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Abstract

Free amino acids are one of the main chemical components in tea, and they contribute to the pleasant flavor, function, and quality
of tea, notably the level of theanine. Here, a high-density genetic map was constructed to characterize quantitative trait loci (QTLs)
for free amino acid content. A total of 2688 polymorphic SNP markers were obtained using genotyping-by-sequencing (GBS) based
on 198 individuals derived from a pseudotestcross population of “Longjing 43”× “Baijiguan”, which are elite and albino tea cultivars,
respectively. The 1846.32 cM high-density map with an average interval of 0.69 cM was successfully divided into 15 linkage groups
(LGs) ranging from 93.41 cM to 171.28 cM. Furthermore, a total of 4 QTLs related to free amino acid content (theanine, glutamate,
glutamine, aspartic acid and arginine) identified over two years were mapped to LG03, LG06, LG11 and LG14. The phenotypic variation
explained by these QTLs ranged from 11.8% to 23.7%, with an LOD score from 3.56 to 7.7. Furthermore, several important amino acid
metabolic pathways were enriched based on the upregulated differentially expressed genes (DEGs) among the offspring. These results
will be essential for fine mapping genes involved in amino acid pathways and diversity, thereby providing a promising avenue for the
genetic improvement of tea plants.

Introduction
Tea, a prevalent and healthy beverage because of its
excellent value and high palatability, is processed from
the tender shoots of tea plants [1, 2]. Currently, tea is
widely consumed worldwide for its extensive variety of
bioactive compounds, such as amino acids, catechins,
polyphenols, caffeine, and terpenes [3–5]. Free amino
acids (AAs) comprise more than 20 components, includ-
ing protein and nonprotein amino acids [6], which
increase tea quality and the beneficial health effects
for humans [7, 8], thereby attracting increasing attention
worldwide. Of them, glutamate (Glu), glutamine (Gln),
aspartic acid (Asp) and especially L-theanine (Thea) are
crucial and abundant amino acids.

Furthermore, free amino acids are among the most
critical sources of energy and serve as precursors in the
biosynthesis of numerous important secondary metabo-
lites such as phytohormones, chlorophyll and creatine
[9]. The synthesis of Glu and Gln is linked to the nitro-
gen cycle to help plants utilize and assimilate nitro-
gen and improve their nitrogen balance [10]. Glu is a

significant driving factor in the citric acid cycle via Gln
conversion to α-ketoglutarate, which is an integral com-
ponent of the citric acid cycle [11]. Theanine (N-ethyl-γ -
L-glutamine), a specialized nonprotein amino acid in tea
plants, accounts for up to ∼50% of the total free amino
acids in fresh leaves and is synthesized from Glu and
ethylamine in tea roots and subsequently transported
to aboveground tissues through the xylem [12, 13]. Con-
comitantly, Thea was verified to promote the umami
taste of tea infusions by counteracting the astringent
and bitter tastes derived from other metabolites, such as
catechins, theobromine and caffeine [14]. Moreover, Thea
can promote the release of dopamine and serotonin in
the human brain to enhance relaxation, concentration,
and learning ability, as well as prevent obesity and cardio-
vascular disease and improve human immunity [15–17].
Thea and Gln are homologs due to their similar molec-
ular structures, properties, and functions among diverse
plant species [18]. On the basis of the important role of
free amino acids in tea function and quality, breeding
elite cultivars with high amounts of amino acids has
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become a vital target for tea breeders . Thus, it is impor-
tant to elucidate the genetic basis of the amino acid path-
way in tea plants and provide useful resources to improve
tea quality. In comparison to other plants, Cheng et al.,
[19] using a radioisotope marked method, revealed that
the accumulation of amino acids in tea plants was not
due to an increase in the biosynthesis of products but to
a low level of Thea decomposition. Current research has
dissected the genetic mechanism of target compounds in
tea plants from a reverse genetics perspective, owing to
the lack of genetic resources for metabolic and genetic
mapping. Consequently, the underlying functional genes
for target traits affected by both genetic and environ-
mental factors remain largely unknown and unverified,
which limits tea breeding prospects.

China, regarded as the origin of tea plants [20, 21],
has a broad range of natural tea germplasm resources,
including normal green and variable color tea cultivars,
such as yellow, purple, and white, which are classified as
special resources. Albino cultivars, which exhibit abun-
dant white and yellow colors in young leaves, especially
in the spring season, and have ornamental value, are
characterized by high amounts of free amino acids and
low catechins, resulting in pleasant flavor and enticing a
wide range of tea drinkers [22, 23]. “Baijiguan” (“BJG”), a
popular light-sensitive albino tea landrace, has heritable
white and yellow tender shoots and produces tea with a
pleasant flavor [24]. Hence, it is necessary to breed elite
cultivars such as albino tea plants to meet the increasing
demand and promote revenues for tea growers and the
industry. Traditional tea breeding approaches for genetic
improvements are a time-consuming and labor-intensive
procedure due to the long juvenile stage [25], especially
when studying amino acid traits, which are controlled by
multiple genes or quantitative trait loci (QTLs). Linkage
map construction associated with QTL mapping can elu-
cidate and characterize the genes responsible for com-
plex and significant agronomic traits, such as sterility,
yield, disease, and quality [26–29]. These results enhance
the development of conventional plant breeding and
provide powerful insight into new approaches to enhance
the efficiency and precision of breeding via molecular
markers. These approaches have facilitated the genetic
improvement of tea by dissecting flavor genes. In recent
years, a considerable number of QTLs for important agro-
nomic traits have been successfully detected and char-
acterized in model plants and crops, including rice [30],
maize [31], and wheat [32]. However, among tea plants, it
is far more difficult to obtain suitable mapping popula-
tions for QTL mapping due to its long growth cycle and
self-incompatibility.

Single nucleotide polymorphisms (SNPs), which are
efficient molecular markers, are widely used in genetic
mapping and allele identification and are fundamental
for functional gene identification and breeding improve-
ment [33–35]. Here, we constructed a high-density SNP
linkage map for a cross between a distinctive albino culti-
var “BJG” and an elite green cultivar “Longjing 43” (“LJ43”),

the F1 population has transgressive segregation with
higher amount of free amino acids than the parents. Fur-
thermore, we used the F1 full-sib family to detect QTLs
responsible for the free amino acid content in tender
shoots, which demonstrates the genetic mechanism of
variation in amino acids in tea plants. Our study not
only provides a valuable foundation for exploring and
deciphering the amino acid pathways in tea plants but
also elucidates the structure and function of these vital
genes to provide useful resources for tea breeding.

Results
Sequencing data and polymorphism analysis
A total of 114.48 G of raw reads were derived from the
sequencing assembly of tea plants, and the average
amount of data across the 189 progenies was 681.41 M
(Q20 ≥ 90%, Q30 ≥ 85%). The results showed that there
were 33 678 450 female parent tags with an average
read coverage of ∼58-fold, 31 321 308 male parent tags
with an average read coverage of ∼57-fold, and F1
individuals with an average read coverage ∼12-fold.
The average matching rate in F1 offspring was 84.38%,
with 25 771 268–184 474 tags that could be used for
subsequent mutation detection and correlation analysis.

Marker screening and genotypic analysis
After removing abnormal bases, those with low integrity,
and those with segregation distortion based on the chi-
square test (P < 0.001), 30 971 informative SNP markers
were obtained from 1 656 000 SNP markers and used for
linkage analysis. There were 590 259 polymorphic mark-
ers based on the further genotypic analysis of the PP and
MP parents, and five types of markers were available in
both the parents and F1 populations, including “hk × hk”,
“lm × ll”, “nn × np”, “ef × eg” and “ab × cd”, as presented
in Fig. S1.

Genetic map
A total of 30 971 SNP markers were used for linkage
analysis. As a result, 2688 SNP markers were finally
mapped into 15 linkage groups (LGs), corresponding to
the haploid chromosome number of tea plants. After
linkage analysis, all these markers were placed on the
genetic map and were distributed among 2689 loci on 15
linkage groups, as described in Table 1. The linkage map
covered a total genetic distance of 1846.32 cM, with an
average locus spacing of 0.69 cM. Individually, the linkage
groups ranged in size from 93.41 cM to 171.28 cM, as
shown in Fig. 1.

Phenotypic data collection
The cardinal components of free amino acids, including
Thea, Asp, Glu, Gln, and Arg, investigated in F1 progeny
and both parents over two years are presented in
Table 2. Moreover, the mean value, skewness, kurtosis,
and coefficient of variation for each free amino acid
were calculated. The two parents differed greatly
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Table 1. Information and statistics of the genetic map.

Linkage group SNP number Genetic distance (cM) Average distance (cM)

LG 01 202 171.28 0.85
LG02 232 128.29 0.55
LG03 127 101.23 0.8
LG04 184 120.09 0.65
LG05 124 136.05 1.1
LG06 95 119.87 1.26
LG07 178 102.12 0.57
LG08 183 123.35 0.67
LG09 157 103.69 0.66
LG10 202 124.86 0.62
LG11 239 106.1 0.44
LG12 157 93.41 0.59
LG13 142 104.92 0.74
LG14 236 150.43 0.64
LG15 230 160.63 0.7
Total 2688 1846.32 0.69

Figure 1. Marker distribution across the linkage map. The x-axis, y-axis, and lines in the column represent the linkage group, genetic distance, and
unique marker, respectively.

in all traits investigated, and Thea was the most
abundant amino acid compound. Interestingly, the
paternal parent “BJG” had a higher AA content, which
coincided with a higher composition of Thea, Asp, Glu,

Gln and Arg than that of the female parent “LJ43” in
2018, especially Thea (Table S1). However, “BJG” had
a lower AA content and composition of key amino
acids than “LJ43” in 2019. Therefore, free amino acid
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Table 2. Phenotypic variation of the accumulation of individual free amino acids in the “BJG” and “LJ43” parents and F1 progeny.

F1 population

trait year LJ43 BJG min max mean ± SD CV (%) kurtosis skewness

AA 2018 1.51 2.41 1.67 6.33 3.75 ± 0.92 24.55 0.32 -0.37
2019 2.79 1.77 2.06 5.92 3.56 ± 0.78 21.55 0.52 -0.12

Thea 2018 1.01 1.48 4.11 1.09 2.29 ± 0.56 24.43 0.4 -0.04
2019 1.83 1.05 1.15 3.44 2.12 ± 0.43 20.46 0.34 -0.28

Asp 2018 0.04 0.12 0.05 0.47 0.20 ± 0.08 40.45 0.68 0.27
2019 0.17 0.11 0.07 0.36 0.20 ± 0.05 26.56 0.52 0.15

Glu 2018 0.13 0.19 0.11 0.53 0.29 ± 0.08 28.43 0.37 -0.12
2019 0.27 0.14 0.14 0.5 0.29 ± 0.07 23.07 0.4 -0.02

Gln 2018 0.16 0.3 0.09 1.21 0.38 ± 0.18 47.24 1.11 1.85
2019 0.2 0.22 0.07 0.9 0.30 ± 0.14 47.36 1.21 1.83

Arg 2018 0.02 0.16 0.04 1.11 0.31 ± 0.19 60.81 0.99 0.82
2019 0.07 0.15 0.01 0.92 0.24 ± 0.17 69.56 1.4 2.5

Table 3. Pearson’s correlations between the individual free amino acid compounds.

AA Thea Asp Glu Gln

Thea 0.900∗∗

Asp 0.601∗∗ 0.419∗∗

Glu 0.654∗∗ 0.468∗∗ 0.761∗∗

Gln 0.716∗∗ 0.486∗∗ 0.426∗∗ 0.461∗∗

Arg 0.766∗∗ 0.603∗∗ 0.503∗∗ 0.492∗∗ 0.512∗∗

accumulation is a sophisticated process that can be
impacted by complicated and variable environmental
conditions, such as nitrogenous fertilizer addition
and climatic conditions, [36–38] contributing to the
unstable QTLs for free amino acid content in different
years. The average levels of total AA, Thea, Asp, Glu, Gln,
and Arg across years were 2.15%, 1.42%, 0.11%, 0.20%,
0.18%, and 0.05% for “LJ43” and 2.09%, 1.27%, 0.12%,
0.26%, and 0.16% for “BJG”, respectively.

High coefficients of variation (CVs) for free amino acid
content were found for the F1 progeny listed in Table 3,
with a similar CV between AA and Thea. Nevertheless,
the CV of Arg was the highest, which revealed that the
content of Arg matched a discrete distribution. The CVs
for Arg and Gln were significantly higher than those for
AA, Thea, Asp, and Glu. At the same time, the phenotypic
values within the progeny across years varied from 1.61%
to 6.33% for AA, 1.09% to 4.11% for Thea, 0.05% to 0.47%
for Asp, 0.11% to 0.53% for Glu, 0.07% to 1.21% for Gln,
and 0.01% to 1.11% for Arg. Therefore, each amino acid
revealed a continuous distribution with transgressive
segregation (Fig. 2), indicating characteristics of quanti-
tative traits regulated by multiple genes.

AA represents total free amino acids; Thea represents
theanine; Asp represents aspartic acid; Glu represents
glutamate; Gln represents glutamine; and Arg represents
arginine.

Pearson’s correlations among free amino acid con-
tents across years are illustrated in Table 3. There was
a significantly positive correlation between AA and Thea
(r = 0.900, p < 0.001). Moreover, Asp was more highly cor-
related with Glu (r = 0.761, p < 0.001) than with the others
(r from 0.419 to 0.601, p < 0.001). Both Gln and Arg showed

a significant positive correlation with AA (r = 0.716 and
0.766, p < 0.001).

Free amino acid content QTL analysis
A total of 18 QTLs for free amino acid content were
detected by the whole-genome scan and distributed
across four linkage groups, LG03, LG11, LG13, and LG14,
as shown in Table 4. The confidence intervals ranged
from 0.18 to 48.16 cM over both years (Fig. 3). Moreover,
the average PVE per trait QTL was 16.7% for 2018 and
17.4% for 2019. The LOD peaks were at 8.5 cM in 2018
(with 20.9% PVE) and 7.7 cM in 2019 (with 23.7% PVE).
Although the number of QTLs per trait ranged from one
to three linkage groups, the three stable QTLs for Thea,
Glu, and Asp were validated on LG03 over both years.

Five QTLs controlling Thea were identified on two
linkage groups, with an average PVE of 16.5% for 2018
and 11.8% for 2019. Importantly, qThea-3 and qThea-14
were located on LG03 and LG14, with total PVEs of 51.9%
and 30.6% for 2018 and 11.8% for 2019, respectively. The
highest PVE exhibited by these QTLs was 20.9% for qThea-
3.1, near locus Im3210, which was also detected in 2019.
At the same time, the confidence interval ranged from
0.18 to 42.48 cM over both years, and the overlapping
region ranged from 24.35 to 25.69 cM. The LODs of qThea-
14.1 and qThea-14.2 presented were at positions 34.19 cM
and 45.5 cM, respectively, with 16.2% and 14.4% PVE. The
nearest loci, np6998 and np242, were located on LG14
with similar PVEs and LODs. Therefore, it was speculated
that qThea-14.1 and qThea-14.2 may be the same QTL.

Specifically, the stable QTL associated with Glu, qGlu3,
was identified on LG03 with an average PVE of 15.5% for
2018 and 20.3% for 2019. The confidence interval varied
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Figure 2. Distribution patterns of the total amino acid content (AA) and the contents of theanine (Thea), aspartic acid (Asp), glutamate (Glu),
glutamine (Gln) and arginine (Arg) in the “BJG”× “LJ43” F1 progeny. Parental values are indicated with solid (“BJG”) and empty (“LJ43”) arrows. The cyan
and green colors represent the values for 2018 and 2019, respectively.

from 3.03 to 50.25 cM over both years, and the highest
LOD was 7.34 near the MarkerIm6160 locus. The LOD
peak was present at position 41.79 cM in 2018 (with 22.7%
PVE) and position 9.5 cM in 2019 (with 18.2% PVE). qGln-
11.1, qGln-13.1, and qGln-3.1 were located on LG11, LG13
and LG03, with PVEs of 18.9, 17.5, and 13.6, respectively.
The nearest loci were Im1794, Im2270, and Im3210, and
the LOD peak was 5.64, ranging from 26.37 to 26.82 cM.

Three QTLs controlling Asp (qAsp-3.1, qAsp-3.2, and
qAsp-3.3) were all identified on LG03 across both years, as
presented in Fig. 5. The total PVE for all QTLs was 52.5%
for 2018 and 41.6% for 2019, and the confidence interval
ranged from 0.18 to 45.79 cM over both years, with an
overlapping region ranging from 13.95 to 14.93 cM. The
LOD peaks for qAsp-3.1 and qAsp-3.3 were both in 2019
at 7.70 and 5.59 cM and were near loci Im6599 and

Im6160, respectively, as shown in Table 4. Interestingly,
the LOD peak positions of qAsp-3.1 in 2018 and 2019 were
both at 12.82 cM, close to locus Im6599, with 18.9% and
23.7% PVE, respectively. Therefore, the QTL associated
with Asp was stable, revealing that qAsp-3.1 may con-
tribute strongly to the trait. Three QTLs controlling Arg
were identified on two linkage groups (LG03 and LG14),
with average PVEs of 15.95 for 2018 and 14.4 for 2019.
The confidence interval varied from 3.03 to 36.34 cM over
both years. The LOD peaks at 5.4 and 4.42 cM in 2018 and
2019, respectively, were located at positions 12.82 and
35.69 cM near loci Im6599 and Im6287, respectively.

KEGG enrichment analysis of the DEGs
A set of 1555 DEGs, including 901 upregulated and 654
downregulated genes, was observed from the analyses of
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Table 4. Overview of QTLs associated with free amino acid compound accumulation detected in the “BJG”× “LJ43” F1 progeny.

Trait Year QTL LG Peak (cM) Range (cM) LOD Nearer
marker

PVE (%)

Thea 2018 qThea-3.1 LG03 8.5 0.18-12.95 6.31 Im3210 20.9
qThea-3.2 LG03 25.35 24.35-25.69 4.23 Im6424 14.5
qThea-3.3 LG03 41.25 38.64-42.48 4.86 Im6161 16.5
qThea14.1 LG14 34.19 33.19-35.69 4.74 np6998 16.2
qThea-14.2 LG14 45.5 43.94-48.16 4.19 np242 14.4

2019 qThea-3.1 LG03 8.5 8.21-8.5 3.56 Im3210 11.8
Glu 2018 qGlu-3.1 LG03 9.5 8.21-13.95 5.4 hk14774 18.2

qGlu-3.2 LG03 25.35 24.34-26.2 3.79 Im6424 13.1
qGlu-3.3 LG03 41.79 38.64-42.48 4.45 Im3494 15.2

2019 qGlu-3.1 LG03 12.95 3.03-15.49 5.62 Im2625 17.9
qGlu-3.1 LG03 40.09 37.94-50.25 7.34 Im6160 22.7

Gln 2018 qGln-11.1 LG11 26.82 26.37-26.82 5.64 Im1794 18.9
qGln-13.1 LG13 31.54 31.54 5.18 Im2270 17.5

2019 qGln-3.1 LG03 8.5 0.18-13.95 4.15 Im3210 13.6
Asp 2018 qAsp-3.1 LG03 12.82 0.18-13.95 5.65 Im6599 18.9

qAsp-3.2 LG03 25.69 25.35-27.87 5.24 Im6424 17.7
qAsp-3.3 LG03 38.64 37.35-41.79 4.58 hk9022 15.6

2019 qAsp-3.1 LG03 12.82 1.18-14.93 7.7 Im6599 23.7
qAsp-3.3 LG03 40.09 34.82-45.79 5.59 Im6160 17.9

Arg 2018 qArg-3.1 LG03 12.82 3.03-13.95 5.4 Im6599 18.2
qArg-3.2 LG03 25.35 24.34-26.2 3.97 Im6424 13.7

2019 qArg-14.1 LG14 35.69 34.69-36.34 4.42 Im6287 14.4

F1 offspring (Fig. 4a). To further investigate the functional
profile of the identified DEGs, KEGG enrichment pathway
analysis was conducted. Previously, analysis of KEGG
enrichment of genes in yellow- and green-leaf progenies
or their parents revealed that the photosynthetic
antenna protein was the most significantly enriched [22].
However, the identification of upregulated DEGs in the
F1 individuals illustrated that “riboflavin metabolism”,
“tyrosine metabolism” and “arginine biosynthesis” were
the most notably enriched pathways among the top 20
enriched items (Fig. 4b). Furthermore, several metabolic
pathways involving amino acid components were
enriched for the upregulated DEGs, which is consistent
with the results of QTL mapping for genes related
to amino acid transport and metabolism in the F1
population based on the genome database of tea plants.

Gene expression profiling
Candidate genes that were functionally related to the
free amino acid pathway were chosen for qRT–PCR
analysis. Consequently, the expression profiling based
on the number of mapped genes from RNA-seq (FPKM)
was generally in accordance with the qRT–PCR results
(Fig. 5), notably those for amino acid transporter genes.
The primers designed are listed in Table S2. Furthermore,
we analyzed the expression profiles of candidate genes
mapped in mixed pooled samples with high and low
amounts of free amino acids (AAH and AAL). As shown
in Fig. 6b, the expression pattern of the parents and F1
generation with respect to AAH was significantly dif-
ferent that for AAL. Specifically, upregulated expression
was observed in terms of nitrate transporter genes. At the
same time, several downregulated genes were also found
among AAH offspring at that sampling point. Pearson’s

correlation analysis (Fig. 6c) illustrated that amino acid
transporters were positively correlated with AA, Thea,
Asp, Glu, Gln, and Arg contents. Collectively, these data
suggest that it may be more difficult to elucidate the
mechanism of genes affecting amino acid content simply
from a transcriptional perspective. More importantly, we
should pay attention to the biosynthesis and transport
of amino acids to verify the function of candidate genes.

Discussion
A saturated genetic map plays a crucial role in the under-
standing of genetic mechanisms underlying horticultur-
ally important traits via quantitative trait loci (QTL) anal-
ysis and will further facilitate molecular breeding [39]. To
date, many genetic maps have been constructed by inte-
grating dominant marker systems and have successfully
identified QTL in perennial woody plants. For instance,
a total of 138 QTLs for 57 flavonoids in four tissues
were identified, and a major gene encoding flavanone 3-
hydroxylase (F3H) was functionally verified in a Citrus
reticulata × Poncirus trifoliata population [40]. In tea
plants, after the first genetic map was constructed by
Tanaka et al. [41], several genetic maps were reported
[42]. Most recently, Xu et al. [43] genotyped F1 individ-
uals from “LJ43”× “BHZ” using 2b-RAD sequencing and
identified QTLs for catechin content. However, to our
knowledge, the parents that were previously used all
belong to conventional varieties, and albino segregating
populations are lacking.

Here, we initially constructed an F1 albino popula-
tion adopting an alternative “pseudotestcross” mapping
strategy derived from an intervarietal cross between the
albino landrace “BJG” and the elite green cultivar “LJ43”.

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhab029#supplementary-data
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Figure 3. Distribution of QTLs associated with free amino acid accumulation identified in the “LJ43”× “BJG” F1 population. Significant QTLs for each
trait are shown to the right of linkage groups and are represented by bars of different colors (Thea, green; Glu, blue; Gln, brown; Asp, black; and Arg,
gray).

A large number of F1 individuals (“BJG”× “LJ43”) were
genotyped using genotyping-by-sequencing. The highest
density genetic map with an average interval of 0.69 cM
between adjacent markers was successfully divided into
15 linkage groups ranging from 93.41 cM to 171.28 cM.

Owing to the high self-incompatibility and low seed
yield of tea plants, it is far more difficult to construct
a suitable population for genotyping and QTL analysis,
and selecting optimal parents and genetically superior
individuals among their progeny is a vital prerequisite
for translating trait loci into diagnostic genetic markers.
Free amino acid contents are quantitative traits, among
which the F1 population represents the average of the
parents used for crossing, particularly conventional
cultivars [44]. In this study, we obtained transgressively
segregating albino resources for examining amino acid
content, and these individuals had higher values than
the parents. A total of 16 QTLs for five traits related to
free amino acids distributed on 4 LGs were identified.
At multiple positions, we found that the QTLs associated
with Glu, Gln and Asp were combined with QTLs for Thea
on LG03. Importantly, the critical interval of candidate
genes related to amino acid metabolites was mined

(Table S3), including cationic amino acid transporter
(CAT), amino acid permease (AAP) and glutamate
dehydrogenase (GDH). Among them, CAT and AAP play
an important role in amino acid transport, participating
in theanine transport during root-to-shoot delivery [9,
45]. Therefore, the amino acid biosynthetic and transport
pathways were of interest for further analysis since
theanine is a vital product of amino acid metabolism. Our
study is a powerful tool for elucidating complex traits
and map-based cloning of functional genes related to
the amino acid content in tea plants, which will enhance
marker-assisted selection during the breeding of horti-
cultural plants. Further studies are needed to confirm
that these candidate genes are linked to the underlying
functions of amino acid biosynthesis and transport.

Furthermore, the pathways for the upregulated DEGs
between the F1 and parents based on transcriptome data
included those for several metabolic pathways for amino
acid components, indicating that there are potential
functional genes affecting the variation in free amino
acid traits in F1 individuals. Moreover, most progenies
with yellow tender shoots have higher amino acid
contents to a certain extent, suggesting that there is a

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhab029#supplementary-data
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Figure 4. Volcano plots of DEGs (a) and the top 20 enriched KEGG pathways (b) among the free amino acid QTLs in the segregating population.

potential relationship between amino acid metabolites
and leaf color. In a previous study, we revealed that
albinism in yellow-leaf tea plants was due to repressed
genes encoding LHC that were linked to aberrant
chloroplast development [22] which is consistent with
the reported subcellular sites of L-theanine biosynthesis
in tea plants [46]. Yuan et al. [47] also found that
higher amounts of amino acids in albino tea cultivar
shoots were closely related to chloroplast ribosomes and
the synthesis and degradation of chloroplast proteins.
Collectively, among the amino acid pathways studied, it
is of interest to further analyze potential genes that may
simultaneously regulate both amino acid content and
leaf color traits, which may provide valuable information
for identifying albino resources with higher amino acid
contents.

In summary, the results presented here, which com-
bine QTLs and transcriptome analysis based on an albino
genetic population, identified a number of QTLs for free
amino acid content, providing an important foundation
for gene discovery and cloning of amino acid biosynthetic
pathway genes, especially those related to theanine, in
tea plants. Moreover, the study lays a foundation for
marker-assisted selection in breeding to enhance the
genetic improvement of tea plants by dissecting impor-
tant metabolites. In the future, we will continue to adopt
a strategy to fine map and identify QTL mapping inter-
vals to further identify favorable target genes and verify
their function. For example, bulked segregant analysis
(BSA) uses DNA or RNA pools that are constructed based
on target traits with extreme phenotypes among the
segregating population to enhance the precision and
resolution of QTL identification [30, 48].

Materials and methods
Plant materials and DNA extraction
The mapping population composed of 198 F1 individuals
was derived from an intervarietal, controlled cross
between Camellia sinensis (L.) O. Kuntze “Baijiguan”
(“BJG”) and the elite green tea cultivar “Longjing 43” (LJ43),
using “LJ43” as the female parent (Fig. 6a). In addition,
300 F1 individuals were used to collect phenotypic data.
The male parent “BJG”, with white and yellow shoots
is one a popular landrace for making oolong tea. The
female parent “Longjing 43” is selected from a seedling
landrace of “Longjingzhong”, which is used to make
Longjing tea. All individuals were planted in the National
Germplasm Hangzhou Tea Repository of TRICAAS, China.
The “two and a bud” (one bud with two leaves) samples
were collected from each individual and its parents for
DNA extraction, following an improved CTAB method
described by Dellaporta et al. [49], for use in subsequent
experiments.

Library preparation and SNP marker mining
Genomic DNA from each parent and F1 progeny was
incubated with MseI, T4 DNA ligase, ATP, and MseI adapter
at 37◦C, followed by digestion using HaeIII and NlaIII. PCR
amplification was performed using a diluted restriction-
ligation mixture, dNTPs, Taq DNA polymerase and MseI
primers containing barcodes. After purification, the PCR
products were pooled, and a genotyping-by-sequencing
library was constructed for paired-end sequencing
(2 × 75 bp) using the Illumina HiSeq platform. Clean
data were used for cluster detection to filter tags with
sequencing depths less than 20× via BWA and SAMtools
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Figure 5. Verification of the relative gene expression levels by qRT–PCR analysis.

[50], avoiding false-positive SNPs. Mismatches within the
sequence for the same tag were considered a haplotype
and regarded as one potential SNP marker, and these
markers were used for subsequent genetic mapping.

Genetic map construction
Using the high-quality SNP markers and genotyping, the
genetic map was constructed using JoinMap with the
pseudotestcross strategy. All markers were clustered into
different linkage groups (LGs) using the selected SNP
based on a pairwise modified independence LOD score

as a distance matrix. The distance and sequence were
calculated for each marker by a regression mapping
algorithm to construct an integrated genetic map using
MapChart. Recombination between marker pairs belong-
ing to the same genetic bin was calculated as zero on
each LG if there was linkage.

Free amino acid extraction and identification
The contents of free amino acids in each parent and
progeny were determined using an automatic amino
acid analyzer (Sikam S433D) with two replicates in the
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Figure 6. Candidate gene expression profiling analysis. a Parent plants and the F1 progeny. b Expression profiles of parents and the F1 generation in
mixed pooled samples. c Pearson’s correlation analysis between the amount of amino acids and the expression of candidate genes.

spring of 2018 and 2019. The “two and a bud” of the
first flush were immediately harvested and steamed at
120◦C for 5 min and then dried to constant weight at
80◦C for 1 hour. The Sikam S433D method was carried out
following national standard GB/T30987–2014 with minor
modifications. First, 0.1 g fine powder was extracted in
a 90◦C water bath for 30 min with 10 mL boiling water.
The supernatant was collected, and the volume was

made up to 10 mL with distilled water and subsequently
filtered through a hydrophilic nylon membrane filter
with a 0.22 μm pore size. Afterward, the solution was
mixed 1:1 (v:v) with the sample diluent and stored at 4◦C
for testing.

The sample was detected using a lithium system with
a 50 μl injection volume. The flow rate was 0.45 mL/min,
and the reactor temperature was maintained at 35◦C
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and divided into S2100 and S4300 modules. In S2100, the
reaction reagent was ninhydrin solution at 0.25 ml/min,
and spectral data were collected at 280 nm. In S4300,
the reaction reagent was buffer A, B, C, and regeneration
solution D. The detailed configuration method of the
buffer and regeneration solution is shown in Table S4.
The elution time was 130 min, and a gradient elution
program was used (Table S5).

Free amino acid data analysis
IBM SPSS Statistics version 24.0 was used for the canoni-
cal correlation analysis of free amino acid contents in the
F1 population and parents. The maximum, minimum,
mean, standard deviation (SD), skewness, coefficient of
variation (CV) and kurtosis in the F1 population were
calculated for each trait in Excel. R 4.0.3 software was
used to analyze the significant differences between the
mean values of parental traits with a t test and detected
the distribution and variation of free amino acids in the
parents and F1 population with ggplot2.

QTL mapping
MapQTL 6.0 combined with the constructed genetic map
was used for phenotypic QTL mapping with interval
mapping (IM) and restricted multiple QTL model (rMQM)
methods [51]. The LOD score threshold for QTL dec-
laration was determined for the free amino acid trait
across years using the permutation test (1000 replica-
tions). Based on the displacement test, if the LOD score
of each linkage group exceeded the genome-wide sig-
nificance threshold of 95%, then a QTL was detected. A
QTL with >20% phenotypic variance explained (PVE) was
identified as a major QTL.

Gene expression analyses using RNA-seq and
qRT–PCR
Total RNA was isolated using the RNAprep Pure Plant
Kit (Tiangen Biotechnology Beijing, China) following
the manufacturer’s recommendations. The first-strand
cDNA was synthesized by random primers and reverse
transcriptase with RNA as the template, and complete
cDNA was subsequently generated using the Illumina
TruSeq RNA Sample Prep Kit (USA). cDNA libraries
were constructed with an insert fragment size of
450 bp, assessed with an Agilent 2100 Bioanalyzer
(USA), and sequenced by the Illumina HiSeq2000 system
with paired-end reads. Adapters and low-quality reads
(average mass fraction lower than Q20) were trimmed
by Cutadapt software [52] in accordance with default
parameters. The clean reads were mapped to the Camellia
sinensis var. sinensis genome [53] using Tophat2 [54].
Fragments per kilobase of exon model per million
mapped reads (FPKM) were extracted to estimate the
differential expression levels of protein-coding genes (p
value <0.05).

The validation of gene expression was conducted
by using quantitative qRT–PCR, and first-strand cDNA
was conducted as described with the PrimeScript™

RT Reagent Kit (TaKaRa). The relative expression was
calculated using the 2 −��Ct method.

Analysis of the differentially expressed genes
(DEGs)
The differential expression levels of protein-coding genes
between offspring were determined based on DESeq and
the ggplots2 R package with a |log2foldchang| >1 and p
value <0.05, the low free amino acid content offspring
were used as controls. The KEGG enrichment analysis
of DEGs (Table S6) was conducted using KAAS software
under the bidirectional best hit (BBH) parameter with a
false discovery rate (FDR) <0.05.
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