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ABSTRACT New or emerging infectious diseases are commonly caused by patho-
gens that cannot be readily manipulated or studied under common laboratory con-
ditions. These limitations hinder standard experimental approaches and our abilities
to define the fundamental molecular mechanisms underlying pathogenesis. The
advance of capped small RNA sequencing (csRNA-seq) now enables genome-wide
mapping of actively initiated transcripts from genes and other regulatory transcribed
start regions (TSRs) such as enhancers at a precise moment from total RNA. As RNA
is nonpathogenic and can be readily isolated from inactivated infectious samples,
csRNA-seq can detect acute changes in gene regulation within or in response to a
pathogen with remarkable sensitivity under common laboratory conditions. Studying
valley fever (coccidioidomycosis), an emerging endemic fungal infection that increas-
ingly impacts livestock, pet, and human health, we show how csRNA-seq can unravel
transcriptional programs driving pathogenesis. Performing csRNA-seq on RNA iso-
lated from different stages of the valley fever pathogen Coccidioides immitis revealed
alternative promoter usage, connected cis-regulatory domains, and a WOPR family
transcription factor, which are known regulators of virulence in other fungi, as being
critical for pathogenic growth. We further demonstrate that a C. immitis WOPR
homologue, CIMG_02671, activates transcription in a WOPR motif-dependent man-
ner. Collectively, these findings provide novel insights into valley fever pathogenesis
and provide a proof of principle for csRNA-seq as a powerful means to determine
the genes, regulatory mechanisms, and transcription factors that control the patho-
genesis of highly infectious agents.

IMPORTANCE Infectious pathogens like airborne viruses or fungal spores are difficult
to study; they require high-containment facilities, special equipment, and expertise.
As such, establishing approaches such as genome editing or other means to identify
the factors and mechanisms underlying caused diseases, and, thus, promising drug
targets, is costly and time-intensive. These obstacles particularly hinder the analysis
of new, emerging, or rare infectious diseases. We recently developed a method
termed capped small RNA sequencing (csRNA-seq) that enables capturing acute
changes in active gene expression from total RNA. Prior to csRNA-seq, such an analy-
sis was possible only by using living cells or nuclei, in which pathogens are highly
infectious. The process of RNA purification, however, inactivates pathogens and thus
enables the analysis of gene expression during disease progression under standard
laboratory conditions. As a proof of principle, here, we use csRNA-seq to unravel the
gene regulatory programs and factors likely critical for the pathogenesis of valley
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fever, an emerging endemic fungal infection that increasingly impacts livestock, pet,
and human health.

KEYWORDS Coccidioides immitis, coccidioidomycosis, valley fever, WOPR, csRNA-seq,
gene regulation, genomics, phase transition, transcription factors, transcriptomics

C occidioides immitis is one of many emerging pathogens (https://www.niaid.nih
.gov/research/emerging-infectious-diseases-pathogens). It is a fungus that causes

valley fever (coccidioidomycosis), which increasingly impacts wild mammals, livestock,
pets, and humans (1–4). C. immitis grows as mycelia in the soil (vegetative) and forms
spores called arthroconidia that are easily aerosolized. Once inhaled, arthroconidia
transition to the spherule/endospore phase that can cause life-threatening pneumonia
or disseminated disease (3, 5). In 2018, 15,611 clinically significant human cases were
reported to the CDC, but this underestimates the true disease incidence as many infected
individuals do not present to medical care, are misdiagnosed, or are not reported (6, 7)
(https://www.cdc.gov/fungal/diseases/coccidioidomycosis/statistics.html). The economic
impact of valley fever in 2015 was estimated to be around $3.9 billion (4).

To combat this alarming trend and identify drug targets and novel avenues for the
diagnosis and treatment of this difficult-to-treat infection, it is critical to better under-
stand the fundamental gene regulatory mechanisms underlying the complex life cycle
and pathogenesis of C. immitis. However, similar to other highly infectious pathogens,
propagating C. immitis requires high-containment practices, equipment, facilities, and
training (8). As such, standard laboratory procedures like genome editing or mutagene-
sis screens are often cost-prohibitive and sometimes simply insurmountable. These
obstacles call for alternative strategies and approaches, particularly those that enable a
detailed readout of pathogenic states under standard laboratory conditions. Purified
RNA is nonpathogenic and can be readily isolated from inactivated infectious samples
and subsequently shipped and analyzed under standard laboratory conditions.
Consecutive RNA sequencing (RNA-seq) analysis enables the identification of all RNAs
present in a given sample. However, many transcripts such as enhancer RNAs (eRNAs)
or primary microRNAs (pri-miRNAs) are unstable and, thus, poorly detected by RNA-
seq. RNA-seq also cannot distinguish actively expressed genes from those that are
inactive but have stable transcripts that reside in the cell. The method is thus limited in
its ability to identify regulatory mechanisms. Therefore, although RNA-seq has been
used to capture changes in gene expression in C. immitis phase transition (9–11) as
well as other highly pathogenic samples (12, 13), the underlying gene regulatory
mechanisms and, thus, pathogenesis are not understood.

To decode gene regulatory mechanisms, it is important to capture all regulatory ele-
ments and transcription start sites (TSSs) active at a specific moment in time. Such efforts
require nascent transcription approaches that capture ongoing transcription independent
of transcript stability (14–16) rather than steady-state approaches such as RNA-seq, which
capture the sum of stable but not necessarily actively transcribed RNAs present in the
cell. Capturing nascent TSSs allows the identification of DNA motifs of key activating tran-
scription factors (TFs) with remarkable sensitivity (17–20). As such, nascent transcription
approaches have revolutionized our understanding of gene regulation, but methodologi-
cal constraints have limited their application. Most nascent methods, including global
run-on sequencing (GRO-seq) (14) and precision run-on sequencing (PRO-seq) (21),
require rather advanced expertise and millions of purified live nuclei. These prerequisites
make the application of such run-on methods challenging, particularly in organisms with
cell walls, including plants (22) and fungi, and largely obstruct the analysis of highly infec-
tious samples. To overcome these limitations, we recently developed capped small RNA
sequencing (csRNA-seq), which accurately detects the TSSs of actively transcribed stable
and unstable RNAs at single-nucleotide resolution from total RNA (15). Here, we demon-
strate the feasibility of using csRNA-seq to unravel the gene regulatory mechanisms in
highly infectious samples. Given the pressing need to learn more about valley fever
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pathogenesis as well as the challenges of analyzing highly infectious fungal spores that
are rich in secondary metabolites and protected by thick cell walls (23), we focused this
study on C. immitis. Performing csRNA-seq on RNA isolated from different stages of the
valley fever pathogen revealed alternative promoter usage, connected cis-regulatory
domains, and WOPR family TFs as likely critical for infection. WOPR TFs are known regula-
tors of virulence in other fungi (24–27), and we further demonstrate that a C. immitis
WOPR homologue, CIMG_02671, activates transcription in a WOPR motif-dependent
manner. These findings provide a foundation to explore avenues for the diagnosis and
treatment of valley fever and a proof of principle for csRNA-seq as a powerful means to
identify genes, regulatory mechanisms, and transcription factors that control
pathogenesis.

RESULTS
Functional transcriptome annotation of the BSL3 pathogen C. immitis. With the

aim to further our understanding of the genes and transcription factors driving C.
immitis phase transition and, thus, pathogenesis, we grew C. immitis RS mycelia and
young, 48-h-old, and mature, 8-day-old, spherules under biosafety level 3 (BSL3) condi-
tions. Young spherules (48 h old) differ from mature ones (8 days old) in that the for-
mer do not contain endospores (Fig. 1A) (28, 29). Samples were inactivated using
QIAzol (Qiagen) and ZR BashingBead lysis at 50 Hz for 25 min, and total RNA was
extracted under common laboratory conditions. This RNA was then used to capture
the steady-state transcriptome by ribosome-depleted paired-end RNA-seq as well as
ongoing transcription by csRNA-seq (15) (Fig. 1B). All assays were performed on dupli-
cate samples that were prepared on separate days for all three stages, and the gener-
ated data were highly reproducible and correlated across methods (see Fig. S1 in the
supplemental material). Combined, they reveal the functional transcriptome of C. immi-
tis at these three stages at unprecedented resolution: RNA-seq accurately quantifies
RNAs present in the sample, while csRNA-seq captures actively initiating RNAs and,
thus, the transcription start sites (TSSs) of both stable and unstable transcripts (Fig. 1C).

As accurate transcriptome annotations have become an integral part of research (30,
31), we first exploited our data to annotate genes and regulatory elements in C. immitis
(Fig. 1C). Using StringTie to assemble transcripts directly from our RNA-seq data (32), we
identified 7,163 genes (10,069 isoforms in total) in mycelia and 9,669 genes (14,639 iso-
forms) in spherules (Fig. S2A). Unlike in mycelia, where only 393 novel putative genes
were annotated, 2,240 (23.2%) putative genes that are not represented in the official ref-
erence annotation GTF file (Ensembl) were identified in spherules, underscoring the need
for studying the pathogenic, in addition to the vegetative mycelial, stage. Using csRNA-
seq, we identified in mycelia 11,728 promoter, putative enhancer, and other transcribed
regulatory regions that we jointly refer to as transcription start regions (TSRs) here. Most
TSRs found in mycelia were in promoters (6500 bp and either sense or antisense relative
to the annotated 59 ends of genes [TSSs]) (Fig. S2B). In 48-h- and 8-day-old spherules,
21,284 and 19,771 TSRs were identified, respectively. Most TSRs started transcription bidir-
ectionally (91.04%) from the same regulatory regions and initiated from several dispersed
individual TSSs rather than a single dominant TSS (Fig. 1C; Fig. S2C and D). Interestingly,
TSRs in spherules, but not mycelia, were frequently promoter distal and initiated unstable
RNAs (;49% of TSRs are .500 bp from reference annotated TSSs) (Fig. 1D; Fig. S3A). On
average, TSRs at annotated promoters had higher levels of associated RNA reads than
promoter-distal loci (Fig. 1E). Similarly, intragenic TSRs had higher levels of associated
RNA than intergenic TSRs (Fig. 1E).

To place these findings into a broader concept, we next profiled other fungi,
Saccharomyces cerevisiae, Schizosaccharomyces pombe, and champignon mushroom
(Agaricus bisporus), and integrated published data from the mold Neurospora crassa
and humans (15). Integrated, these data reveal that the patterns of transcription initia-
tion in Coccidioides mycelia share many properties with those of other fungi, including
bidirectionally transcribed regulatory elements, multiple initiation sites per promoter,
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and limited promoter-distal initiation (Fig. 1E and F; Fig. S3). The transition to
Coccidioides spherules, on the other hand, is associated with a massive increase in the
numbers of TSRs and unstable RNAs and a higher percentage of TSRs located at pro-
moter-distal locations.

Phase transition in C. immitis is accompanied by large changes in transcription
programs. To gain insights into the genes differentially expressed during phase transi-
tion, we next compared RNA-seq data from mycelia to those from spherules, which
identified 1,930 downregulated and 1,750 upregulated genes in mature spherules (8
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FIG 1 Functional transcriptome annotation of the BSL3 pathogen C. immitis. (A) Life cycle of C.
immitis. The dimorphic fungal pathogen grows as mycelia in the soil but upon inhalation transitions
to a parasitic spherule phase as alternating spherules and progeny endospores. (B) RNA from three
selected life stages. Mycelia as well as young (48-h-old) and mature (8-day-old) spherules were
isolated, cytosolic steady-state RNAs were captured by total RNA-seq, and the transcription start sites
of actively transcribed stable and unstable transcripts were captured by csRNA-seq. (C) Example
browser shot of a bidirectionally transcribed region in C. immitis mycelia. (D) Overview of the regions
where identified transcription start regions (TSRs) mapped in C. immitis mycelia and spherules. (E)
RNA-seq reads associated with csRNA-seq-defined TSRs in different locations as a proxy for transcript
stability. (F) Number and stability of TSRs captured across diverse fungal species and humans.
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days old) and 1,699 downregulated and 1,183 upregulated genes in young spherules
(48 h old) (log2 fold change [Log2FC], .1; false discovery rate [FDR], ,5%) (Fig. 2A).
The majority of differentially regulated genes in spherules were identified at both 48 h
and 8 days (Fig. 2A). Similarly, the transition from mycelia to spherules was associated
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FIG 2 Phase transition in C. immitis is accompanied by large changes in transcription programs and
connected cis-regulatory domains. (A and B) Scatterplot and quantitative bar graph of differentially expressed
(Log2FC, .1; FDR, ,0.05) nonredundant transcripts as captured by total RNA-seq (A) and csRNA-seq (B). Note
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and often are enriched for repetitive DNA. C. immitis RS supercontig (SC) 3.1-3.6 are shown.
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with massive changes in transcription initiation, as determined by csRNA-seq. In 48-h-
or 8-day-old spherules, 11,768 or 12,752 TSRs were differentially upregulated and 5,536
or 5,573 TSRs were downregulated compared with mycelia, respectively (Log2FC, .1;
FDR, ,0.05) (Fig. 2B), and the majority (.71%) of differentially regulated TSRs were
shared among both spherule stages. Together, these findings suggest a sharp transi-
tion in transcriptional regulation from mycelia to spherules, while changes are less pro-
found as spherules develop endospores.

Spherule-specific promoter-distal TSR activity is concentrated in specific genomic
regions. To obtain more insights into the phase-specific gene regulation that drives
pathogenesis, we first inspected the ;28% of mycelial TSRs that are distal of currently
annotated promoters (annotation ASM14933v2). Many of these TSRs are associated
with transcripts detected by RNA-seq, suggesting that they may mark novel gene loci.
In contrast, 49% of spherule TSRs are promoter distal. While some of these distal TSRs
also associate with RNA-seq and are thus likely novel gene loci (Fig. 2C, “*”), 34%, or
3,316, of the distal intergenic TSRs have low levels of, or no, associated stable RNA
(Fig. 2C, “#”). These promoter-distal elements have some features that resemble those
of unstable enhancer RNAs (eRNAs) that are produced at metazoan enhancers (33).
Furthermore, these intergenic TSRs are three times more likely to be located in the vi-
cinity of genes upregulated in spherules (based on the distance to the closest pro-
moter) than in the vicinity of those upregulated in mycelia (640 versus 220, .2-fold
change; FDR , 0.05). To determine the locations where TSR activity changed between
the mycelial and spherule stages, we compared the genomic locations of all annotated
TSSs with those of differentially regulated TSRs. In contrast to mycelium-specific TSRs
that were most commonly found at or near annotated TSSs, spherule-specific TSRs
were frequently found in regions that lack gene annotations (Fig. 2D). In addition to
being “gene-poor” regions, these locations were also enriched for repetitive elements,
primarily long terminal repeat (LTR) retrotransposons (Copia and Gypsy types) (Fig. 2D)
(34). The morphological transition to spherules is thus associated with a significant
increase in total TSRs, the majority of which are promoter distal and give rise to rapidly
degraded RNAs. Intriguingly, these “enhancer-like” TSRs appear to be coregulated and
form cis-regulatory domains with spherule-specific genes, similar to a phenomenon
thus far found largely in mammals (35, 36).

Phase-specific TSR switching as a potential means to alter gene expression.
csRNA-seq defines the start sites of transcripts at single-nucleotide resolution and can
thus reveal genes that are expressed in both mycelia and spherules but initiate from
different TSRs, leading to distinct 59 mRNA isoforms and occasionally alternative exon
usage (Fig. S4A). As such, we identified 99 transcribed annotated genes where the pri-
mary TSR in mycelia and 8-day-old spherules was separated by more than 100 bp
(;1% of annotated transcripts) (Fig. S4B). Alternative TSRs were usually specific to
phase transition: only seven 59 TSRs were different among the 48-h- and 8-day-old
spherules (Fig. S4C). Shifting the TSR upstream from mycelia to spherules but not vice
versa led to a significant loss of transcription, suggesting a role for TSR switching in
gene regulation (Fig. S4D and E), as previously reported for Histoplasma capsulatum
(37). These findings propose alternative promoter usage as a notable regulatory mech-
anism during spherule formation.

cis-regulatory sequences and transcription initiation in C. immitis. While our
refined analysis of the C. immitis transcriptome is fundamental to research, disease diag-
nostics and, eventually, new treatments require molecular targets and the identification
of the pathways critical for pathogenesis. We therefore next investigated enriched
sequence patterns proximal to csRNA-seq-defined TSSs. As a quality control, we first
assessed the nucleotide frequencies in proximity to transcribed TSSs that, consistent with
most other eukaryotic species, revealed a strong preference for the initiator motif “YCA
(11)” (Fig. 3A) (38, 39). The lack of a clear TATA box signature suggested that C. immitis,
in agreement with its phylogeny (40), utilizes the mode of “scanning initiation” that is
specific to some yeasts and has been elegantly characterized (41, 42) (Fig. S5A).

To further identify putative regulatory sequences in an unbiased manner, we next
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applied de novo motif discovery (HOMER [43]) to TSRs from positions 2150 to 150 rela-
tive to the primary TSS. Using sequence-content-matched regions of random genomic
sequence as a control, our analysis revealed six motifs that were most prevalent in TSRs
active in both mycelia and spherules, including the E-box motif (basic helix-loop-helix
[bHLH]), CRE/TRE (bZIP), and the yeast family-specific RIM101 and STP3 TFs (Fig. S5B).
Together, these motifs are likely critical for maintaining gene expression programs in
both morphological states of C. immitis.

cis-regulatory sequences mediating phase-specific transcriptional regulation in
C. immitis. To probe gene regulatory differences in mycelia and the pathogenetic
spherule stages, we next probed the stage-specific TSRs for enriched motifs. Consistent
with previous findings that report the TATA box as being linked to regulated rather
than constitutively active genes (44, 45), we found that the TATA box was enriched in
stage-specific TSRs and depleted at ubiquitous TSRs in both mycelia and spherules
(Fig. S5C). Furthermore, we identified two DNA motifs that were highly enriched at ei-
ther mycelium- or spherule-specific TSRs. The single mycelium-specific motif was a
heat shock response element-like (HSE) motif (Fig. 3B) (46). The single motif that was
highly enriched in spherule-specific but not mycelial TSRs was the WOPR motif
(Fig. 3C). Consistently, the HSE and WOPR motifs were largely mutually exclusive
(Fig. S5D). Intriguingly, the WOPR motif was enriched from positions2100 to 250 rela-
tive to the TSS, resembling the distribution of an activator, and WOPR transcription fac-
tors are known fungus-specific master regulators of morphological changes and viru-
lence (24, 25, 47).

A C. immitis Ryp1 orthologue can drive gene expression using the WOPR motif.
To further explore the mechanisms of spherule stage-specific gene expression, we
searched the C. immitis genome for putative WOPR TFs. Protein BLAST analysis of
white-opaque regulator (Wor1) from Candida albicans (CaWor1) identified C. immitis
CIMG_02671 as the likely homologue (NCBI BLASTp E value of 7e233). Given the limi-
tations associated with C. immitis as a BSL3 pathogen that hinder experimental
approaches such as genome editing, we next modeled the CIMG_02671 structure and
superimposed it onto available crystal structures from 2 WOPR family members, Wor1
from C. albicans and YHR177w from S. cerevisiae (ScYHR177w) (24, 48). This approach
demonstrated similar structures and positionings of key amino acids, including those
critical for WOPR DNA motif binding (Fig. 4A and B; Fig. S6A and B). Furthermore, the
amino acids reported to be required for Wor1-dependent white-to-opaque morphol-
ogy switching in C. albicans or mutations in YHR177w that disrupt its binding to DNA
containing the WOPR motif were highly conserved across WOPR TFs and CIMG_02671
(Fig. 4C). We therefore next cloned CIMG_02671 and tested its ability to activate tran-
scription in a WOPR motif-dependent manner using a reporter system in S. cerevisiae.
An intact or mutated WOPR motif was cloned upstream of the Cyc1 promoter (Pcyc1)
that lacked an upstream activating site (UAS-less), driving a b-galactosidase (LacZ) re-
porter (Fig. 4D). We then cotransformed this Pcyc1 LacZ reporter vector with plasmids
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expressing the positive control H. capsulatum Ryp1 (HcRyp1) or CIMG_02671 into S.
cerevisiae and measured reporter expression. As reported previously and as shown in
Fig. 4E, Ryp1 potently induced b-galactosidase expression when the WOPR motif was
intact but not when it was mutated (25). Similarly, CIMG_02671 induced b-galactosi-
dase expression in a WOPR motif-dependent manner (Fig. 4E). Collectively, these
results demonstrate that CIMG_02671 resembles other WOPR TFs at conserved and
functionally important amino acid residues and can activate transcription in a WOPR
motif-dependent manner.

DISCUSSION

Here, we exploit the advance of csRNA-seq to capture active (nascent) TSSs from
.500 ng of total RNA instead of intact nuclei or cells as required by other nascent
methods (16). This key advantage makes csRNA-seq readily applicable to pathogenic
or biohazardous samples, including fungi and others where morphological constraints
like cell walls can hinder nucleus isolation. The use of total RNA as the input also
greatly facilitates the analysis of pathogens that replicate or reside in the cytoplasm
(49). As such, the approach used here to deepen our understanding of the fundamen-
tal transcription regulatory mechanisms of C. immitis, the causative agent of valley
fever, should also be directly translatable to other infectious diseases.

Using inactivated BSL3 samples from the mycelial and spherule phases of C. immitis
and performing csRNA-seq on the isolated RNA identified the WOPR motif as being
highly enriched in the promoters and putative enhancer elements of spherule-specific
genes. Using homology, we identified CIMG_02671 and showed that it can activate
transcription in a WOPR motif-dependent manner. These findings comprise the first
comprehensive description and a model for the gene regulatory programs underlying
phase transition in the valley fever pathogen (Fig. 4F).

csRNA-seq identified .11,000 TSRs in C. immitis mycelia that were primarily pro-
moter proximal. In contrast, spherule transition nearly doubled the number of TSRs
and substantially increased the fraction of promoter-distal TSRs, many of which were
associated with rapidly degraded transcripts. These findings were consistent among in-
dependent biological replicates. In some cases, spherule-specific transcription activa-
tion was found spanning a genomic region that included both putative novel genes
and enhancer-like TSRs rather than individual genes. This finding implies a role of alter-
native regulatory mechanisms beyond cis-regulatory promoters in spherule matura-
tion. Eukaryotic chromosomes exhibit domains of correlated gene expression where
gene positioning influences the activation or silencing of transcription (35, 36).
Ascomycota fungi, of which Coccidioides spp. are members, are known to cluster into
functionally related gene families (50). In our data, the spherule-specific activation of
promoter-distal TSRs was enriched near spherule-specific genes. Thus, the transcrip-
tional activation of spherule-specific genomic domains, rather than individual gene
promoters, may be a key mechanism by which genes involved in spherule maturation
are coordinately regulated.

Spherule-specific TSRs were further highly enriched for the WOPR motif. WOPR TFs
regulate morphological changes and pathogenesis in diverse fungal species, including
the human pathogens C. albicans (24) and H. capsulatum (26). We further found

FIG 4 Legend (Continued)
domain identifying amino acids that when mutated disrupt white-to-opaque morphology switching in C. albicans (B). (C) Structure-based
sequence alignment of the WOPR TFs Wor1 from C. albicans, YHR177w from S. cerevisiae, Mit1 from S. cerevisiae, Ryp1 from H. capsulatum,
and CIMG_02671 revealed conservation of the key amino acids required for WOPR TF DNA binding or white-to-opaque morphology
switching in C. albicans. The amino acid numbering and the secondary structures of CaWor1 are marked at the top of the alignment.
Analogous functionally relevant residues are highlighted in shaded boxes of different colors, as described at the bottom of the sequence
alignment. kd, dissociation constant. (D) Overview of the reporter plasmid with the Cyc1 promoter (Pcyc1) driving a b-galactosidase (LacZ)
and the wild-type and mutant WOPR (knockout [KO] motif) motifs utilized. (E) Reporter activity of the plasmid from panel D with variations
of no motif (control DNA), the WOPR motif, or the mutant WOPR motif (KO motif) cotransfected into S. cerevisiae with either a control
vector (empty), H. capsulatum Ryp1, or CIMG_02671 revealed WOPR motif-dependent activation by both WOPR TFs Ryp1 and CIMG_02671.
(F) Model for the transcriptional regulatory mechanisms underlying C. immitis phase transition.
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CIMG_02671, which contains a conserved WOPR binding domain, to activate transcrip-
tion in a WOPR motif-dependent manner. Intriguingly, unlike both RYP1 and WOR1
WOPR TFs that are preferentially expressed with their activity in yeast or opaque cells,
respectively (26, 27), CIMG_02671 is not transcriptionally upregulated in 48-h- or 8-
day-old spherules compared to mycelia. CIMG_02671 activity is thus likely differently
regulated compared to WOR1 and RYP1. One potential mechanism could include TSR
switching. We found that significantly more TSRs in spherules shifted 59, which resulted
in transcription and, potentially, translation activation (37, 51). These more active, alter-
native TSRs commonly contained a WOPR motif and invite speculation that alternative
TSR selection and, thus, mRNAs could be a means to regulate gene expression
between fungal differentiation states. In support of the importance of CIMG_02671 in
valley fever pathogenesis, a recent preprint found that knocking out Coccidioides posa-
dasii CPSG_00528, which has 100% identity to CIMG_02671, blocked spherule matura-
tion under spherule-promoting conditions and was avirulent in the mouse model of
coccidioidomycosis (52). Collectively, these findings propose CIMG_02671 as a WOPR
TF that is important for spherule morphogenesis and C. immitis pathogenesis.

In conclusion, our findings provide insights into the fundamental transcriptional
programs underlying the phase transition of C. immitis and highlight regulatory
domains, TSR switching, and WOPR transcription factors as being central to valley fever
pathogenesis. We hope that these findings and the data generated will provide a
resource and stepping-stone to combat the increasing disease incidence and expand-
ing geographic range of valley fever. On a broader scope, this study also provides a
proof of principle for the utility of csRNA-seq as a novel approach to reveal key candi-
date transcription factors and regulatory programs underlying the pathogenesis of in-
fectious or biohazardous agents under standard laboratory conditions.

MATERIALS ANDMETHODS
Culture conditions. The C. immitis RS strain was grown as mycelia or spherules as previously

described (28). To grow mycelia, 2 � 106 arthroconidia/mL were incubated in 250-mL flat-bottom
Erlenmeyer flasks (Corning) in 50 mL glucose-yeast extract (GYE) medium. Flasks were cultured in a 30°C
incubator without shaking for 5 days. To grow spherules, arthroconidia were washed 2 times in modified
Converse medium (53). The spores were inoculated at 4 � 106 arthroconidia/mL into a 250-mL baffled
Erlenmeyer flask containing 50 mL of modified Converse medium. Flasks were set up and grown on a
shaker at 160 rpm in 14% CO2 at 42°C. Four flasks were harvested 2 days after inoculation, and the
remaining four flasks were harvested after 8 days. Fresh Converse medium was not added. The spherules
did not rupture and release endospores within that time in this culture system. Saccharomyces cerevisiae
(strain RYH2863) was grown as described previously (54). Schizosaccharomyces pombe (strain TH972) was
generously provided by Tony Hunter (Salk Institute for Biological Sciences) and grown in yeast extract
with supplements (YES) (55). White and brown ecotypes of Agaricus bisporus, better known as “champi-
gnon mushroom,” common mushroom, or “crimini mushroom,” were kindly provided by Monterey
Mushroom farms.

RNA extraction and purification. C. immitis mycelium and spherule samples were stored in QIAzol
(Qiagen) at 270°C and processed as previously described (9). Samples were added to a 2 mL ZR
BashingBead lysis tube with 0.5 mm beads (Zymo Research), and tubes were arranged in a precooled
TissueLyser II adapter (Qiagen) and disrupted by shaking at 50 Hz for 25 min. QIAzol samples were spun
at 21,000 � g for 5 min at 4°C, and the supernatant was transferred to a fresh tube. Total RNA was puri-
fied from mycelium and spherule samples (2 replicates/condition) using chloroform extraction and iso-
propanol precipitation and quantified using a Qubit 3.0 fluorometer (Invitrogen). RNA from white and
brown Agaricus bisporus mushrooms was isolated as described previously (22), using TRIzol LS extraction
following tissue homogenization. Libraries were generated for each ecotype separately and then pooled
for the analysis. RNA from S. cerevisiae and S. pombe was isolated by resuspending a pelleted culture in
TRIzol LS. Next, silica beads were added, and cells were lysed with a multivortexor, with 1 min on and 1
min off, on ice for a total lysis time of 6 min. Samples were spun at 21,000 � g for 5 min at 4°C, and the
supernatant was transferred to a fresh tube, followed by TRIzol LS RNA purification as described by the
manufacturer.

RNA and csRNA sequencing. For RNA-seq, strand-specific, paired-end libraries were prepared from
total RNA by ribosomal depletion using the yeast Ribo-Zero rRNA removal kit (Illumina) and then using
the TruSeq stranded total RNA-seq kit (Illumina) according to the manufacturer’s instructions. Next, 100
bases were sequenced from both ends using a NovaSeq 6000 system according to the manufacturer’s
instructions (Illumina).

csRNA-seq was performed as described previously (15). Small RNAs (sRNAs) of ;20 to 60 nucleotides
(nt) were size selected from 0.4 to 2mg of total RNA by denaturing gel electrophoresis. A 10% input sam-
ple was taken aside, and the remainder was enriched for 59-capped RNAs. Monophosphorylated RNAs
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were selectively degraded by Terminator 59-phosphate-dependent exonuclease (Lucigen), and RNAs
were 59 dephosphorylated by quickCIP (New England BioLabs [NEB]). Input (sRNA) and csRNA-seq libra-
ries were prepared as described previously (22) using RppH (NEB) and the NEBNext small RNA library
prep kit, amplified for 14 cycles, and sequenced for single end 75 base pair reads (SE75) on the Illumina
NextSeq 500 system.

WOPR transcription factor structure-based sequence alignment and modeling. Structure-based
sequence alignment was performed with CIMG_02671 and known WOPR family transcriptional regula-
tors such as Candida albicans white-opaque regulator 1 (Wor1) (CaWor1), ScYHR177w, ScMiT1, and
HcRyp1 using ESPript (56). To understand the DNA binding properties of CIMG_02671, we performed
automated protein structure homology modeling using SWISS-MODEL (57). To perform protein homol-
ogy modeling, we provided a truncated input sequence (positions 1 to 270) of CIMG_02671 (UniProt
accession number J3KLV5_COCIM J3KLV5 Camp-independent regulatory protein; https://www.uniprot
.org/uniprot/J3KLV5) and used the crystal structure of the WOPR family member YHR177w of S. cerevi-
siae with the 19-bp double-stranded DNA (dsDNA) (PDB accession number 4M8B) as the template. This
was one of the top-ranked template searches for the resulting model of CIMG_02671, with a top global
model quality estimation (GMQE) value of 0.4. Model building was carried out using the ScYHR177w
crystal structure (PDB accession number 4M8B) as the template, and a three-dimensional (3D) model
was automatically generated by the target-template alignment. The quality of the generated model was
evaluated by global and local quality estimates, by Ramachandran plots, and by the qualitative model
energy analysis (QMEAN) value for the different geometric properties for a single model. The final
CIMG_02671 model contains amino acids 11 to 223. To analyze its potential DNA binding properties, the
CIMG homology model was aligned with the crystal structure of the complex of CaWor1–13-bp DNA
using PyMOL (http://www.pymol.org).

Data analysis. (i) RNA-seq. Sequencing reads were aligned to the genome using STAR with default
parameters (58). Genomes and their gene annotation files (GTFs) were downloaded from Ensembl and
include C. immitis (ASM14933v2), S. cerevisiae (R64-1-1/sacCer3), S. pombe (ASM294v2), A. bisporus
(gca_000300555/Agabi_varbur_1), N. crassa (NC12), Drosophila melanogaster (BDGP6), and human
(GRCh38/hg38). Reference-guided transcript assembly was performed using StringTie2 (32) with the
additional parameters “-m 100 –rf.” The assembled transcripts were compared to the existing C. immitis
annotation using cuffcompare from the Cufflinks suite (59). Gene expression was determined by count-
ing the number of overlapping reads per gene using HOMER’s analyzeRepeats.pl tool, considering only
reads with a single, unique alignment (mapping quality score [MAPQ] value of $10) for all downstream
analyses. DESeq2 was used to identify differentially expressed genes (60).

(ii) csRNA-seq. Sequencing reads were trimmed for 39 adapter sequences using HOMER (“homerTools
trim -3 AGATCGGAAGAGCACACGTCT -mis 2 -minMatchLength 4 -min 20”) and aligned to the appropriate
genome using STAR with default parameters (58). Only reads with a single, unique alignment (MAPQ value
of $10) were considered in the downstream analysis. Furthermore, reads with spliced or soft-clipped align-
ments were discarded. Transcription start regions (TSRs), representing loci with significant transcription ini-
tiation activity (i.e., “peaks” in csRNA-seq), were defined using HOMER’s findcsRNATSS.pl tool, which uses
short input RNA-seq, traditional total RNA-seq, and annotated gene locations to eliminate loci with csRNA-
seq signals arising from noninitiating, high-abundance RNAs that nonetheless are captured and sequenced
by the method (see reference 15 for more details). Replicate experiments were first pooled to form meta-
experiments for each condition prior to identifying TSRs. Annotation information, including gene assign-
ments and promoter-distal, stable transcript, and bidirectional annotations, are provided by findcsRNATSS.pl.
Stable TSSs were defined as TSS clusters containing at least 2 per 107 RNA-seq reads within positions 2100 to
1500 relative to the TSS (15). To identify differentially regulated TSRs, TSRs identified under each condition
were first pooled (union) to identify a combined set of TSRs represented in the data set using HOMER’s
mergePeaks tool, using the option “-strand.” The resulting combined TSRs were then quantified across all indi-
vidual replicate samples by counting the 59 ends of reads aligned at each TSR on the correct strand. The raw
read count table was then analyzed using DESeq2 to identify differentially regulated TSRs (60). Normalized ge-
nome browser visualization tracks were generated using HOMER and visualized using IGV (61).

(iii) Sequence/motif analysis. Known motif enrichment and de novo motif discovery were performed
using HOMER’s (43) findMotifsGenome.pl tool with default parameters using TSR sequences from positions
2150 to 150 relative to the primary TSS. When performing de novo motif discovery, TSR sequences were
compared to a background set of 50,000 random genomic regions matched for overall GC content.
Nucleotide frequency and motif density plots were created using HOMER’s annotatePeaks.pl tool (43).

(iv) In vivo transcriptional assays. For the construction of plasmids used in the in vivo transcriptional
assay, CIMG_02671 was amplified from C. immitis RS genomic DNA (gDNA) using oligonucleotides 59-
GCACTAGTATGGGTAACGGCACTACAGC-39 and 59-GCGTCGACCTATTGCCCTCCGTAGCTTCC-39. The ampli-
fied fragment was digested with SpeI and SalI and ligated into a similarly digested p414TEF vector (62).
The resulting plasmid (pSB474) was maintained in the Escherichia coli DH5a strain and sequenced to
ensure that no mutation was introduced during the cloning process. pSB474, p414TEF (empty vector), and
the previously generated plasmid pSB94 (carrying H. capsulatum Ryp1) (25) were transformed into previ-
ously constructed S. cerevisiae Dmit1 Dyhr177w strains carrying p228 (PCYC1-DUAS-lacZ::WOPR motif [59-
AAAAATTAAAGTTTTTTTAT-39]), p230 (PCYC1-DUAS-lacZ::WOPR knockout [59-AAAAATACAAGACTTTTTAT-39]),
and an empty vector control (PCYC1-DUAS-lacZ) (25, 63). Four independent isolates of each S. cerevisiae strain
were stored and used in b-galactosidase assays, which were performed as previously described (64). Each
isolate was assayed in duplicate at least three independent times.

(v) 59 switch analysis. To identify genes with major changes in isoform usage due to changes in TSR
promoter usage, we first merged the de novo-assembled transcripts found using StringTie2 with
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cuffmerge into a single transcript set. We then identified the TSR from spherules (8 days old) or mycelia
with the most reads that overlapped on the correct strand in each gene locus (allowing the TSR to be up
to 200 bp upstream of the 59 end). The difference in the positions of the top spherule and mycelial TSRs
was recorded for each gene, and the mature transcript level expressed in each stage was estimated
using the RNA-seq data by counting the fragments per kilobase per million (FPKM) levels from the
upstream TSR to the downstream TSR (uFPKM) and then from the downstream TSR to the end of the
gene (dFPKM). These values were then filtered by the distance between TSRs (100 bp to 1,000 bp), by
the level of expression (FPKM of .5 in mycelia or spherules), and to ensure basal expression in both
groups (FPKM of .2 in both mycelia and spherules). To identify alternative TSRs leading to differential
starting positions in RNA-seq, the log2 ratios of uFPKM and dFPKM were calculated for both mycelia and
spherules with the addition of a small pseudocount {log2[(uFPKM 1 3)/(dFPKM 1 3)]}. Genes with log2

fold changes of greater than 1 or less than 21 between spherule and mycelial upstream-to-downstream
ratios were identified (n = 159 comparing mycelia with 8-day-old spherules). Each of these loci was visu-
ally evaluated using the IGV browser to confirm 2 distinct TSRs and different RNA-seq starting positions
associated with the alternative TSRs (n = 99 visually confirmed).

Data availability. All raw and processed csRNA-seq data generated for this study can be accessed at
the NCBI Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE179468. Previously published Neurospora crassa RNA-seq and csRNA-seq data can be accessed under
GEO accession number GSE135498. Previously published Coccidioides immitis RNA-seq data can be
accessed under GEO accession number GSE171286.
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