patients may be considered for receiving personalized 
rescue therapies, as conventional treatment may be insufficient to improve prognosis. 
Interestingly, PCT non-clearance is a predictor of adverse outcomes and treatment 
failure[46-48]. In a large observational study, the inability to decrease PCT by more 
than 80% was a significant independent predictor of mortality[49]. This finding may 
aid in sepsis care, potential suitability of adjuvant treatments, and allocation of 
resources. Well-designed randomized controlled trials (RCTs) and meta-analyses have 
shown a mortality benefit when using PCT-guided algorithms for antimicrobial 
stewardship in sepsis[50-52].

Mid-region fragment of pro-adrenomedullin (MR-proADM) is a biomarker mainly 
produced by vascular endothelial cells. MR-pro-ADM directly reflects plasma levels of 
adrenomedullin, a potent vasodilator agent with metabolic and immune-modulating 
properties. MR-proADM levels increase in sepsis, and high plasma clearance at day 5 
has been associated with better outcomes[53]. Furthermore, the role of this biomarker 
for the early identification of patients at higher risk of organ dysfunction has been 
recognized. In a recent study, the use of MR-proADM performed better in the 
prediction of mortality compared to lactate, PCT, C-reactive protein, and SOFA score
[54]. Former studies have evaluated MR-proADM to predict ICU admission and the 
need for urgent treatment[55]. Thus, MR-pro-ADM is found beneficial to guide clinical 
decisions regarding the use of ICU and hospital resources.

The use of sepsis biomarkers is evolving as one of the most promising deve-
lopments in precision medicine. Identifying additional reliable biomarkers in sepsis 
will significantly improve our understanding of this heterogeneous disease and help 
the medical community refine clinical assessments. Likewise, comprehensive clinical 
assessments should be the starting point for developing and studying clinically 
accurate biomarkers in sepsis[56,57].

Recent progress in several biomarker research areas, including the development of 
point-of-care testing technologies[58], will extend their application for diagnosis, risk 
stratification, molecular phenotyping, and monitoring therapeutic responses, leading 
to more personalized medicine at the bedside. Further clinical validation of current 
biomarkers should be sought in certain patients [e.g., renal dysfunction, receiving 
continuous renal replacement therapy (i.e. CRRT), trauma]. Point-of-care sepsis 
biomarkers have the potential to be a game-changer as their implementation becomes 
widely available.

ENDOTYPES AND SPECIFIC POTENTIAL TREATMENTS
Immunoglobulins 
The pathogenesis of sepsis is associated with dysregulation of the innate and adaptive 
immune systems. The adaptive immune system’s underlying altered mechanism is the 
function of antibodies and immunoglobulins (Igs)[59]. Still, the SSC guidelines[4] 
make a weak recommendation for using Igs as a potential treatment in sepsis patients, 
given the low certainty of evidence derived from the main studies and a meta-analysis
[60,61]. Although the previous studies have not assessed Igs’ baseline status as an 
inclusion criterion, it is reasonable to think that patients with hypogammaglobu-
linemia could benefit from Ig treatment.

The underlying mechanisms causing decreased levels of Igs in sepsis are not 
entirely clear. Still, impaired Ig production, vascular leakage secondary to endothelial 
dysfunction, an imbalance between IgG production and its utilization by the 
complement system, excessive catabolism, or reduced plasma cell Ig secretion may be 
involved. Also, patients with sepsis frequently have lymphopenia and quantitative or 
functional abnormalities within T cell and B cell populations[62].

Several studies have shown higher mortality in sepsis patients with hypogamma-
globulinemia. Although the definition of hypogammaglobulinemia is variable, low 
levels of gammaglobulins can be defined as IgG below 500 mg/dL in individuals older 
than 5 years or 2 standard deviations below reference values for age[63-67]. Low 
plasma levels of IgG (hypo-IgG) is the most common deficiency, with a prevalence as 
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high as 70%[68]. Hypo-IgG is associated with an increased risk of severe illness [higher 
acute physiology and chronic health evaluation II (i.e. APACHE II) score], a greater 
incidence of acute respiratory distress syndrome, and a longer duration of shock[69], 
especially on the day of diagnosis and the following 48 h[70]. Also, a synergistic role of 
IgG, IgM, and IgA in sepsis and septic shock has been described[66,71]. The combined 
presence of low levels of endogenous IgG, IgM, and IgA in plasma is associated with 
reduced survival in patients with sepsis or septic shock[72].

Some studies have reported that immunoglobulin formulations containing IgG did 
not improve mortality rates in patients with sepsis[60]. Conversely, Welte et al[73] 
demonstrated a clinically significant reduction of mortality risk in patients with 
pneumonia treated with intravenous Ig (IVIg). That study identified a population with 
a very high risk of mortality, namely patients with high levels of C-reactive protein 
and PCT, and hypo-IgM.

Polyvalent intravenous Igs represent a promising approach to modulate both the 
pro-and anti-inflammatory responses[74]. In adults, the use of IgM-enriched IVIg has 
shown favorable results[60,61,73-79]. IgM-IgA-enriched IVIg preparations are 
associated with a reduction in mortality[61,73,75,76]. A recent meta-analysis of 19 trials 
and > 1500 patients showed a significant reduction in mortality when using IgM- and 
IgA-enriched IVIg compared to human albumin solution or no treatment[80,81]. 
However, the eligibility criteria for receiving polyvalent IVIg and the best treatment 
strategy should be well defined[77]. The administration of a single dose of polyclonal 
gammaglobulin of 1 or 2 g/kg is widely accepted (level of evidence 2C)[82]. Other 
strategies propose IgM and IgA-enriched polyclonal IVIg dose of 250 mg/kg/d by a 
10-h infusion, for 3 consecutive days[83], or an infusion of 42 mg/kg body weight of 
IgM-enriched polyclonal IVIg once daily for 5 consecutive days[73]. In a retrospective 
study, 129 adult patients benefited from receiving IgM-IgA enriched IVIg, when the 
administration was performed within the first 23 h from admission[78].

The routine administration of IVIg in sepsis patients is not recommended, as stated 
in the 2016 SSC. However, patients with hypogammaglobulinemia could benefit from 
this treatment. Further studies are needed to clinically validate the most appropriate 
dose and administration regimen of IVIg in sepsis patients with hypogammaglobu-
linemia.

Endotoxin hemoadsorption
Endotoxin is a lipopolysaccharide (LPS) present in the outer membrane of Gram-
negative bacteria and is one of the best examples of pathogen-associated molecular 
patterns (i.e. PAMPs). Its presence, together with that damage-associated molecular 
patterns (i.e. DAMPs) released by host injured cells, results in the elevation of pro-
inflammatory and anti-inflammatory cytokines[84], activating the anti-infectious 
innate immune response and mediating the clinical syndrome of sepsis. LPS elicits its 
actions through a transmembrane protein, the TLR4, a type of pattern recognizing 
receptor expressed on innate immune system cells, in a process in which many 
important molecules are involved. In this process, the LPS-binding protein (i.e. LBP) 
transports circulating endotoxin and facilitates its recognition by the cell through 
receptor CD14. CD14 directs the LPS-LBP complex to TLR4, and the accessory protein 
myeloid differentiation 2 (MD2) associated with TLR4 on the cell surface is involved in 
the LPS-TLR4 union. Recognition of the LPS-LBP complex by these receptors 
transduces the endotoxin signal to the cell nucleus, leading to the expression of a 
complex network of inflammatory mediators. The presence of endotoxin activates 
changes in the expression of more than 300 genes, leading to the activation of 
macrophages, endothelial cells, neutrophils, and the coagulation cascade. It also 
triggers the release of a complex cascade of host-derived inflammatory mediators[85,
86].

Endotoxin activity has emerged as a valuable marker of disease severity. The lipid-
A domain of endotoxin induces most of the toxicity associated with LPS, characterized 
by fever, diarrhea, hemodynamic instability, multiple organ failure, and, ultimately, 
death[87]. A previous study highlighted the clinical relevance of circulating levels of 
LPS, showing a significant correlation between endotoxin levels and severity of septic 
shock, organ dysfunction, and mortality[86]. The prevalence of endotoxemia in 
patients with septic shock was high, and up to 82% of patients showing intermediate 
or high endotoxin activity[88]. Patients with endotoxemia also presented significantly 
higher lactate concentration and inotropic score.

In human illness, the measurement of endotoxin is notoriously difficult. The 
chromogenic limulus amebocyte lysate assay was the first diagnostic test developed. It 
was based on endotoxin’s ability to induce coagulation of proteins in the hemolymph 
of the horseshoe crab, Limulus polyphemus[89]. Since other microbial products, 
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especially from fungi, can activate the limulus reaction, the assay is not specific for 
endotoxin. Since 2004, the endotoxemia measurement in humans has been made 
through the Endotoxin Activity Assay (EAA), a chemiluminescent rapid (30-min) 
assay described by Romaschin in 1998[90]. That test is based on the ability of an 
antibody to form an antibody-antigen complex in whole blood. This antibody targets 
the highly conserved lipid A epitope of endotoxin. It has a very high binding affinity, 
leading to very high sensitivity. In addition, the antibody does not cross-react with 
Gram-positive or fungal components, allowing for very high specificity. The results 
are expressed in EAA units, where < 0.39 is considered low, 0.40-0.59 intermediate, 
and ≥ 0.60 high. As this assay uses patient’s neutrophils as a readout system, it is 
impossible to store specimens for later assaying, and measurements must be 
performed within 3 h of obtaining the sample. The EAA is the only assay that is 
approved by the United States’ Food and Drug Administration for measuring 
endotoxin activity in whole blood.

Endotoxin has been considered as one of the therapeutic targets for the treatment of 
sepsis and septic shock. The possibility of eliminating endotoxin through blood 
purification techniques and, specifically, by hemoadsorption has been raised. 
Adsorption with a fiber column immobilized with polymyxin B (PMX) (Toraymyxin®; 
Toray, Tokyo, Japan), is one of the best-known endotoxin elimination therapies. 
Another possibility is the oXiris® hemofilter (Baxter, Meyzieu, France).

Four clinical trials have evaluated the efficacy of endotoxin hemoadsorption in 
septic shock. In a multicenter, open-label, pilot, randomized, controlled study 
conducted in Europe, 36 postsurgical patients with severe sepsis or septic shock 
secondary to intraabdominal infection were randomized to receive PMX treatment 
over 2 h (n = 17) or standard therapy (n = 19)[91]. There were no statistically significant 
differences in endotoxin levels from baseline to 6, 8 or 24 h after treatment between the 
two groups. Five of the eighteen (28%) patients in the control group and five of the 
seventeen (29%) patients in the PMX group died during the study period. The survival 
analysis showed no statistical significance between the two groups. There was also no 
statistically significant difference in the mean duration of ICU stay nor the number of 
ICU-free days between the two groups. However, patients treated with PMX 
demonstrated substantial increases in cardiac index and oxygen delivery index, and 
the need for CRRT after study entry was reduced. PMX was well tolerated and 
showed no significant side effects. Thus, that study showed the PMX cartridge to be 
safe and to have the potential to improve cardiac and renal dysfunction due to sepsis 
or septic shock. The early use of polymyxin B hemoperfusion in abdominal septic 
shock (i.e. EUPHAS) trial[92] evaluated hemoperfusion with PMX in a small sample of 
64 patients with intraabdominal infection-related severe sepsis and septic shock. The 
design was oriented to assess hemodynamic improvement. The recovery of mean 
arterial pressure allowed for the reduction of vasoactive drugs in the PMX group. 
SOFA scores improved in the PMX group. Furthermore, a significant reduction in 28-d 
mortality was observed in the intervention group (32%) compared to the conventional 
treatment group (53%). The ABDOMIX trial[93] studied 243 patients with septic shock 
within 12 h after emergency surgery for secondary peritonitis due to organ 
perforation. The PMX hemoperfusion (i.e. PMX-HP) group (n = 119) received conven-
tional therapy plus two sessions of PMX-HP. There were no significant differences in 
the SOFA score nor the 28-d mortality rate between PMX-HP and control groups 
(27.7% vs 19.5%). The severity of the disease and mortality were moderate. Among the 
220 sessions performed, a premature interruption was observed in 25 cases (11%), 
mainly during the first session and primarily due to circuit clotting. A total of two 
PMX-HP sessions were completed in only 81 of 119 patients (69.8%). Of note, plasma 
EAA levels were not measured in any RCTs previously discussed.

The Euphrates trial[94] is one of the RCTs with the largest sample of patients and 
features the highest scientific rigor. Among its main characteristics is the use of EAA 
as a predictive biomarker. This trial studied 450 critically ill patients with septic shock 
and an EAA level of 0.6 or higher. The intervention consisted of two PMX-HP 
treatments (90-120 min) plus standard therapy, completed within 24 h of enrollment (n 
= 224) or sham hemoperfusion plus standard therapy (n = 226). PMX-HP was not 
associated with a significant difference in 28-d mortality. However, Klein et al[95] 
performed a post-hoc analysis of 194 patients with EAA between 0.6-0.89. A survival 
benefit was observed in patients who received therapy with PMX hemofilters. Monti et 
al[96] published the first study describing the use of PMX-HP as rescue therapy, 
involving 52 patients with refractory septic shock unresponsive to conventional 
therapy. The SOFA score was 10 (8-14) points and serum lactate level was 5.89 ± 4.04 
mmol/L. All patients were on mechanical ventilation, and 90% were treated with 
corticosteroids. Rapid and early reversal of circulatory dysfunction and other organ 
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failures were obtained. The overall 30-d mortality was lower (29%) than expected by 
the SAPS II score (47%).

Consequently, it seems reasonable that patients with refractory septic shock and 
severe multiorgan dysfunction, with adequate control of the focus and EAA 0.6-0.9 
could be candidates for endotoxin hemoadsorption. The TIGRIS study[97] is ongoing, 
recruiting patients with SOFA score > 9 and EAA levels between 0.60 and 0.89. The 
results of that study will provide more information on the possible benefits of 
endotoxin hemoadsorption in patients with septic shock, high requirement for 
vasopressor support, and severe multiorgan dysfunction.

Cytokine hemoadsorption
Sepsis appears when the initially appropriate host response to infection becomes 
amplified and subsequently dysregulated, leading to an imbalance between pro-
inflammatory and anti-inflammatory responses[98]. An excess of pro-inflammatory 
cytokines can lead to endothelial injury and SIRS. Severe cases can progress to dissem-
inated intravascular coagulation and multiple organ failure that eventually leads to 
death[99].

A tightly regulated balance in the cytokine network is crucial for eliminating 
invading pathogens on the one hand and restricting excessive, tissue-damaging 
inflammation on the other. This network comprises pro-inflammatory cytokines 
[tumor necrosis factor-alpha (TNF-α), IL-1, IL-6, IL-12, interferon-gamma (IFN-γ) and 
macrophage migration inhibitory factor (MIF)], anti-inflammatory cytokines [IL-10, 
transforming growth factor-beta (TGF-β), and IL-4], and soluble inhibitors of pro-
inflammatory cytokines[100], such as soluble TNF receptor (TNFR), IL-1 receptor 
antagonist (IL-1Ra), and IL-2 receptor antagonist (IL-1R2)[101,102]. In endothelial cells, 
TNF-α enhances the expression of adhesion molecules and increases integrin 
adhesiveness in neutrophils, promoting their extravasation into tissues[103,104]. TNF-
α and IL-1 are the main mediators of inflammation-induced activation of coagulation
[105]. In addition, TNF-α and IL-1 amplify inflammatory cascades in an autocrine and 
paracrine manner by activating macrophages to secrete other pro-inflammatory 
cytokines, lipid mediators, and reactive oxygen and nitrogen species, leading to sepsis-
induced organ dysfunction[98,106]. A key function of IL-6 is the induction of fever
[107] and the mediation of the acute phase response[108,109]. The high concentration 
of IL-6 binds to the soluble form of the IL-6 receptor. This complex combines with the 
signal-transducing component glycoprotein 130 on the cells, including endothelial 
cells, to elicit IL-6 signal activation. Despite its pro-inflammatory properties, IL-6 also 
has been shown to promote anti-inflammatory responses. IL-6 inhibits the release of 
TNF-α and IL-1[110] and enhances the circulation levels of anti-inflammatory 
mediators[111-113]. IL-10 and TGF-β suppress the production of pro-inflammatory 
mediators in immune cells and stimulate the production of IL-1Ra and sTNFRs[114,
115].

Several studies have suggested an association of IL-6 hypercytokinemia with organ 
dysfunction, response to treatment, and prognosis in sepsis. Kellum et al[116] found 
that 82% of patients with community-acquired pneumonia had a systemic elevation of 
cytokine levels. Furthermore, patients with higher levels of IL-6 and IL-10 had 
associated severe organ dysfunction[117,118] and higher mortality[116,118]. The 
association between high levels of IL-6 and IL-10 with organ dysfunction and 
mortality has been confirmed in other studies[117-120]. Patients who survive sepsis 
show a rapid decrease in IL-6 Levels, in contrast to the non-decreasing values or a 
slowly progressive decrease in non-survivors[119,120]. Thus, the reduction of IL-6 
Levels is associated with a better prognosis[121], and IL-10 overproduction is the main 
predictor of severity and mortality[122,123].

Given the central role of increased systemic inflammation in the pathophysiology of 
sepsis-induced organ dysfunction, the development of therapies aimed at dampening 
the cytokine storm could help improve immune homeostasis. Extracorporeal blood 
purification therapies have been proposed as a strategy to improve the outcome of 
septic patients, attenuating the systemic expression of pro-inflammatory and anti-
inflammatory mediators and restoring immune homeostasis[116]. These include 
different cytokine hemoadsorption techniques. Currently, we have several devices for 
assessing cytokine adsorption; these include Cytosorb® (CytoSorbents Corporation, 
Monmouth Junction, NJ, United States), oXyris (Baxter, Meyzieu, France), Alteco LPS 
Adsorber (Alteco Medical AB, Lund, Sweden), HA 330 and 380 (Jafron Biomedical Co., 
Zhuhai, GuangDong, China).

CytoSorb® is the most widely used cartridge, and our experience is greatest with it. 
It has been evaluated for various clinical conditions, such as SIRS after cardiopul-
monary bypass, liver failure, and rhabdomyolysis-associated myoglobinemia[118-
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120]. In it, cytokines are adsorbed by polymer beads within a perfused cartridge, 
through extracorporeal circulation[117]. Cytosorb® can attenuate both the pro-inflam-
matory and anti-inflammatory responses, achieving a recovery of balance much 
earlier.

Several observational studies have suggested the clinical benefits of using Cytosorb® 
in septic shock to reduce vasopressor support and even achieve a mortality reduction. 
Friesecke et al[124] studied 20 consecutive patients with refractory septic shock after 6 
h of standard treatment and hypercytokinemia. Refractory septic shock was defined as 
a progressive shock despite full-standard therapy and lactate ≥ 2.9 mmol/L (or 
increased compared to baseline), and high noradrenaline requirements (> 0.3 mcg/ 
kg/min). The mean IL-6 Levels were 25.523 ng/mL (range: 1052-491260 ng/mL). In 
that study, Cytosorb® application was found to be associated with a significant 
decrease in noradrenaline requirements and an increase in lactate clearance, which 
resulted in shock resolution in 13 patients. In another case series of 45 patients with 
septic shock treated with hemoadsorption, Paul et al[125] described a significant 
vasopressor dose reduction (i.e., norepinephrine by 51.4%, epinephrine by 69.4%, and 
vasopressin by 13.9%). Besides, a reduction in IL-6 Levels (by 52.3%) and lactate levels 
(by 39.4%) was observed in the survivors. A survival rate of 75% was reported in 
patients who received treatment within 24 h of admission to the ICU. Patients who 
received treatment within 24-48 h after admission to the ICU had a survival rate of 
68%. In a retrospective study conducted by Brouwer et al[126], Cytosorb® was 
associated with decreased 28-d all-cause mortality in patients with septic shock.

The scientific evidence on the clinical benefits of cytokine elimination derived from 
RCTs is scarce. Hawchar et al[127] performed a proof of concept, prospective, 
randomized pilot trial on the application of Cytosorb® in 20 patients with early-onset 
septic shock. A significant reduction in the need for vasopressor support was 
observed. In the control group, this change was not achieved with therapy. Rugg et al
[128] compared patients with septic shock who received CytoSorb® in addition to 
CRRT (n = 42) vs matched controls (n = 42). Median catecholamine requirements 
approximately halved within 24 h after the initiation of Cytosorb®. In-hospital 
mortality was significantly lower in the CytoSorb® group (35.7% vs 61.9%; P = 0.015). 
Derived from our current knowledge, we can attribute the benefits of cytokine 
hemoadsorption only to the elimination of cytokines in the subgroup of patients with 
very high hypercytokinemia and associated refractory septic shock. Further studies are 
needed to define the influence of hemadsorption in the elimination of other 
substances.

Cytokine hemoadsorption may have a role as rescue therapy in a particular 
subgroup of patients with refractory septic shock, hyperlactatemia, multiorgan failure, 
and very high hypercytokinemia. As such, appropriate and well-designed RCTs 
should be performed in patients with this clinical profile, to validate its benefits.

Immunoparalysis 
More than 20 years ago, it was hypothesized that the early hyperinflammatory phase 
in sepsis was followed by a compensatory anti-inflammatory response to limit tissue 
damage[129]. In recent years, the therapeutic advances incorporated in sepsis 
treatment have facilitated a reduction in sepsis mortality, especially in early mortality 
derived from septic shock and severe multiorgan dysfunction. Some of the patients 
surviving the first few days evolve to a situation of chronic multiorgan dysfunction, 
dependent on mechanical ventilation and vasopressor therapy. This stage, known as 
sepsis-associated immunoparalysis, resembles the normal aging process of the 
immune system (immunosenescence), characterized by a general dysregulation of 
innate and adaptive immune responses. Monocytes and macrophages play a critical 
role in critically ill patients with severe infections. These cells are the front-line of the 
innate cellular response that initiates and promotes the adaptive immune response.

The human leukocyte antigen (HLA)-DR isotype is a major histocompatibility 
complex class II cell surface receptor encoded by the HLA complex and constitutively 
expressed on antigen-presenting cells (e.g., monocytes/macrophages, dendritic cells, 
and B lymphocytes). It is also inducible on T lymphocytes[130]. Decreased HLA-DR 
expression has been demonstrated in septic patients, at both the protein- and RNA- 
levels. There is also a relationship between circulating HLA-DR mRNA and HLA-DR 
expression in vivo[131]. Various studies in vitro have shown that constitutive and IFN-γ 
inducible HLA-DR expression is predominantly regulated at the transcriptional level. 
The observed loss of HLA-DR expression in monocytes of septic patients implies a 
transcriptional regulation via a decrease of its transactivator, specifically the class II 
transactivator (i.e., CIITA)[130].
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Although no association has been found between the kinetics of monocytic 
(m)HLA-DR expression and primary infection sites or causative pathogens, it has been 
associated with severity. Patients with high SOFA scores have an associated low 
expression of mHLA-DR. The prognosis of patients with low mHLA-DR expression is 
poor compared to patients with a rapid increase in mHLA-DR expression, primarily 
because of the higher incidence of secondary infections and mortality rate[132]. The 
most reliable marker for monitoring the immune alterations in critically ill patients is 
the decreased mHLA-DR expression, measured by flow cytometry[133].

Immunoparalysis can be identified by studying the expression of HLA-DR in 
monocytes. Multiple studies have linked the low expression of mHLA-DR with the 
presence of more significant adverse effects and higher short and long-term mortality 
rates (at 7 d and 28 d) in sepsis and septic shock[134,135]. Measures of mHLA-DR 
levels can not only be used as a marker of monocyte functionality and severity of the 
disease but also to guide innovative clinical therapies based on restoring the immune 
system[135,136].

In patients with immunoparalysis, several immuno-adjuvant agents are under 
investigation. GM-CSF, IFN-g, anti-programmed death-ligand 1 (i.e., anti PDL-1), or 
IL-7 could have a role in treating sepsis-associated immunoparalysis. For instance, 
decreased mHLA-DR has been used to stratify patients for GM-CSF administration in 
a clinical trial, including a small sample of sepsis patients. This biomarker-guided GM-
CSF therapy was found to be safe and effective in restoring monocyte immunocom-
petence, shortening mechanical ventilation duration, and reducing ICU/hospital stay
[135]. Another clinical trial tested the hypothesis that GM-CSF improves neutrophil 
phagocytosis in critically ill patients. They previously measured the neutrophil 
phagocytic capacity and included the subgroup of patients in whom phagocytosis was 
known to be impaired (to < 50%). The study showed that GM-CSF did not improve 
mean neutrophil phagocytosis but was safe and appeared to increase the proportion of 
patients with adequate phagocytosis[137]. Novel therapies targeting the restoration of 
monocyte immunocompetence are promising for improving outcomes in later stages 
of sepsis.

CONCLUSION
The heterogeneity of sepsis is a complex and engaging feature of the disease that elicits 
novel strategies for improved patient classification. Thus, precision medicine creates 
an individualized approach on a case-by-case basis by identifying subgroups of sepsis 
patients with a high risk of adverse outcomes who may benefit from specific 
treatments or rescue therapies according to their particular characteristics (e.g., 
genotypes or phenotypes). Of note, we urge the implementation of predictive-
enrichment strategies for the design and development of future clinical trials to 
improve the certainty of scientific assessments.

Although some clinical tools are still being evaluated in the early stages of research, 
such as the omics technologies, precision medicine is becoming a reality that improves 
our clinical approaches when currently available tools are implemented in patients 
with sepsis, septic shock, and organic dysfunction. Further scientific contributions in 
this field will be essential to identify specific endotypes responding to targeted 
therapies and translate individualized treatments to the bedside.
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