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spermatogonia, primary spermatocytes, secondary spermatocytes, 
spermatids, and Sertoli cells (Figure 1b and 2). During spermatogenesis, 
different types of spermatogenic cells are arranged in specific positions 
in the seminiferous tubules.7 Spermatogenesis originates from the 
differentiation of SSCs, which depends on hormonal regulation and cell 
signal transduction. The precise balance between the self-renewal and 
differentiation of SSCs is regulated by the SSCs themselves, epigenetic 
factors,8 and the SSC niche.9–11 The SSC niche12,13 is suggested to be 
comprised of Sertoli cells, Leydig cells, peritubular myoid cells, growth 
factors, immune cells, vascular cells, and the basement membrane. The 
SSC niche plays a pivotal role in the self-renewal and differentiation 
of SSCs14 by providing extrinsic factors for maintaining stem cell 
potential.15

Spermatogenesis in mammals includes three phases:16 the 
mitotic phase, the meiotic phase, and spermiogenesis (Figure 3). 
The mitotic phase of spermatogenic development in rodents includes 
undifferentiated spermatogonia (Asingle [As], Apaired [Apr], and Aaligned [Aal]), 
differentiating spermatogonia (A1, A2, A3, A4, and intermediate), 
and differentiated spermatogonia (type B).17 The population of 
undifferentiated spermatogonia is heterogeneous; most studies have 
suggested that only As spermatogonia possess stem cell characteristics 
(characteristics of self-renewal and differentiation into Apr and Aal).18,19 
Therefore, As spermatogonia have been defined as SSCs. However, 
some recent studies have suggested that both Apr and Aal populations 
show stem cell potential.20,21 The meiotic phase of spermatogenic 
development in rodents involves three types of germ cells: successive 
type of primary spermatocytes, secondary spermatocytes, and haploid 
spermatids. Spermatids are transformed into spermatozoa during the 

INTRODUCTION
Spermatogenesis is the process by which spermatogonia, which originate 
from spermatogonial stem cells (SSCs), divide and differentiate into 
spermatocytes, which further develop into spermatozoa/sperm. It 
is a complex and continuous process of cell differentiation, in which 
different stages are precisely timed and coregulated by a range of genes 
and hormones.1 SSCs are derived from gonocytes in the testes after birth; 
gonocytes originate from primordial germ cells at the embryonic stage.2 
SSCs are the only specialized male reproductive stem cells that serve as 
carriers of genetic material to subsequent generations and are located on 
the basement membrane of the testicular seminiferous tubule epithelium.3

SSCs play a pivotal role in mammalian spermatogenesis. They 
are distinguished from other cells by their capability of maintaining a 
steady stem cell pool by self-renewal, and that for further differentiating 
into haploid sperm cells.4,5 The number of SSCs in mice testes is limited 
and difficult to determine; SSCs account for approximately 0.03% of all 
germ cells in the testes of mice.6 Numerous unresolved issues remain 
in the study of the mechanism and function of SSCs in culture. The 
present review aimed to summarize recent research advances in the 
biology, niche, culture system, biomolecular markers, and identification 
of mammalian SSCs. The detailed evaluation of these points is crucial 
for understanding the physiological and pathological mechanisms 
related to mammalian reproduction. It would also provide valuable 
insights into SSC applications in assisted reproduction and cell therapy.

THE SPERMATOGENIC PROCESS
Testicular tissue is comprised of seminiferous tubules and interstitial 
tissue (Figure 1a). Cell types in the seminiferous tubules include 
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spermiogenesis phase. The spermatogenic process in humans is similar 
to that in rodents. In humans, however, spermatogonia are divided into 
three types: Adark, Apale, and type B.22 The transformation of SSCs into 
mature spermatozoa is vastly different across species. For instance, the 
duration of spermatogenesis in various mammals is as follows: 74 days 

in humans,23 35 days in mice,19  41 days in boars,24 57 days in stallions,25 
63 days in cattle,26 and 47.7 days in goats.27

ISOLATION OF SSCS
The number of SSCs in immature and adult testes is limited.6 Thus, 
the isolation and distinction of SSCs remain challenging. In immature 
testes, spermatogonia are the main cell type found in the seminiferous 
tubules. Therefore, immature testes are generally preferred for the 
isolation of SSCs. The optimal age of different animals for the isolation 
of their SSCs is as follows: 4.5 days to 7.5 days for mice;28 9 days for rats;29 
5 months to 7 months for cattle;30 4 months for goats;31 and 1 month 
for pigs.32 Two-step enzymatic digestion, which was first proposed 
by Davis and Schuetz,33 is widely used for the isolation of SSCs from 
humans,34 mice,35 monkeys,36 sheep,37 pigs,38 and cattle39 (Table 1). In 
this approach, the testicular tissue is digested using collagenase and 
trypsin. The enzyme concentration and digestion time affect the activity 
and quantity of the collected SSCs.40

For further enrichment of SSCs, differential plating,41 Percoll 
gradient,41,42 magnetic-activated cell sorting (MACS),43 or 
fluorescence-activated cell sorting (FACS)44 is typically performed 
(Figure 4). The theory behind the differential plating method is that 
the adhesion rates of SSCs and somatic cells are different. Somatic 
cells have a higher affinity for gelatin than SSCs. Compared to other 
enrichment methods, the differential plating method yields the best 
results for SSC enrichment, although it has a lower specificity for SSCs.45 
Izadyar et al.46 used a Percoll gradient to concentrate a suspension of 
testis cells containing 25.5% bovine type A spermatogonia to 51%. This 
method is also widely used for the enrichment of SSCs from humans,47 
pigs,48 sheep,49 goats,50 and monkeys.51 FACS and MACS yield SSCs 
with higher purity than the other methods. For instance, Liu et al.47 
enriched human SSCs to an 86.7% concentration by FACS using the 
SSC surface marker octamer-binding transcription factor-4 (OCT4). 
Human SSCs were also purified by MACS using another SSC surface 
marker called integrin alpha 6 (ITGA6).44 However, the use of MACS 
and FACS is limited by specific SSC surface markers. SSC isolation 
and enrichment methods for livestock species have been developed; 
however, their development has occurred at a slower pace than SSC 
isolation and enrichment methods for other species, which may be 
attributable to species differences. Moreover, no unique and specific 
SSC molecular markers have been determined in livestock species.

IDENTIFICATION OF SSCS
Biomolecular markers of SSCs
Currently, there are two methods for the identification of SSCs: 
(1) biomolecular marker-based identification (identification using 

Figure 3: Schematic representation of the three phases of spermatogenesis in rodents. As: type Asingle spermatogonia; Apr: type Apaird spermatogonia; Aal: type 
Aaligned spermatogonia; intermediate: intermediate spermatogonia; B: type B spermatogonia.

Figure 2: Immunohistochemical staining of DDX4, SOX9, and WT1 in 
the seminiferous tubules of adult goat testes. (a) The negative control 
section used non-immune rabbit serum. (b) DDX4 localized in germ cells. 
(c) SOX9 and (d) WT1 localized in Sertoli cells. Scale bars = 25 μm. 
SOX9: SRY-related high mobility group-box gene 9; WT1: Wilms tumor protein 
1; DDX4: DEAD-box polypeptide-4.

dc
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Figure 1: Composition of the SSC niche. (a) Histological cross-section of the 
seminiferous tubules from goat testes stained with hematoxylin and eosin. 
Scale bar = 25 μm. (b) Schematic diagram of the seminiferous tubules and 
interstitial tissue from mammalian testes. SSC: spermatogonial stem cell.
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multiple SSC markers) and (2) spermatogonial transplantation 
(SSC colonization of recipient testes). Thus far, the understanding of 
the morphological characteristics and markers of SSCs has not been 
comprehensive. SSC markers in mice have been intensively searched 
for; however, SSC markers in humans and certain livestock species 
have not been identified. Previously, human SSCs were identified 
using markers of rodent SSCs. However, studies have demonstrated 
that several mouse SSC markers used for the identification of human 
SSCs are also expressed in nongerm cells in the human testes.52,53 As 
previously mentioned, SSC markers differ between species (Table 2). 
OCT4 and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) 
have been successfully identified as shared markers among the SSCs 
of humans, mice, cattle, goats, sheep, and pigs. Glial cell line-derived 
neurotrophic factor receptor alpha 1 (GFRα1) is widely used for SSC 
identification in humans, monkey, mice, cattle, and pigs. Whether 
GFRα1 can be specifically localized in the SSCs of goats and sheep still 
requires further study. Currently, BMI1 proto-oncogene, polycomb 
ring finger (BMI1), cadherin 1 (CDH1), forkhead box O1 (FOXO1), 
nanos C2HC-type zinc finger 2 (NANOS2), integrin beta 1 (ITGB1), 
paired box 7 (PAX7), and RET proto-oncogene (RET) are unique SSC 
markers in mice. The specific expression of fibroblast growth factor 
receptor 3 (FGFR3) is only found in human SSCs. Furthermore, the 
expression of SSC markers in livestock species has been shown to be 
heterogeneous. As some markers are not unique to SSCs, it is necessary 
to simultaneously use multiple markers for the identification of SSCs 

in a species. Additionally, specific molecular markers need to be 
continuously discovered and canonically used to identify the SSCs of 
various species.

Spermatogonial transplantation
Spermatogonial transplantation, which can be divided into autologous 
transplantation, allogeneic transplantation, and xenotransplantation, 
depending on the recipient, has been demonstrated to restore the 
fertility of male individuals with damaged testes. The spermatogonial 
transplantation technique was developed to identify SSCs in 
1994.54 Endogenous germ cells must be eliminated to ensure that 
only donor-derived sperm are produced after transplantation.55 
As such, recipient mice are treated with busulfan (1,4-butanediol 
dimethanesulfonate) to deplete endogenous SSCs. Spermatogenic 
colonies derived from donor germ cells are identified in recipient 
testes through the expression of reporter genes. The donor-derived 
germ cells are labeled with β-galactosidase, green fluorescent protein, 
or other fluorescent proteins. Thereafter, they are transplanted into 
the seminiferous tubules of recipient mice. Busulfan treatment 
is known to deplete endogenous germ cells in a dose-dependent 
manner. However, busulfan has also been reported to have side effects, 
including toxicity, in recipient animals and may damage organs and 
Sertoli cells.56 Hence, specific mutant mice lacking spermatogenesis 
can be used as recipients. For instance, knocking out NANOS2 in 
mice57 and pigs58 has been shown to reduce the number of endogenous 
germ cells; these animals can then be employed as ideal transplant 
recipients for SSCs. After microinjection, the donor SSCs colonize the 
seminiferous tubules of the recipient. Consequently, spermatogenesis 
is restored. Fertilization of eggs by donor-derived spermatozoa can 
lead to the production of fertile offspring.59 Therefore, the germ cell 
transplantation technique can be used for SSC identification. The 
success rate of homologous transplantation is higher than that of other 
types of transplantation. Ablation of endogenous germ cells is easier 
in rodents than that in livestock. To obtain more effective and reliable 
recipient males, the ablation of endogenous germ cells in livestock 
needs better strategies. SSC transplantation methods and recipient 
males for livestock SSC transplantation still need to be further explored. 
Currently, the colonization efficiency of SSCs in recipient testes is 
approximately 12.5%.60 The reason for this low colonization efficiency 
after transplantation is unclear. Thus, it is important to elucidate the 
underlying mechanism and improve the colonization efficiency in 
SSC transplantation.

Complete spermatogenesis was observed after cross-species 
mouse-hamster61 and mouse-rat62 transplantations, and healthy 
offspring were produced. However, whether SSCs from nonrodent 
species could be identified by transplantation has been questioned.63 In 
2002, Nagano et al.64 transplanted human SSCs into immunodeficient 
mice for the first time. Human SSCs were found to colonize the 
seminiferous tubules in mice and survived there for up to 6 months.64 
However, spermatogonial development did not proceed to the meiotic 
phase. The absence in the mice testes, of certain unique growth 
factors that are necessary for the spermatogenic process in nonrodent 
species may explain the inability of mice testes to support complete 
spermatogenesis following transplantation of SSCs from these species. 
SSCs from several nonrodent species have been transplanted into the 
testes of mice. SSC transplantation may be used as a breeding tool for 
livestock. However, complete spermatogenesis was observed only in 
the case of SSC transplantation from monkeys and sheep (Table 3). 
The reason for these interspecies differences may be the requirement 
for blood–testis barrier and Sertoli cells for the colonization of SSCs 

Figure 4: Schematic representation of isolation, enrichment, and culture 
methods of SSCs. The testicular tissues is digested using the enzyme. 
Then, MACS, differential plating, Percoll gradient, or FACS is used for the 
enrichment of SSCs. In two-dimensional cell culture system, SSCs are cultured 
on feeder cells. Soft agar and MC are the most commonly used media in 
the three-dimensional cell culture system. SSC: spermatogonial stem cell; 
MACS: magnetic-activated cell sorting; FACS: fluorescence-activated cell 
sorting; MC: methylcellulose.



Asian Journal of Andrology 

Isolation, identification, and culture of SSCs 
HM Xi et al

9

in recipient testes. The immunoprotection against germ cells offered 
by Sertoli cells ensures normal spermatogenesis. The number of Sertoli 
cells in the seminiferous tubules has also been demonstrated to affect 
the colonization efficiency of transplanted SSCs in mice.65 Sertoli cells 
are a category of mesenchymal stem cells (MSCs) that have begun to 
differentiate.66 Therefore, co-transplanting SSCs and MSCs has been 
shown to significantly improve the colonization efficiency of SSCs.67 
Co-transplantation of Sertoli cells and SSCs has also been reported to 
improve the efficiency of SSC transplantation in recipient testes.68,69 
Before SSC transplantation, SSCs need to expand in vitro to reach a 
sufficient number. SSC culture conditions of rodents have been used to 
culture in livestock SSCs. Obviously, expansion efficiency of livestock 
SSCs in vitro is still lower than that of rodents. There are still difficulties 
in SSC transplantation for livestock.

CULTURE OF SSCS
The limited number of SSCs in the testes hampers biological and applied 
research on these cells. However, this obstacle may be overcome by 
establishing an in vitro culture system that maintains the stem cell 
potential of SSCs. The culture of SSCs is a challenge at the outset, as 
growth factors, serum, and the feeder layer may affect the SSC state 
during in vitro culture (Table 1).

In 2000, glial cell line-derived neurotrophic factor (GDNF) was 
demonstrated to regulate the fate of undifferentiated spermatogonia 
in mice,70 even though it was initially identified as a neurotrophic 
factor. Currently, GDNF and fibroblast growth factor 2 (FGF2) are 
known to be essential factors for the maintenance of SSC self-renewal 
in culture,71–73 with GDNF having been shown to regulate the fate of 
SSCs in a dose-dependent manner.70 Wang et al.74 suggested that a 
high concentration of GDNF (20 ng ml−1) is conducive to the early 

proliferation of mouse SSCs; conversely, a low concentration of GDNF 
(4 ng ml−1) was conducive to stable culture in the later stage of SSC 
development. Leukemia inhibitory factor (LIF) has also been reported 
to inhibit the differentiation of stem cells in vitro, with 15 mg ml−1 LIF 
promoting the stable proliferation of SSCs.75 Wu et al.76 demonstrated 
that the addition of 25 mg ml−1 basic fibroblast growth factor (bFGF) 
and other factors could continuously promote the proliferation of 
mouse SSCs in vitro for more than 120 days.

In addition to growth factors, fetal bovine serum (FBS) has 
been shown to be crucial for the survival and self-renewal of SSCs 
in vitro (Table 1). Goat SSCs were cultured under different serum 
concentrations (1%, 5%, 10%, and 15%).77 After 7 days, the number 
of goat SSC colonies was observed to be higher in the presence of 1% 
serum compared to the number of colonies in the presence of 5%, 
10%, and 15% serum.77 A higher concentration of serum was found to 
inhibit the proliferation of SSCs.77 However, various undefined factors 
in FBS may affect the culture status of SSCs in vitro and induce their 
differentiation. Therefore, knockout serum replacement (KSR) has 
been attempted for culturing SSCs in vitro. SSCs from immature bovine 
testes have also been cultured in serum-free medium containing GDNF, 
bovine leukemia inhibitory factor (bLIF), and KSR,78 with SSC colonies 
being formed and identified based on morphological characteristics 
and molecular markers.

Feeder layer cells provide a variety of necessary cytokines for 
the proliferation of SSCs. Various feeder layer cells, including mouse 
embryonic fibroblast (MEF) feeder cells,28,79 SIM mouse embryonic 
fibroblasts (STO) feeder cells,80,81 yolk sac-derived endothelial cells 
(C166),82 and Sertoli cells,50,83 have been applied in the culture of SSCs 
to promote their proliferation. Among them, the MEF feeder layer 
cells exerted the best effect on the colonization and proliferation of 

Table  2: Overview of spermatogonial stem cell markers in human, monkey, mouse, cattle, goat, sheep, and pig

Marker Human Monkey Mouse Cattle Goat Sheep Pig

BMI1 ND ND Komai et al.116 ND ND ND ND

CD9 Zohni et al.117 ND Kanatsu‑Shinohara et al.118 Cai et al.119 Kaul et al.120 ND ND

CDH1 ND ND Tokuda et al.121 ND ND ND ND

DBA ND ND ND Izadyar et al.122 ND Borjigin et al.123 Goel et al.114

FOXO1 ND ND Goertz et al.124 ND ND ND ND

FGFR3 von Kopylow et al.125 ND ND ND ND ND ND

GFRα1 He et al.43 Hermann et al.126 Meng et al.70 Oatley et al.127 ND ND Lee et al.128

GPR125 He et al.43 ND Seandel et al.129 ND ND ND ND

ID4 Sachs et al.130 ND Helsel et al.131 ND ND ND ND

ITGB1 ND ND Kanatsu‑Shinohara et al.132 ND ND ND ND

ITGA6 Valli et al.44 ND Shinohara et al.133 De Barros et al.134 ND ND ND

LIN28 Aeckerle et al.135 Aeckerle et al.135 Zheng et al.136 ND ND ND ND

NANOS2 ND ND Suzuki et al.137 ND ND ND ND

NGN3 ND Hermann et al.138 Yoshida et al.42 ND ND ND ND

OCT4 Bhartiya et al.139 ND Pesce et al.140 Borjigin et al.123 Pramod and Mitra50 Qasemi‑Panahi et al.141 Goel et al.114

PAX7 ND ND Aloisio et al.142 ND ND ND ND

PLZF ND Hermann et al.126 Costoya et al.143 Reding et al.144 ND Borjigin et al.123 Goel et al.114

RET ND ND Naughton et al.145 ND ND ND ND

SALL4 Eildermann et al.146 Eildermann et al.146 Hobbs et al.147 ND ND ND ND

SOHLH1 ND Ramaswamy et al.148 Ballow et al.149 ND ND ND ND

THY1 He et al.43 ND Kubota et al.28 Reding et al.144 Abbasi et al.150 ND ND

UCHL1 He et al.43 ND Kwon et al.151 Herrid et al.152 Heidari et al.153 Rodriguez‑Sosa et al.49 Luo et al.154

UTF1 ND ND van Bragt et al.155 ND ND ND Lee et al.156

BMI1: BMI1 proto‑oncogene, polycomb ring finger; CD9: CD9 molecule; CDH1: cadherin 1; DBA: dolichos biflorus agglutinin; FOXO1: forkhead box O1; FGFR3: fibroblast growth factor 
receptor 3; GFRα1: glial cell line‑derived neurotrophic factor receptor alpha 1; GPR125: G‑protein receptor 125; ID4: inhibitor of differentiation 4; ITGB1: integrin beta 1; ITGA6: integrin 
alpha 6; LIN28: Lin‑28 homolog A; NANOS2: nanos C2HC‑type zinc finger 2; ND: not determined; NGN3: neurogenin 3; OCT4: octamer‑binding transcription factor‑4; PAX7: paired box 
7; PLZF: promyelocytic leukemia zinc‑finger; RET: RET proto‑oncogene; SALL4: spalt like transcription factor 4; SOHLH1: spermatogenesis and oogenesis-specific basic helix-loop-helix 1; 
THY1: Thy1 cell surface antigen; UCHL1: ubiquitin carboxyl‑terminal hydrolase isozyme L1; UTF1: undifferentiated embryonic cell transcription factor 1
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SSCs.84 The preparation of feeder layer cells for subculture is a tedious 
process; therefore, a Matrigel-based feeder-free culture system was 
developed.85 This feeder-free culture system was able to maintain the 
biological function of SSCs in an in vitro culture (Table 1). For the 
culture of SSCs from livestock, the commonly used feeder layer cells 
are their own Sertoli cells.50,83 However, Sertoli cells secrete certain 
growth factors that promote the differentiation of SSCs; therefore, the 
long-term culture of SSCs in vitro cannot be sustained.

To simulate the growth environment of SSCs in vivo, a 
three-dimensional cell culture system was developed. To this end, 
various types of cells in the seminiferous tubules were separated and 
implanted into a semi-solid medium to maintain the niche function. 
Currently, soft agar and methylcellulose (MC) are the most commonly 
used three-dimensional cell culture media (Figure 4). Mouse SSCs 
were cultured for 15 days in a soft agar culture system, and specific 
markers of haploid sperm cells were found to be expressed by them.86 
Similarly, SSCs from prepubertal male testes were cultured in MC 
and haploid sperm-like cells were subsequently identified.87 Sertoli 
cells, Leydig cells, and SSCs from rats were also co-cultured in the 
extracellular matrix to establish an in vitro toxicity test system for rat 
testes.88 The three-dimensional culture system provides a research 
model for communication and interactions between cells in the body. 
However, it cannot sustain the culture of SSCs for a long period and 
is incapable of recycling all cells.

Culture systems for neonate SSCs differ from those for adult 
SSCs.39 Using a neonatal culture system to culture SSCs from adult 
mammals revealed that the system was unable to maintain the 
SSCs for a long period.39,78 Adult bovine SSCs were cultured for a 
maximum of three passages, and the stem cell potential of SSCs 
derived from immature bovine testes was greater than that of stem 
cells derived from adult bovine testes.78 It appears that the successful 
establishment of an SSC culture system depends on the age of the 
animal (neonate or adult). SSCs from rats, hamsters, and rabbits were 
established using species-specific culture components.82,89–91 SSCs 
from pigs,83,92 goats,50 and cattle39,78,93 were also cultured successfully 
in vitro. However, most of these studies only carried out a short-term 
culture. The long-term culture of SSCs from livestock species is still in 
its infancy.94 Some reports have suggested that SSCs from pigs83 and 
cattle78 have been successfully cultured in vitro for a prolonged period. 
However, long-term culture systems for SSCs from other livestock 

have not been established, which may be due to the lack of proper 
SSC culture conditions and necessary cytokines for proliferation. The 
culture conditions for rodent SSCs cannot be fully applied to SSCs 
from livestock species.95 Although reports have indicated that SSCs 
or germline stem cells could be continuously cultured over months, 
the stem cell potential of these cultured cells remains controversial. 
Therefore, it is necessary to rigorously evaluate the function of SSCs 
after long-term culture. Transplantation of SSCs cultured into the 
testes of mice lacking endogenous germ cells was reported to produce 
offspring originating from donor SSCs, indicating that SSCs cultured 
in vitro are capable of differentiating into sperm in vivo, leading to the 
production of offspring.96 Currently, only SSCs from monkeys97 and 
sheep98 cultured in vitro have been demonstrated to exhibit complete 
spermatogenesis after transplantation into immunodeficient mice. The 
establishment of an in vitro long-term culture system for livestock SSCs 
would help to further elucidate the biology and application of SSCs. 
Thus, further study of the conditions for long-term in vitro culture of 
livestock SSCs is urgently required.

SSC fates are also regulated by epigenetic factors. For epigenetic 
factors, DNA methylation, histone methylation, and noncoding RNAs 
(ncRNAs) are involved in regulation of SSC fates. DNA (cytosine-5-)-
methyltransferase 3-like (DNMT3L; DNA methylation regulator) 
precisely regulates the proliferation and quiescence of SSCs.99 Tet 
oncogene 1 (TET1) participates in DNA methylation and histone 
modification to regulate SSC self-renewal.100 NcRNAs, as the novel 
epigenetic regulator, play crucial roles in regulating SSC fates. Long 
ncRNAs (lncRNAs) transcription is important for the self-renewal 
of SSCs. In the testis, lncRNA AK015322, mainly expressed in SSCs, 
regulates SSC proliferation by competitively binding miR-19b-3p and 
reducing the inhibitory effect of miR-19b-3p on ETS translocation 
variant 5 (Etv5).101 Li et al.102 have demonstrated that circular RNAs 
(circRNAs) play a role in mammalian SSCs. MicroRNAs (miRNAs) 
are a kind of nonprotein-coding short sequence RNA. He et al.103 
reported for the first time that miRNA-20 and miRNA-106a are 
highly and specifically expressed in SSCs of mice, which promoted 
SSC proliferation and DNA synthesis. And miR-31 regulated meiosis 
of SSCs by targeting stimulated by retinoic acid gene 8 (Stra8) in vivo 
and in vitro to inhibit spermatogenesis.104 Huang et al.105 reported that 
miR-100 is mainly expressed in mouse SSCs, which indirectly regulated 
signal transducer and activator of transcription 3 (Stat3) to promote 

Table  3: Spermatogonial transplantation in human, mouse, monkey, cattle, goat, sheep, and pig

Donor species Transplant type Recipient species Spermatogenesis of recipient Reference

Human Xenotransplantation Mouse Incomplete Izadyar et al.122

Mouse Autologous Mouse Complete Koruji et al.157

Mouse Allogeneic Mouse Complete Ma et al.158

Monkey Autologous Monkey Complete Hermann et al.51

Monkey Allogeneic Monkey Complete Hermann et al.51

Monkey Xenotransplantation Mouse Complete Ntemou et al.97

Cattle Autologous Cattle Complete Izadyar et al.46

Cattle Allogeneic Cattle Complete Izadyar et al.46

Cattle Xenotransplantation Mouse Incomplete Izadyar et al.159

Goat Allogeneic Goat Complete Honaramooz et al.31

Goat Xenotransplantation Mouse Incomplete Shirazi et al.160

Sheep Allogeneic Sheep Complete Herrid et al.68

Sheep Xenotransplantation Mouse Complete Pukazhenthi et al.98

Pig Autologous Pig Not detected Honaramooz et al.32

Pig Allogeneic Pig Complete Zeng et al.161

Pig Xenotransplantation Mouse Incomplete Dobrinski et al.162
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SSCs proliferation. By isolating high-purity SSCs, Zhang et al.106 
found that P-element-induced wimpy testis (PIWI)-interacting RNAs 
(piRNAs) account for 47% of the total number of small RNAs. Dong 
et al.107 found that ubiquitin-like, containing PHD and RING finger 
domains 1 (Uhrf1) regulates retrotransposon silencing in male germ 
cells and cooperates with the PIWI pathway during spermatogenesis. 
LncRNAs, circRNAs, miRNAs, and piRNAs have formed complicated 
regulatory networks to modulate the SSCs fate. However, only a small 
number of ncRNAs have been verified functionally. It is very urgent 
to further uncover the regulatory effect of more ncRNAs (especially 
piRNAs and circRNAs) on SSC fates.

CONCLUSIONS
The unique biological characteristics of SSCs determine their 
importance in spermatogenesis. Any biological dysfunction in SSCs 
can cause male infertility. Investigation of the methods of isolation, 
identification, and culture of SSCs would help us better understand 
the processes of normal spermatogenesis and male infertility. 
Several SSC markers have been identified in rodents. There are 
numerous differences in spermatogenic processes between rodents 
and nonrodents; however, certain SSC markers and features of 
spermatogenesis are conserved among species. For the identification 
of SSCs from livestock, the source and quality of antibodies used are 
critical. Many SSC antibodies have limited specificity in livestock, 
and there are currently no specific antibodies against SSCs of various 
livestock species. 

Researchers are encouraged to devote more attention to conduct 
detailed research into the regulatory effects of specific marker genes on 
SSC fates and spermatogenesis in different livestock species, which is 
currently lacking. Currently, research on spermatogenesis in livestock 
is limited and lacks depth. There have been no recent significant 
breakthroughs in the field of livestock SSCs and spermatogenic 
processes. The long-term culture of SSCs in vitro to produce sperm 
provides a novel method for the production of transgenic livestock. In 
addition, SSCs of superior livestock can be cultured in vitro and then 
transplanted into the testis of recipient, which can produce a large 
number of sperm carrying superior livestock genes for fertilization 
and promote the reproduction of superior livestock. However, the 
feasibility, safety, and bioethics of applying this technology have yet to 
be considered. Currently, our knowledge of SSC biology is still limited, 
and we have not fully developed the full potential of SSCs in vitro. 
Thus, it is necessary to further explore the role of SSCs in reproductive 
biology. A deeper understanding of the similarities and differences 
between the reproductive biology of various mammals would be 
conducive to the development of SSC culture and transplantation and 
applications of SSCs in human medicine, livestock improvement, and 
protection of endangered species.
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