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Abstract

Volatile chemical products (VCPs) are commonly-used consumer and industrial items that are 

an important source of anthropogenic emissions. Organic compounds from VCPs evaporate on 

atmospherically relevant time scales and include many species that are secondary organic aerosol 

(SOA) precursors. However, the chemistry leading to SOA, particularly that of intermediate 

volatility organic compounds (IVOCs), has not been fully represented in regional-scale models 

such as the Community Multiscale Air Quality (CMAQ) model, which tend to underpredict SOA 

concentrations in urban areas. Here we develop a model to represent SOA formation from VCP 

emissions. The model incorporates a new VCP emissions inventory and employs three new classes 

of emissions: siloxanes, oxygenated IVOCs, and nonoxygenated IVOCs. VCPs are estimated to 

produce 1.67 μg m−3 of noontime SOA, doubling the current model predictions and reducing the 

SOA mass concentration bias from −75% to −58% when compared to observations in Los Angeles 

in 2010. While oxygenated and nonoxygenated intermediate volatility VCP species are emitted 

in similar quantities, SOA formation is dominated by the nonoxygenated IVOCs. Formaldehyde 
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and SOA show similar relationships to temperature and bias signatures indicating common sources 

and/or chemistry. This work suggests that VCPs contribute up to half of anthropogenic SOA in 

Los Angeles and models must better represent SOA precursors from VCPs to predict the urban 

enhancement of SOA.

1 Introduction

Organic aerosol (OA) is a major component of fine particulate matter (PM2.5) in urban areas 

throughout the world (Zhang et al., 2007). PM2.5 influences human health (Lim et al., 2012), 

climate (Intergovernmental Panel on Climate Change, 2014), and visibility (Hyslop, 2009), 

so understanding OA composition is an important step in mitigating the adverse effects of 

PM2.5. Secondary organic aerosol (SOA) is often the dominant component of OA (Jimenez 

et al., 2009) and is formed when gas-phase volatile organic compounds (VOCs) react with 

atmospheric oxidants to form products that condense into the aerosol phase, where they can 

undergo further reaction. SOA is formed via thousands of atmospheric reactions (Goldstein 

& Galbally, 2007), so understanding its sources remains a challenge.

Volatile chemical products (VCPs) are an important source of organic emissions that lead 

to SOA formation (McDonald et al., 2018; Qin et al., 2021). As vehicle exhaust becomes 

cleaner and mobile source emissions decline, the relative importance of VCP emissions 

increases (Khare & Gentner, 2018). Previous work suggests that during the 2010 California 

Nexus of Air Quality and Climate Change (CalNex) campaign in Southern California 

(Ryerson et al., 2013), VCPs contributed approximately 1.1 μg m−3, or 41%, of observed 

SOA above background levels in the Los Angeles Basin (Qin et al., 2021).

Modeling the formation of SOA in three-dimensional (3D) chemical transport models 

(CTMs) is challenging due to the complexity of VOC chemistry and computational 

constraints of regional-scale modeling. Models have tended to underpredict SOA mass 

in urban locations for a variety of reasons. For one, the SOA formation potential of 

intermediate volatility organic compounds (IVOCs) and semivolatile organic compounds 

(SVOCs) – or S/IVOCs – is not well constrained. Observations made during the CalNex 

campaign demonstrate that S/IVOCs are important sources of SOA, making up 10% of total 

gas-phase organic compound concentrations (Zhao et al., 2014) while contributing up to 

80% of above-background SOA mass (Hayes et al., 2015). Although it is often impossible 

to identify all individual species contributing to ambient S/IVOCs, these compounds may 

be classified based on their properties (e.g. volatility). Volatility basis set (VBS) models 

(Donahue et al., 2011) are often used to represent S/IVOC chemistry and partitioning, 

and have improved model estimates of SOA (Woody et al., 2016; Hayes et al., 2015; 

Robinson et al., 2007). Murphy et al. (2017) integrated a VBS model into the Community 

Multiscale Air Quality (CMAQ) model version 5.2 to represent the multigenerational aging 

of semivolatile primary organic aerosol (POA) leading to the production of SOA. Other 

studies have parameterized VBS models to represent S/IVOCs from mobile emissions (Lu 

et al., 2020; Jathar et al., 2017), but none have parameterized SOA formation from VCP 

S/IVOCs emissions. Additionally, the emissions of S/IVOCs are not well constrained and 

are often not included in detailed emissions inventories (Zhao et al., 2015). However even 
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when S/IVOCs are included in emissions inventories, they are often assigned to nonreactive 

or nonvolatile model surrogates that do not participate in model chemistry (T. Shah et 

al., 2020). Improving the representation of SOA chemistry in CMAQ will allow for more 

accurate exposure estimates in health studies and source apportionment for air quality 

management decisions.

Another source of error in CTMs is the lack of representation of oxygenated SOA 

precursors. Historically, mechanism development has focused on the oxidation chemistry 

of species emitted primarily from vehicles (e.g. BTEX: benzene, toluene, ethylbenzene, and 

xylene) or biogenic sources (e.g. isoprene, monoterpenes). While VCPs do emit some of 

these species, they also emit many oxygenated compounds (Seltzer et al., 2021; McDonald 

et al., 2018). The implications of a few important oxygenated precursors on air quality 

have recently been quantified (e.g. Janechek et al., 2017; Charan et al., 2020; L. Li & 

Cocker, 2018; W. Li et al., 2018), but many oxygenated precursors have not been studied 

in a laboratory setting. For the few oxygenated VCPs that have been studied in laboratory 

chambers, SOA yields were reported under unrealistic atmospheric conditions, e.g. high 

OH and aerosol seed concentrations (Charan et al., 2021). So, the SOA yields of these 

compounds have primarily been estimated using models such as the Statistical Oxidation 

Model (SOM; Cappa & Wilson, 2012) or VBS (McDonald et al., 2018; R. U. Shah et al., 

2020). These oxygenated species are not included as SOA precursors in most models, and 

their chemistry is needed to improve predictions of SOA mass.

In this work, we introduce a chemical mechanism to represent SOA formation from VCPs. 

Specifically, the potential of both oxygenated and nonoxygenated IVOCs to form SOA 

is developed and evaluated. We utilize a new VCP emissions inventory known as VCPy 

(Seltzer et al., 2021) to represent organic emissions from VCPs and to parameterize model 

species behavior in the chemical mechanism. The chemistry and emissions inventory are 

implemented in the CMAQ model version 5.3.2 to simulate air quality during the CalNex 

campaign in California in 2010. The model predictions are compared to measurements made 

in Pasadena during CalNex and the speciation of predicted SOA is examined.

2 Methods

2.1 VCPy emissions inventory implementation

VCPy is a modeling framework that estimates reactive organic carbon emissions from VCPs 

(Seltzer et al., 2021). Within this framework, the complete VCP sector is disaggregated 

into several product use categories (PUCs; e.g. cleaning products, personal care products, 

adhesives and sealants, paints and coatings). U.S. nationwide usage of each PUC is 

estimated, and survey data are then used to quantify the mass fraction of organic, inorganic, 

and water proportions, as well as speciate the organic fraction. Physiochemical properties of 

each organic component are used to estimate the characteristic evaporation timescale, which 

is then compared to an assigned use timescale to determine whether a compound is retained 

or evaporated from each PUC. In the initial implementation of VCPy (version 1.0), which is 

representative of 2016 conditions, the predicted nationwide and Los Angeles County VCP 

emission rates were 9.5 kg person−1 year−1 and 8.2 kg person−1 year−1, respectively. These 

emission rates are consistent with the low end of values seen in a previous study that used a 
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top-down approach to estimate VCP emissions (Qin et al., 2021). In our work, product use 

is based on data from 2010 with composition specified using data from the early 2000s to 

overlap with the CalNex campaign.

Since the speciation of organic emissions from VCPy is explicit, the underlying chemical 

and physical properties of emissions are output from the framework. These properties, many 

of which are relevant to atmospheric oxidation and subsequent SOA formation, include the 

oxidation rate with the hydroxyl radical (kOH), molecular weight (MW), effective saturation 

concentration (C*), and oxygen-to-carbon ratio (O:C). SOA mass yields, which are defined 

as the mass of SOA formed per mass of ROC precursor reacted, were assigned based on 

compound-specific structure and volatility (Seltzer et al., 2021).

A key step in implementing this inventory into CMAQ is ensuring that all compounds 

predicted to be emitted by VCPy are mapped to either an existing or a new model surrogate. 

Emissions of low-volatility organic vapors (C* < 106.5 μg m−3) from all sources are prime 

SOA precursors but traditionally discarded from the gas-phase chemical mechanism used in 

many CTMs (e.g. represented as nonvolatile (NVOL), nonreactive (NROG), or unspecified 

IVOC species that are not used in the chemical mechanism of CMAQ). As a result, 

these species do not participate in atmospheric chemistry and thus do not impact radical 

concentrations or SOA mass. In addition, oxygenated compounds are not currently included 

as SOA precursors in many mechanisms because of the historic focus on SOA formation 

from nonoxygenated vehicle exhaust and traditional VOCs like single-ring aromatics and 

biogenic hydrocarbons. The work of Qin et al. (2021) specifically identifies this loss of 

emitted reactive carbon mass as a reason for underestimated SOA from the personal care 

sector in the CMAQ model. To account for the SOA potential of this previously neglected 

organic mass, all compounds currently mapped to NROG, NVOL, and IVOC are reviewed, 

with most of this mass routed to one of three newly added categories of model surrogates: 

siloxanes (SILOX), oxygenated IVOCs (SOAOXY), or nonoxygenated IVOCs (IVOCP3, 

IVOCP4, IVOCP5, IVOCP6, IVOCP5ARO, and IVOCP6ARO). The updated mechanism 

(with SOA pathways described in Section 2.2) with the newly implemented speciation 

mapping is henceforth described as SAPRC07TIC_AE7I_VCP and the complete list of 

assignment rules is provided in the SI Methods.

County-level VCPy emissions (Seltzer et al., 2021) were gridded at 4-km scale to fit 

the CalNex domain (Baker et al., 2015) using a variety of spatial surrogates. The spatial 

surrogates used depend on the category of VCP emissions being described: agricultural land 

is used as a proxy for all agricultural pesticide emissions, the density of oil and gas wells 

for the oil and gas solvent emissions, and population for all remaining VCP sources. While 

some categories of VCP emissions could feature more refined spatial surrogate proxies, the 

uncertainty associated with spatial allocation of sources may be lower than uncertainty in 

individual source strength. More specifically, if an entire VCP category could be matched to 

a single surrogate, allocation methods would still assume there is no variation in the strength 

of individuals within the population of that surrogate (Y. Li et al., 2021).

All VCP emissions feature a sinusoidal diurnal profile with a peak at noon, with no 

application of day-of-week or seasonal profiles. Since the simulation period used in this 
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study is a single month, no seasonal changes would be observable over this time frame and 

previous work suggests little seasonal variability in VCP emissions (Gkatzelis et al., 2021). 

Other emission sectors (e.g. mobile sources, agriculture) are adjusted for seasonal impacts 

based on meteorological conditions and known activity data.

2.2 Parameterizing SOA formation from VCPs

To better represent the atmospheric chemistry of VCPs, SOA formation is added for 

the three new categories of emissions (siloxanes, oxygenated IVOCs, and nonoxygenated 

IVOCs) in the SAPRC07TIC_AE7I_VCP chemical mechanism within CMAQ (Table 1).

Cyclic volatile methylsiloxanes (cVMS), or siloxanes for short, are present in many personal 

care products, adhesives, and sealants. Collectively, siloxanes represent a large fraction of 

VCP emissions (Seltzer et al., 2021). Decamethylcyclopentasiloxane (D5-siloxane) is the 

most prevalent siloxane in urban atmospheres (D.-G. Wang et al., 2013) and laboratory 

studies have found D5-siloxane SOA yields ranging from 0% (Charan et al., 2021) to 50% 

(Janechek et al., 2019). The explicit oxidation mechanism is unknown and the SOA yields 

of other siloxanes are not well understood (Coggon et al., 2018). Here, siloxanes are treated 

separately from other oxygenated VCP species due to their anomalously low OH oxidation 

rate (Table 1). The mechanism of SOA formation used here utilizes an existing two-product 

model from Janechek et al. (2019) that was parameterized using oxidation flow reactor 

(OFR) experiments and photooxidation chamber data from Wu & Johnston (2017). In this 

implementation, the OH oxidation rate constant for D5-siloxane matches the rate reported in 

Janechek et al. (2017) and the hydroxyl radical is replenished after reaction.

Few laboratory chamber studies have investigated the oxidation processes of other 

oxygenated gas-phase species (e.g. Charan et al., 2020; L. Li & Cocker, 2018), so little 

experimental data exist about the SOA yields or oxidation products of oxygenated SOA 

precursors. Additionally, many models that predict the products of oxidation reactions (e.g. 

SOM and VBS) have not been parameterized or evaluated using oxygenated precursors. 

Without these models and laboratory studies, little is known about the oxidation products 

of these precursors, which limits our ability to develop a detailed model of their SOA 

formation. Therefore, all non-siloxane oxygenated IVOC emissions are represented by a 

single surrogate (SOAOXY) that undergoes a one-step gas-phase reaction with the hydroxyl 

radical to form a nonvolatile aerosol surrogate (AOIVOC). This simple mechanism reduces 

the reliance on many parameters that are not well-constrained. The MW, kOH, C*, and SOA 

yield of this surrogate are calculated as a mass-weighted average of the oxygenated IVOC 

emissions from VCPs in Los Angeles County which are generally consistent with what 

would be calculated using nationwide information.

Nonoxygenated IVOC emissions are represented using the model described by Lu et 

al. (2020), which uses a VBS model and multigenerational aging scheme to represent 

the SOA from gasoline, diesel, and aircraft sources. Six surrogates are differentiated by 

structure (alkane vs. aromatic) and effective saturation concentration, and each is assigned 

a four-product yield distribution, generating SVOCs after one oxidation step. Many of 

the nonoxygenated IVOC species from mobile and VCP emission sources have similar 

structures (i.e. long and branched alkanes and aromatics), volatilities, and SOA yields (see 

Pennington et al. Page 5

Atmos Chem Phys. Author manuscript; available in PMC 2022 December 16.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Fig. S1), making the Lu et al. (2020) model a good representation of oxidation and SOA 

formation from nonoxygenated VCP IVOCs.

2.3 CMAQ model implementation

2.3.1 CalNex model configuration—The updated chemical mechanism and VCPy-

derived emissions were implemented in CMAQ version 5.3.2 (US EPA Office of Research 

and Development, 2020). CMAQ version 5.3 and the subsequent minor releases are 

documented in Appel et al. (2021). The model was used to simulate air quality during the 

CalNex campaign from May 15 to June 15, 2010, with an additional 14-day spin-up period. 

Outside the VCP updates, the model configuration matches the implementation used in Qin 

et al. (2021) and Lu et al. (2020). The model domain has 4-km × 4-km horizontal resolution 

(325 × 225 grid cells) covering California and Nevada with 36 vertical levels reaching 50 

mbar. Meteorological inputs are derived from the Weather Research and Forecasting (WRF) 

Advanced Research WRF core Model version 3.8.1 (Skamarock et al., 2008). Gas-phase 

chemistry is represented using SAPRC07TIC (Pye et al., 2013; Xie et al., 2013) with the 

addition of the VCP chemical mechanism summarized in Table 1. Aerosol-phase chemistry 

is simulated using an extended version of the AERO7 mechanism, depicted in Figure 1, 

including all AERO7 reactions plus those of the new VCP mechanism (boxed in red) and 

mobile IVOCs (boxed in red in the lower left) that participate in the multigenerational aging 

shown in the orange boxes (Lu et al., 2020). This diagram also includes a representation of 

the aqueous-phase cloud chemistry and removal used in the Asymmetric Convection Model 

(ACM) version 2 module (Binkowski & Roselle, 2003), which has been updated to include 

wet deposition properties for the new aerosol surrogates (Table 1).

All non-VCP anthropogenic emissions are based on the 2011 National Emissions Inventory 

(NEI) version 2 (US EPA, 2015). VCP emissions in the NEI are removed and replaced with 

VCPy predicted emissions using the Detailed Emissions Scaling, Isolation, and Diagnostic 

(DESID) module (Murphy et al., 2021). Mobile NOx emissions were reduced by 25% 

in all simulations to better match observational data from the CalNex campaign (Qin 

et al., 2021). Mobile IVOC emissions and the semivolatile treatment of mobile POA 

were treated according to the methods described in Lu et al. (2020). The IVOCs are 

assigned to the appropriate IVOCP3/4/5/6/5ARO/6ARO surrogates that are also used to treat 

nonoxygenated IVOCs from VCPs. Wind-blown dust emissions are neglected in this study. 

Biogenic emissions are calculated online using the Biogenic Emission Inventory System 

(BEIS) version 3.6.1 (Bash et al., 2016) as are sea spray aerosol emissions.

2.3.2 Simulation cases—Three simulations were evaluated against the observations 

collected during the CalNex campaign. A “zero VCP” case removes all VCP emissions. 

The “CMAQv5.3.2” case is a standard CMAQ simulation with base emissions (i.e. VCP 

emissions from the NEI) and base chemistry (i.e. no new VCP chemistry). Finally, 

the “CMAQv5.3.2+VCP” case adds both the VCP chemistry described above (i.e. 

SAPRC07TIC_AE7I_VCP) and replaces all NEI VCP emissions with VCPy-derived VCP 

emissions. Comparisons between the “zero VCP” case and the “CMAQv5.3.2+VCP” 

case illustrate the complete impact of VCPy emissions on modeled SOA. In contrast, 

comparisons between the “CMAQv5.3.2” case and the “CMAQv5.3.2+VCP” case illustrate 
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the impact of the new representation of VCP emissions and chemistry against the current 

status of VCPs in CMAQ. Results from the CMAQv5.3.2 case are presented primarily in the 

SI.

2.3.3 Comparison with observations—Observational data are provided by a suite 

of instruments deployed during the 2010 CalNex campaign in Pasadena. There were two 

data collection sites in the CalNex campaign – Pasadena and Bakersfield – and model 

predictions are compared to measurements made at the Pasadena site, which is located in 

the Los Angeles Basin approximately 18 km downwind of the urban core (Ryerson et al., 

2013). PM1 (fine particulate matter with diameter < 1 μm) OA data were obtained with an 

aerosol mass spectrometer (AMS) and have been analyzed via positive matrix factorization 

(PMF) to determine its composition (Hayes et al., 2013). Formaldehyde (HCHO) data are 

provided in Warneke et al. (2011) and carbon monoxide (CO) data are available from 

Santoni et al. (2014). Ozone data throughout California were obtained from the EPA AQS 

monitoring network for 178 sites operating during the simulation period (US EPA, 2013). 

Hourly ozone concentrations were used to calculate daily maximum 8-hour average (MDA8) 

ozone concentrations.

3 Results & Discussion

3.1 VCP emissions and implications for SOA

VCP emissions were split almost equally between species that do and do not form SOA. The 

SAPRC07TIC_AE7I_VCP speciation mapping (Figure 2) indicates 56.4% (4.8 × 107 kg 

year−1) of Los Angeles County VCP emitted mass does not form SOA. This mass includes 

small species commonly used as solvents, such as ethanol, acetone, and small alkanes. The 

remaining 43.6% (3.7 × 107 kg year−1) of Los Angeles County emissions are assigned to 

model surrogates that form SOA. 3.5% of the total emissions are assigned to siloxanes, 

7.8% to oxygenated IVOCs, 11.8% to nonoxygenated IVOCs, and 20.4% to traditional SOA 

precursors, such as VOC alkanes, toluene, and other aromatics. The volatility and SOA 

yields of species in each category are summarized in Fig. S1.

Figure 2 indicates that in traditional model processing, precursors to SOA are systematically 

discarded from chemistry calculations. As described in Section 2.1, low-volatility emissions 

(i.e. NROG, NVOL, and IVOC) do not participate in SOA or radical chemistry in traditional 

SAPRC07TIC_AE7I which is a key issue in representing SOA mass. The inner ring of 

Figure 2 depicts the fraction of each category that was originally assigned to inactive species 

(NROG, NVOL, and IVOC; hatched) versus other existing surrogates (solid). 2.6 × 107 

kg year−1 (30.7%) of the total VCP emissions were originally assigned to these surrogates 

and did not participate in any atmospheric chemistry processes. Using the new speciation 

and mechanism, 1.8 × 107 kg year−1 (21.2% of total VCP emissions) were reassigned to 

surrogates that form SOA in the model (hatched inner ring: red, blue, orange, and purple). 

The remaining 8.0 × 106 kg year−1 (9.4% of total VCP emissions; inner ring hatched green) 

is comprised of species with SOA yields of zero and were not reassigned to SOA-forming 

surrogates.
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Averaged over the duration of the CalNex campaign, VCPs are predicted to be a larger 

source of IVOCs than mobile sources, as shown by the increase in gas-phase IVOC 

mass in the CMAQv5.3.2+VCP case compared to the zero VCP case (Fig. S2). Across 

mobile and VCP sources during CalNex, CMAQ predicts 6.4 μg m−3 of the gas-phase 

IVOC mass is nonoxygenated and 2.6 μg m−3 of the IVOC mass is oxygenated (Fig. S2). 

The observed campaign-average total IVOC concentration was 10.5 μg m−3 (Zhao et al., 

2014), with 6.3 μg m−3 attributed to hydrocarbon-like IVOCs and 4.2 μg m−3 attributed to 

oxygenated IVOCs. However, this observed estimate of oxygenated IVOCs is conservative 

(lower bound) based on the experimental method employed by Zhao et al. (2014). Thus, 

the predicted nonoxygenated IVOC mass, which includes contributions from both mobile 

and VCP sources, reproduces observations with high fidelity. CMAQ, which only considers 

IVOCs from VCP and mobile sectors, underpredicts the mass of oxygenated IVOCs by 38%, 

suggesting additional missing products of oxidation or emissions.

The new SOA systems combined with traditional SOA precursors in CMAQ resulted in an 

effective SOA yield for the VCP sector – defined as the emission-weighted average of the 

individual species’ mass-based SOA yields – of 5.6% for Los Angeles County. This Los 

Angeles County yield is in good agreement with the work of Qin et al. (2021), that found 

a 5% yield led to SOA predictions consistent with ambient observational constraints. The 

U.S. effective VCP SOA yield (5.3%) is only slightly lower than the yield expected for 

Los Angeles, due to differences stemming from the variability in the composition of VCP 

emissions nationwide versus in Los Angeles.

3.2 CMAQ results: SOA, ozone, and formaldehyde

Modeled PM1 SOA increased considerably in response to the newly implemented 

VCP emissions and chemistry, bringing model predictions into closer agreement with 

observations. Daily maximum PM1 SOA concentrations increased from 1.4 μg m−3 (−79% 

mean bias) in the zero VCP case to 2.8 μg m−3 (−58% mean bias) in the CMAQv5.3.2+VCP 

case, compared to the observed peak value of 6.6 μg m−3 (Figure 3a). The diurnal 

distributions resulted from photochemistry and the sinusoidal distribution of VCP emissions 

that peak at 12:00 local time. Modeled PM1 SOA concentrations improved for all mass 

loadings and all hours of the day, with the slope of modeled versus observed concentrations 

increasing from 0.23 in the zero VCP case to 0.43 in the CMAQv5.3.2+VCP case (Figure 

4a). Results for the CMAQv5.3.2 case are given in Figs. S3 and S4. Modeled PM2.5 SOA 

displayed similar behavior as PM1 SOA; i.e. the organic fraction and secondary organic 

fraction of PM2.5 was only marginally smaller than the corresponding fractions of PM1 and 

followed the same diurnal pattern.

The difference between hourly averaged total (i.e. not size-resolved) SOA concentrations in 

the zero VCP and CMAQv5.3.2+VCP case are shown in Figure 3b and the contributions 

to that difference from categories of SOA surrogates are shown in Figure 3c. Of the three 

new categories of VCP emissions, nonoxygenated IVOC precursors formed the most SOA 

in CMAQ. The increased SOA from the nonoxygenated IVOC VCP precursors reached a 

peak concentration of 1.14 μg m−3, equal to 69% of the total noontime difference. This 
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can be explained by the high SOA yields of the individual species (Fig. S1) and the model 

surrogates.

SOA from oxygenated IVOC VCP precursors reached a peak concentration of 0.11 μg 

m−3 (6.7% of the SOA difference). While oxygenated IVOC emissions were similar in 

abundance to nonoxygenated IVOC emissions (Figure 2), these species lead to less SOA 

formation due to their lower SOA yields (Fig. S1); higher degrees of oxygenation tend to 

promote fragmentation upon reaction with OH (Jimenez et al., 2009), producing smaller 

molecules with higher volatilities and lower potential to form SOA. It is possible that the 

net yield of modeled SOA from oxygenated IVOC precursors will increase as the results 

from more laboratory studies become available, or if a more detailed model is used. For 

example, particle-phase oligomerization reactions from oxygenated IVOC precursors would 

produce nonvolatile aerosol products, but this chemistry has not yet been investigated in an 

atmospheric chamber.

Siloxanes formed very little SOA, reaching a maximum of 21 ng m−3 (1.3% of the SOA 

difference) at noon. Despite having nonnegligible SOA yields (Fig. S1) and emission 

rates (Figure 2), siloxanes react with OH on long time scales (Table 1). As such, this 

results in low localized SOA mass, which is consistent with other modeling and laboratory 

studies that have predicted siloxanes to form SOA on the order of ng m−3 or less (Charan 

et al., 2021; Milani et al., 2021; Janechek et al., 2017). The low resultant SOA mass 

demonstrates that while gas-phase siloxanes serve as a useful tracer for personal care 

product and adhesive emissions from VCPs (Gkatzelis et al., 2021), particle-phase products 

from siloxane oxidation may not form quickly enough to serve as a reliable tracer for these 

emissions.

While traditional species accounted for the greatest fraction of VCP SOA precursor 

emissions that lead to SOA formation (Figure 2), they contributed only 23% (0.39 μg 

m−3) of the increased noontime SOA in the CMAQv5.3.2+VCP case. These traditional SOA 

precursors form SOA less efficiently than the IVOC surrogates (Fig. S1), so they result in 

less SOA formation than IVOCs despite higher emissions.

While this work indicates oxygenated IVOCs form much less SOA than nonoxygenated 

IVOCs, more work is needed to determine if this result is robust across all emission 

sectors and in future conditions. Oxygenated IVOCs represent a class of emissions that 

has traditionally been discarded from regional models, but have become an important 

research focus with the rising importance of VCP emissions (Khare & Gentner, 2018). 

The contribution of oxygenated IVOCs and siloxanes to ambient conditions may be spatially 

variable and continue to evolve as product formulations shift towards exempt VOCs which 

tend to be oxygenated. Oxygenated IVOCs from other emissions sources, such as meat 

cooking or wood burning, could be abundant but were not considered here. Additionally, we 

do not know if SOA from these precursors has a health impact higher or lower than average 

PM2.5.

The SOA from VCP IVOCs reached a daily maximum of 1.25 μg m−3 on average at 

noon (Figure 3c). IVOCs from mobile sources contributed an additional 1.1 μg m−3 
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at noon (Lu et al., 2020). Therefore this updated CMAQ model predicted a total IVOC-

derived SOA concentration of 2.35 μg m−3, equivalent to 35% of the total observed above-

background PM1 SOA concentration (6.6 μg m−3). Previous work stated that 40–85% of 

above-background SOA concentrations in Pasadena are attributable to S/IVOCs (Hayes et 

al., 2015), suggesting that additional processes are still needed in the model. This will be 

discussed further in Section 3.3.

Formaldehyde is one of the most abundant VOCs in the atmosphere and observations of this 

compound can serve many purposes. Biomass burning, vehicles, and other urban sources 

emit formaldehyde, and because of its short lifetime (~hours), it can serve as a proxy for 

local organic emissions. It is also formed in the atmosphere when VOCs undergo radical 

reactions, oxidize, and fragment, so it serves as an indicator for SOA chemistry since 

it is formed by many of the same reactions that also lead to SOA formation (Seinfeld 

& Pandis, 2016). In addition, it is depleted by photolysis and is an important source of 

radical initiation reactions (Griffith et al., 2016). Formaldehyde can be retrieved directly by 

satellites (Levelt et al., 2018), which can be used to validate ground data, evaluate model 

predictions, and predict OA concentrations remotely (Liao et al., 2019). For all of these 

reasons, formaldehyde is a useful indicator of VOC chemistry in a model.

Predicted formaldehyde concentrations improved in response to the new VCP emissions 

and chemistry, indicating that model updates improve the representation of VOC chemistry 

beyond SOA in the model. Similar to predicted SOA, formaldehyde concentrations 

increased at all times, with the ratio of modeled to observed values increasing from 0.58 

in the zero VCP case to 0.75 in the CMAQv5.3.2+VCP case (Figure 4b). The diurnal 

profile of hourly averaged formaldehyde concentrations is given in Fig. S3. This work 

focused primarily on improving the representation of SOA from VCPs, so radical chemistry 

for the new SOA precursors was treated using existing alkane-like behavior (surrogates 

ALK1/2/3/4/5). With a more detailed representation of VCP radical chemistry, predicted 

formaldehyde concentrations may improve further.

The bias in predicted ozone concentrations was also reduced by including VCP chemistry. 

The ratio of modeled to observed concentrations increased from 0.72 in the zero VCP case 

to 0.95 in the CMAQv5.3.2+VCP case (Figure 4c). Improved ozone is also seen for all 

operational AQS sites in the California modeling domain, with the modeled to observed 

ratio increasing from 0.63 in the zero VCP case to 0.70 in the CMAQv5.3.2+VCP case 

(Fig. S5). The diurnal profile of hourly averaged ozone concentrations is given in Fig. S3. 

This study focused on VCP behavior in relation to SOA formation and used existing model 

species to capture ozone formation. Future work focusing on the ozone chemistry of VCPs 

could change the magnitude and diurnal profile of predicted ozone.

SOA can be facilitated by increases in oxidant abundance and chemical pathways from 

precursors to semivolatile or low-volatility products. Average noontime total SOA mass 

increased from 1.96 μg m−3 in the zero VCP case to 3.62 μg m−3 in the CMAQv5.3.2+VCP 

case (Figure 3b), an increase of 84.7%. Ozone concentration can be used as an indicator of 

oxidant burden and oxidation rates due to its high responsiveness, while OH concentrations 

may be less responsive (Qin et al., 2021). The average noontime ozone concentration 
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increased from 43.0 ppb in the zero VCP case to 49.2 ppb in the CMAQv5.3.2+VCP case 

(Fig. S3c), an increase of 14.4%. Assuming ozone can serve as a proxy for oxidation 

rates, the improved ozone concentration suggests that ~14.4% of increased model SOA 

concentrations are due to an increase in the oxidant burden and oxidation rates. The SOA 

mass increased by a larger percentage (84.7%), indicating emissions and chemistry updates 

combined were approximately 5 times [ (84.7% - 14.4%) / 14.4%] more effective than 

enhanced oxidant levels alone in increasing SOA. This is consistent with the work of Qin 

et al. (2021), which found that the lack of key emitted precursors in models – rather than 

their associated radical chemistry – had the largest impact on PM2.5 formation. Additionally, 

we note that the default CMAQ model (CMAQv5.3.2) with baseline chemistry and VCP 

emissions predicted about the same amount of SOA as the zero VCP case (Fig. S3a). In 

contrast, ozone increased in the default CMAQv5.3.2 model with VCPs (Fig. S3c). Since the 

oxidant burden increased noticeably in the CMAQv5.3.2 case but did not equate to a large 

increase in PM1 SOA, results suggest the oxidant level alone does not have a large influence 

on enhancing SOA if the relevant precursor pathways are not also implemented.

The response of formaldehyde can similarly be compared to the change in oxidant burden 

due to VCPs. At noontime, average formaldehyde increased from 2.41 ppb in the zero 

VCP case to 2.80 ppb in the CMAQv5.3.2+VCP case, an increase of 16.2%. As above, 

we attribute ~14.4% of the increase in pollutant concentration to the increase in oxidation 

rates. While formaldehyde does contribute to the oxidant burden via photolysis and radical 

initiation, the contribution of formaldehyde to the ROx radical budget is likely small and 

on the order of 10% (e.g. Griffith et al., 2016; Kaiser et al., 2015; Luecken et al., 2018). 

Thus, the increase in formaldehyde concentrations between simulation cases is likely due 

primarily to the increase in oxidation rate. The increase in formaldehyde between simulation 

cases, therefore, cannot be largely attributed to the addition of S/IVOC emissions and their 

ability to form formaldehyde as a byproduct of oxidation. This is consistent with the work 

of Coggon et al. (2021), which showed that vehicle VOCs perturb formaldehyde to a larger 

degree than VCP VOCs do, suggesting that VCP emissions and fragmentation chemistry 

may not be directly responsible for formaldehyde, but rather modulate formaldehyde 

formation via changes in oxidant abundance.

3.3 Features of remaining model bias

The residual PM1 SOA bias in Pasadena is well-correlated with ambient temperature (Figure 

5a). PM1 SOA bias is defined as modeled hourly concentrations minus observed hourly 

concentrations. At cooler temperatures in the overnight hours, bias is low and fluctuates 

around zero. However, as temperature increases towards midday and SOA concentrations 

increase, the bias becomes more negative, indicating greater model underprediction.

SOA concentrations can be a function of temperature based on precursor emissions and 

chemistry throughout the day. Previous work demonstrated that observed OA in Los Angeles 

is positively correlated with temperature, and declining OA concentrations have been due 

largely to reductions of temperature-independent OA. Because this corresponds to a decline 

in anthropogenic emissions, they suggest that anthropogenically-derived OA is largely 

temperature-independent while biogenically-derived OA is largely temperature-dependent 

Pennington et al. Page 11

Atmos Chem Phys. Author manuscript; available in PMC 2022 December 16.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



(Nussbaumer & Cohen, 2021). Modeled OA is positively correlated with temperature, 

consistent with the observed Los Angeles OA, and is driven by the larger, secondary portion 

of OA, rather than POA (Fig. S7). However, the improvement to predicted SOA between 

simulation cases was seen unequally at different temperatures, as indicated by the larger 

reduction in absolute model bias at higher temperatures (Figure 5a). This suggests that 

the SOA derived from VCP species have a temperature-dependent response, in addition 

to the biogenic emissions cited in Nussbaumer & Cohen (2021). In particular, because 

nonoxygenated IVOCs were the dominant source of increased SOA predicted by the 

CMAQv5.3.2+VCP simulation, this work suggests that S/IVOCs are an important source 

of temperature-dependent SOA in Los Angeles.

Because S/IVOCs have been shown to be a major constituent of modeled SOA and 

contribute to the correlation between SOA bias and temperature, other sources of S/IVOCs 

emissions may account for some of the remaining residual SOA bias in the model. For 

example, asphalt emissions are proposed to contribute 8–30% of total S/IVOC emissions 

in the South Coast Air Basin in Southern California and have SOA mass yields exceeding 

10% (Khare et al., 2020). Their potential to form SOA is very large, and because asphalt 

emissions are highly temperature-dependent, the SOA increase would be seen largely 

during midday resulting in an improvement of high-temperature SOA bias. In addition, 

the underprediction of oxygenated gas-phase IVOCs (Section 3.1) suggests that additional 

sources of oxygenated IVOC precursors may be missing from the complete inventory. One 

possible explanation of the temperature-dependence of the SOA bias is that modeled SOA 

volatility is too high. But, oxygenated SOA is nonvolatile and nonoxygenated IVOC SOA is 

continually processed to lower volatility through gas-phase OH oxidation.

Formaldehyde, CO, and POA are often used to understand the atmospheric evolution of 

SOA because they are products of the same anthropogenic activity and/or VOC oxidation 

chemistry that forms SOA. As such, they can be used to better understand the remaining 

sources of error in the model. POA is formed via combustion from vehicles, industrial 

processes, cooking, and biomass burning (Jathar et al., 2014; Huffman et al., 2009). CO and 

formaldehyde are emitted from many processes and formed as products of atmospheric VOC 

oxidation (Seinfeld & Pandis, 2016). These species are often used to understand the effect of 

dilution on SOA (Hayes et al., 2013). Dilution is caused both by atmospheric transport away 

from emission sources, as well as the change in planetary boundary layer (PBL) height over 

the diurnal cycle. VCPs do not emit POA, CO, or formaldehyde, so any changes observed 

in their simulated concentrations were caused by chemical and physical processing in the 

existing model.

The POA bias did not express the same temperature dependence as SOA, and thus POA 

is not affected in the same way in the model by the processes causing the temperature-

dependence of SOA bias. Since VCPs do not emit POA and all other emission sources were 

consistent between simulation cases, the slight increase in POA concentrations between the 

zero VCP and CMAQv5.3.2+VCP cases (Figs. 5 and S7) is due to increased partitioning 

of semivolatile POA into the particle-phase resulting from higher total OA mass loadings 

(the treatment of semivolatile POA in CMAQ is described in Murphy et al. (2017)). The 

POA bias can be exclusively attributed to errors in combustion source emissions inventories 
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and meteorological effects. The combustion source inventories also include emissions of 

gaseous SOA precursors, which may be incorrectly modeled even if the POA emissions 

are accurate, especially for cooking and biomass burning sources. While the POA bias 

does decrease with increasing temperature, it is positive at all temperatures and does not 

have larger underpredictions at higher temperatures (Figure 5b). Due to the inconsistency 

between POA and SOA behavior, errors influencing the emission and transport of POA can 

likely not be used to describe the temperature dependence of SOA bias. The POA bias also 

does not provide information about the error in vapor emissions from combustion sources 

– including S/IVOCs – and their temperature-dependence, and improving combustion 

emissions inventories may help to close the model-observation gap for SOA.

CO is often used to account for the effects of dilution by scaling SOA to CO enhancement 

(ΔCO = CO - CObackground). Negligible changes in the CO concentration were found 

between simulation cases considered here (Fig. S3) and the model CO bias is uncorrelated 

with temperature (Figure 5d). The consistency of predicted CO concentration between cases 

implies that CO is not affected by the emissions changes to the VCP sector and thus cannot 

separate SOA formation efficiency from lack of emitted precursors. CO enhancement serves 

as an effective indicator and correction factor for mobile source emissions in urban areas 

(e.g. Hayes et al., 2013; Ensberg et al., 2014; Woody et al., 2016), but this work indicates 

that CO is not an effective tracer for distinguishing VCPs from other sources. The lack of 

correlation between CO and temperature also implies that errors in the modeled PBL height 

at different times of day (and potential impact on dilution of pollutant concentrations) is not 

an important driver of the SOA bias temperature-dependence.

In contrast to POA and CO, the formaldehyde bias demonstrated the same trend with 

temperature as SOA (Figure 5c). This suggests that formaldehyde is affected by emissions, 

chemistry, and dilution changes similarly to SOA. This is supported by the stronger 

correlation seen between SOA and formaldehyde compared to the correlation between 

SOA and POA or CO (Fig. S8). Therefore, formaldehyde may provide more information 

about the errors in modeling VOC chemistry and possibly SOA formation. It is possible 

that remaining formaldehyde bias is due to missing formaldehyde emissions. The VCP 

inventory includes near-zero emissions of formaldehyde, but formaldehyde is emitted from 

wooden furniture and emission rates increase with temperature (Y. Wang et al., 2021). This 

may account for some of the temperature-dependence of formaldehyde bias, but likely not 

the entirety since the VCP emissions inventory has been evaluated with select ambient 

VOC measurements with low error (Seltzer et al., 2021). One possible explanation of the 

temperature-dependence of both the SOA and formaldehyde biases is missing sources of 

emissions and resulting chemistry. Previous work has shown that formaldehyde formation is 

particularly sensitive to the emissions/chemistry of alkenes (e.g. isoprene) and, to a lesser 

extent, alkanes and aromatics (Luecken et al., 2018), so these precursors likely indicate 

missing emissions as a source of error in our model. While the radical chemistry of these 

hydrocarbon precursors are included in the model, additional missing chemistry may be 

causing some of the error. Chemical processes that have not been included in the mechanism 

include autooxidation (Crounse et al., 2013) – which forms low-volatility SOA – and 

formaldehyde potentially formed from the fragmentation of S/IVOC precursors to SOA. The 

inclusion of these missing emissions and/or chemistry would further impact oxidant levels, 
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which we have shown to be an important source of modeled SOA and formaldehyde. As 

stated above, the behavior of POA and CO bias suggest that errors in combustion emissions 

and PBL height cannot fully describe the temperature-dependence of SOA bias, and POA 

and CO are better indicators of mobile and industrial sources. Formaldehyde may instead 

serve as a better indicator of SOA production in urban areas where VCPs are important 

atmospheric constituents. While many factors may contribute to the temperature-dependence 

of SOA and formaldehyde bias, future work must investigate the importance of these factors 

and tracking the response of formaldehyde to these changes alongside SOA could provide 

insight.

4 Conclusions and future work

We have shown that VCPs are a major source of SOA in urban atmospheres by introducing 

updated emissions and VCP-relevant chemistry into CMAQ that better represents SOA 

precursors emitted from these sources. This includes three new categories of emissions: 

siloxanes, oxygenated IVOCs, and nonoxygenated IVOCs. VCP emissions from the VCPy 

framework (Seltzer et al., 2021) were used to parameterize the new chemistry, and the 

mapping of VCP emitted species to model surrogates was reviewed and updated based on 

species structure, volatility, and estimated SOA yield.

The new model chemistry and emissions inventory doubles the predicted SOA 

concentrations above background levels, increasing the average daily maximum PM1 SOA 

concentration by 1.4 μg m−3, equating to a 21% decrease in the absolute mean bias. Most of 

the increased SOA mass was formed from nonoxygenated IVOC VCP precursors, followed 

by SOA formed from traditional VOC precursors and oxygenated IVOC precursors, with 

little SOA formed from siloxanes. Improvements were additionally seen in simulated 

formaldehyde and ozone concentrations.

Future work should consider how VCP emissions have evolved over time. VCPy version 

1.0 requires information about VCP product composition and usage patterns from broad 

sources, including product surveys, economic statistics, and population distributions. These 

metrics change over time and will affect both the speciation and emission rates of organic 

compounds from VCPs. Diurnal and seasonal patterns of VCP emissions should also be 

updated to reflect more recent observations (Gkatzelis et al., 2021).

The remaining error in VCP-derived SOA predictions may reflect our lack of understanding 

about the oxidation pathways of low-volatility and/or oxygenated species. More information 

is needed about the structure, volatility, and reactivity of the products of atmospheric 

oxidation reactions, plus the impacts of wall loss and NOx concentrations on SOA yields 

from experiments, so that models and parameterizations like the VBS can be developed. 

As this data become available, models can be improved to represent SOA formation 

from oxygenated precursors and S/IVOCs emitted from VCPs. In addition, the correlation 

between SOA concentration bias and temperature suggests residual model error is associated 

with missing sources of S/IVOC emissions, including emissions from asphalt (Khare et 

al., 2020), combustion sources, or other S/IVOCs that have large potential to form SOA. 

The formaldehyde bias demonstrates a similar relationship to temperature as the SOA bias, 
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implying that investigations of formaldehyde could provide insight into VOC chemistry 

leading to the formation of SOA from VCPs. Including S/IVOC emissions and their 

atmospheric chemistry will be important for future air quality models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Treatment of OA chemistry in the CMAQv5.3.2+VCP model. The thick black box surrounds 

all aerosol-phase species. All smaller black boxes depict species undergoing gas-phase 

oxidation from VOCs to semivolatile or nonvolatile SOA species. Orange font depicts 

the VBS model for S/IVOCs. Red font depicts particle-phase accretion reactions while 

purple font depicts particle-phase hydrolysis reactions. Green font represents heterogeneous 

processes. Blue font shows cloud-processed aerosol and yellow font shows aerosol water 

associated with the organic phase. Gray boxes are nonvolatile primary organic aerosol 

(POA) species. Double-sided arrows represent reversible processes and one-sided arrows 

represent irreversible processes. Dashed lines represent processes that are dependent on 

relative humidity. The diagram includes the AERO7 mechanism plus the three VCP-forming 

pathways specific to this work (thick boxes in red). See AE7I Species Table (2016/2021) for 

species descriptions.

Pennington et al. Page 21

Atmos Chem Phys. Author manuscript; available in PMC 2022 December 16.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 2. 
Percentage of the VCP emissions assigned to each category of CMAQ surrogates using 

the SAPRC07TIC_AE7I_VCP speciation profiles. The total rate of VCP emissions in 

Los Angeles County is 8.3 × 107 kg yr−1. The outer ring depicts the percentage of total 

VCPy-derived emissions assigned to each of the three new VCP categories (siloxanes in 

red, oxygenated IVOCs in blue, and nonoxygenated IVOCs in orange), the traditional SOA 

precursors described by existing model surrogates (purple), and existing surrogates that do 

not form SOA (green). The inner ring gives an indication of the original assignments of 

each of the outer ring categories. Hatching indicates emissions originally assigned to model 

surrogates that do not participate in model chemistry: IVOC, NVOL, and NROG. Solid 

colors represent other surrogate assignments.
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Figure 3. 
a) Average hourly concentrations of background-corrected PM1 SOA observed and 

simulated by the zero VCP and CMAQv5.3.2+VCP modeling cases May 15-June 15. Box 

and whiskers show all hourly concentrations observed by AMS at the CalNex site. A 

constant background value was removed from all observed concentrations according to the 

method in Hayes et al. (2015). The background value of each simulation was determined 

by averaging the lower 50% of hourly concentrations from 00:00 LT to 04:00 LT and 

subtracting that from each curve. b) Average hourly concentration of total (not size-resolved) 

SOA for the two simulation cases and their difference (CMAQv5.3.2+VCP – zero VCP). c) 

Difference in hourly concentrations of total SOA by category.
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Figure 4. 
Modeled concentrations predicted by CMAQ zero VCP case (green) and 

CMAQv5.3.2+VCP case (blue) vs. observations from the CalNex Pasadena ground site. 

The line with a slope of 1 is indicated with a gray dashed line. a) Hourly PM1 SOA. b) 

Hourly formaldehyde (HCHO). c) MDA8 O3. Background values were not removed from 

any panels.
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Figure 5. 
Bias (modeled - observed) of hourly concentrations vs. modeled temperature for the zero 

VCP case (green) and CMAQv5.3.2+VCP case (blue). Hourly concentrations are binned 

into five temperature ranges of 5°C each and the data in each bin is represented by a 

box-and-whisker plot. The horizontal midline depicts the median of the data, the edges of 

the box extend from the lower to upper quartile of the data, and the whiskers extend from 

the minimum to the maximum of the data. a) PM1 SOA bias (μg m−3). b) PM1 POA bias (μg 

m−3). c) Formaldehyde (HCHO) bias (ppb). d) CO bias (ppb).
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Table 1.

Properties of the VCP surrogates added to CMAQ version 5.3.2.

MW (g 
mol−1)

kOH × 1011 

(cm3 molec−1 

sec−1)

αi C* (μg 
m−3)

SOA mass 
yield (at 
10 μg m−3)

Hvap (kJ 
mol−1)

κ org H (M atm−1) OM/OC

SILOX 368.66
a

0.155
b - - - - - 3.87 × 102f -

SVSILOX1/
ASILOX1J 416.66

a - 0.14
c

0.95
c 0.13 131

d
0.09

e
2.97 × 106f

3.49
e

SVSILOX2/
ASILOX2J 384.66

a - 0.82
c

484
c 0.017 101

d
0.05

e
7.99 × 104f

3.22
e

SOAOXY
g 170.95 2.54 - - - - - 2.85 × 103f -

AOIVOCJ
g 186.95 - - - 0.0628 - 0.09

e - 1.73
e

IVOCP3
h 296.6 2.65 h 103 0.43 52 - 2 × 108 -

IVOCP4
h 254.9 2.25 h 104 0.43 41 - 2 × 108 -

IVOCP5
h 219.4 1.89 h 105 0.35 30 - 2 × 108 -

IVOCP6
h 184.4 1.55 h 106 0.15 19 - 2 × 108 -

IVOCP5ARO
h 197.3 7.56 h 105 0.36 30 - 2 × 108 -

IVOCP6ARO
h 162.3 3.05 h 106 0.25 19 - 2 × 108 -

a
The gas-phase siloxane (SILOX) MW is the average of the MW of all VCPy siloxane and silane species weighted by Los Angeles County 

emission rates. The MW of the higher-volatility siloxane products (SVSILOX2/ASILOX2J) is approximated as the sum of the MW of SILOX and 
one oxygen. The MW of the lower-volatility products (SVSILOX1/ASILOX1J) has an additional two oxygens to represent its significant decrease 
in volatility.

b
The gas-phase siloxane (SILOX) kOH is given in Janechek et al. (2017).

c
The stoichiometric product yields (αi) and C* of the siloxanes are given in Janechek et al. (2019).

d
Enthalpy of vaporization (Hvap) values for the siloxanes are estimated according to the method in Epstein et al. (2010).

e
All OM/OC ratios and hygroscopicity parameters (κorg) are estimated using equations 5 and 12, respectively, in Pye et al. (2017).

f
Henry’s Law constants (H) at 298.15 K are estimated using the surrogate-based method in Hodzic et al. (2014).

g
The MW, kOH, C*, and SOA yield of SOAOXY (gas) and AOIVOCJ (aerosol) are calculated as a mass-weighted average of the oxygenated 

IVOC emissions from VCPs in Los Angeles County. Because AOIVOC is formed via a single reaction with a constant SOA yield, it is treated as 
nonvolatile and therefore is not assigned a C* or Hvap.

h
All nonoxygenated IVOC surrogate properties – including four stoichiometric product yields (αi) for each surrogate used in the multigenerational 

scheme – are described in Lu et al. (2020).

Atmos Chem Phys. Author manuscript; available in PMC 2022 December 16.


	Abstract
	Introduction
	Methods
	VCPy emissions inventory implementation
	Parameterizing SOA formation from VCPs
	CMAQ model implementation
	CalNex model configuration
	Simulation cases
	Comparison with observations


	Results & Discussion
	VCP emissions and implications for SOA
	CMAQ results: SOA, ozone, and formaldehyde
	Features of remaining model bias

	Conclusions and future work
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.

